diff --git a/Manuscript/Ex-srDFT.tex b/Manuscript/Ex-srDFT.tex index 18d30d7..6bdc44b 100644 --- a/Manuscript/Ex-srDFT.tex +++ b/Manuscript/Ex-srDFT.tex @@ -334,10 +334,10 @@ The PBE correlation functional has clearly shown to improve energetics for small Therefore, based on the proposition of Ref.~\onlinecite{FerGinTou-JCP-18}, we introduce the general form of the PBE complementary functional: \begin{multline} \label{eq:def_pbe_tot} - \bE{\PBE}{}[\n{}{},\tn{2}{},\rsmu{}{}] = + \bE{\PBE}{\manu{\Bas}}[\n{}{},\tn{2}{},\rsmu{}{\manu{\Bas}}] = \int \n{}{}(\br{}) \\ - \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\tn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{}, + \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\tn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{}, \end{multline} with \begin{subequations} @@ -353,10 +353,10 @@ with In Ref.~\onlinecite{LooPraSceTouGin-JPCL-19}, some of the authors introduced a new PBE-based functional, here-referred as \titou{PBE-UEG}, \begin{multline} \label{eq:def_pbe_tot} - \bE{\titou{\PBE\text{-}\UEG}}{}[\n{}{},\n{2}{\UEG},\rsmu{}{}] = + \bE{\titou{\PBE\text{-}\UEG}}{\manu{\Bas}}[\n{}{},\n{2}{\UEG},\rsmu{}{\manu{\Bas}}] = \int \n{}{}(\br{}) \\ - \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\n{2}{\UEG}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{}, + \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\n{2}{\UEG}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{}, \end{multline} in which the on-top pair density was approximated by its UEG version, \begin{equation} @@ -369,14 +369,14 @@ However, the underlying UEG on-top pair density might not be suited for the trea Therefore, we propose here the "PBE-ontop" (PBEot) functional, \begin{multline} \label{eq:def_pbe_tot} - \bE{\PBEot}{}[\n{}{},\ttn{2}{},\rsmu{}{}] = + \bE{\PBEot}{\manu{\Bas}}[\n{}{},\ttn{2}{\manu{\Bas}},\rsmu{}{\manu{\Bas}}] = \int \n{}{}(\br{}) \\ - \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\ttn{2}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{}(\br{})) \dbr{}, + \times \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),\ttn{2}{\manu{\Bas}}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\manu{\Bas}}(\br{})) \dbr{}, \end{multline} -a variant inspired by the work of Ref.~\onlinecite{FerGinTou-JCP-18} where the exact on-top pair density is approximated by the extrapolation formula proposed by Gori-Giorgi and Savin:\cite{GorSav-PRA-06} +a variant inspired by the work of Ref.~\onlinecite{FerGinTou-JCP-18} where the exact on-top pair density is approximated by the extrapolation formula proposed by Gori-Giorgi and Savin:\cite{GorSav-PRA-06}\manu{. In the present context, we use the on-top pair density in the basis set $\Bas$ $ \n{2}{\manu{\Bas}}(\br{})$ together with the associated range separation function $\rsmu{}{\Bas}(\br{})$, which leads to the following approximated on-top pair density: } \begin{equation} - \ttn{2}{}(\br{}) = \n{2}{}(\br{}) \qty( 1 + \frac{2}{\sqrt{\pi}\rsmu{}{}(\br{})})^{-1}. + \ttn{2}{\manu{\Bas}}(\br{}) = \n{2}{\manu{\Bas}}(\br{}) \qty( 1 + \frac{2}{\sqrt{\pi}\rsmu{}{\manu{\Bas}}(\br{})})^{-1}. \end{equation} %Such formula relies on the association between $\n{2}{\Bas}(\br{ },\br{ })$, which is the on-top pair density computed in the basis set $\Bas$ in a given point, and the local value of the range-separation parameter $\rsmu{}{\Bas}$ at the same point. The sole distinction between \titou{PBE-UEG} and PBEot is the level of approximation of the exact on-top pair density.