From 61c368748d833eb4e28f18ed9d605b8e8ababec5 Mon Sep 17 00:00:00 2001 From: Emmanuel Fromager Date: Mon, 9 Mar 2020 18:43:37 +0100 Subject: [PATCH] Manu: saving work in the theory section. --- Manuscript/eDFT.tex | 33 ++++++++++++++++++++++++++++++++- 1 file changed, 32 insertions(+), 1 deletion(-) diff --git a/Manuscript/eDFT.tex b/Manuscript/eDFT.tex index 15097a9..e92df62 100644 --- a/Manuscript/eDFT.tex +++ b/Manuscript/eDFT.tex @@ -919,13 +919,44 @@ of Eq.~\eqref{eq:EI-eLDA}. \Big) d\br{} \\ -& +&=\int +\Big(\be{c}{(I)}(\n{\bGam{\bw}}{}(\br{})) +- +\e{c}{\bw}(\n{\bGam{\bw}}{}(\br{})) +\Big)\,\n{\bGam{\bw}}{}(\br{}) + d\br{} %\sum_{K>0}\delta_{IK}\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} \end{split} \eeq +thus leading to the following Taylor expansion \beq +\begin{split} +& \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{}) \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{} +\\ +&=-\int \e{c}{\bw}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{} +\\ +&+\int \be{c}{(I)}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{} +\\ +&+\int \Bigg[ +\n{\bGam{(I)}}{}(\br{}) +\left.\left( +\pdv{\be{c}{{(I)}}(\n{}{})}{\n{}{}} +- +\pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} +\right)\right|_{\n{}{} = +\n{\bGam{(I)}}{}(\br{})} +\\ +&+\be{c}{(I)}(\n{\bGam{(I)}}{}(\br{})) +- +\e{c}{\bw}(\n{\bGam{(I)}}{}(\br{}))\Bigg]\times +\Big(\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})\Big) +d\br{} +\\ +& ++\mathcal{O}\left([\n{\bGam{\bw}}{}-\n{\bGam{(I)}}{}]^2\right). +\end{split} \eeq }