Manu: done with the final energy expressions

This commit is contained in:
Emmanuel Fromager 2019-10-30 13:21:29 +01:00
parent 04211afeae
commit 8268c6a3b0

View File

@ -627,7 +627,9 @@ Tr}\left[{\bm F}^{(L)}\frac{\partial \bmg^{(L)}}{\partial w_K}\right]
. .
\eeq \eeq
\subsection{Two-step ghost-interaction-corrected calculation} \subsection{Ensemble
correlation LDA and ghost interaction correction
}
In order to compute (approximate) energy levels within generalized In order to compute (approximate) energy levels within generalized
GOK-DFT we use a two-step procedure. The first step consists in GOK-DFT we use a two-step procedure. The first step consists in
@ -642,7 +644,7 @@ At this
level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm
c}[n]$ and ${E}^{{\bw}}_{\rm c}[n]$ and ${E}^{{\bw}}_{\rm
c}[n]$ are actually identical and can be expressed as c}[n]$ are actually identical and can be expressed as
\beq \beq\label{eq:eLDA_corr_fun}
{E}^{{\bw}}_{\rm {E}^{{\bw}}_{\rm
c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)). c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)).
\eeq \eeq
@ -683,7 +685,27 @@ n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\ \nonumber\\
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm &&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}} c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
. ,
\eeq
thus leading to the final implementable expression [see Eq.~(\ref{eq:eLDA_corr_fun})]
\beq
E^{(I)}&&\approx{\rm
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
\bmg^{(I)})
\nonumber\\
&&+\int d\br\,
{\epsilon}^{{\bw}}_{\rm
c}(n_{\bmg^{\bw}}(\br))\,n_{\bmg^{(I)}}(\br)
\nonumber\\
&&
+\int d\br\,\left.\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
\nonumber\\
&&
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
c}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
\eeq \eeq
\alert{Secs. \ref{sec:KS-eDFT}-\ref{sec:E_I} should maybe be moved to an appendix or merged \alert{Secs. \ref{sec:KS-eDFT}-\ref{sec:E_I} should maybe be moved to an appendix or merged