Manu: saving work in the theory section.

This commit is contained in:
Emmanuel Fromager 2020-03-09 18:43:37 +01:00
parent 1462604bd9
commit 61c368748d

View File

@ -919,13 +919,44 @@ of Eq.~\eqref{eq:EI-eLDA}.
\Big) \Big)
d\br{} d\br{}
\\ \\
& &=\int
\Big(\be{c}{(I)}(\n{\bGam{\bw}}{}(\br{}))
-
\e{c}{\bw}(\n{\bGam{\bw}}{}(\br{}))
\Big)\,\n{\bGam{\bw}}{}(\br{})
d\br{}
%\sum_{K>0}\delta_{IK}\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} %\sum_{K>0}\delta_{IK}\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}
\end{split} \end{split}
\eeq \eeq
thus leading to the following Taylor expansion
\beq \beq
\begin{split}
&
\int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{}) \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{} \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
\\
&=-\int \e{c}{\bw}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{}
\\
&+\int \be{c}{(I)}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{}
\\
&+\int \Bigg[
\n{\bGam{(I)}}{}(\br{})
\left.\left(
\pdv{\be{c}{{(I)}}(\n{}{})}{\n{}{}}
-
\pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}}
\right)\right|_{\n{}{} =
\n{\bGam{(I)}}{}(\br{})}
\\
&+\be{c}{(I)}(\n{\bGam{(I)}}{}(\br{}))
-
\e{c}{\bw}(\n{\bGam{(I)}}{}(\br{}))\Bigg]\times
\Big(\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})\Big)
d\br{}
\\
&
+\mathcal{O}\left([\n{\bGam{\bw}}{}-\n{\bGam{(I)}}{}]^2\right).
\end{split}
\eeq \eeq
} }