From 44490ec71f5b46b290a7752ff32f36d35606162a Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Mon, 1 Jul 2019 16:11:13 +0200 Subject: [PATCH] Manu done --- Manuscript/Ex-srDFT.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Manuscript/Ex-srDFT.tex b/Manuscript/Ex-srDFT.tex index 78953e6..8d9743b 100644 --- a/Manuscript/Ex-srDFT.tex +++ b/Manuscript/Ex-srDFT.tex @@ -284,8 +284,8 @@ The ECMD functional, $\bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}]$, is a function of \lim_{\mu \to 0} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}], \end{align} \end{subequations} -which correspond to the WFT limit ($\mu \to \infty$) and the \manu{Kohn-Sham }DFT (KS-DFT) limit ($\mu = 0$). -In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in \manu{KS-}DFT. \cite{HohKoh-PR-64, KohSha-PR-65} +which correspond to the WFT limit ($\mu \to \infty$) and the Kohn-Sham DFT (KS-DFT) limit ($\mu = 0$). +In Eq.~\eqref{eq:small_mu_ecmd}, $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in KS-DFT. \cite{HohKoh-PR-64, KohSha-PR-65} The key ingredient that allows us to exploit ECMD functionals for correcting the basis-set incompleteness error is the range-separated function \begin{equation}