Manu done

This commit is contained in:
Pierre-Francois Loos 2019-07-01 16:11:13 +02:00
parent 9d965aa001
commit 44490ec71f

View File

@ -284,8 +284,8 @@ The ECMD functional, $\bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}]$, is a function of
\lim_{\mu \to 0} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}],
\end{align}
\end{subequations}
which correspond to the WFT limit ($\mu \to \infty$) and the \manu{Kohn-Sham }DFT (KS-DFT) limit ($\mu = 0$).
In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in \manu{KS-}DFT. \cite{HohKoh-PR-64, KohSha-PR-65}
which correspond to the WFT limit ($\mu \to \infty$) and the Kohn-Sham DFT (KS-DFT) limit ($\mu = 0$).
In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in KS-DFT. \cite{HohKoh-PR-64, KohSha-PR-65}
The key ingredient that allows us to exploit ECMD functionals for correcting the basis-set incompleteness error is the range-separated function
\begin{equation}