dr at the end

This commit is contained in:
Pierre-Francois Loos 2020-02-15 18:07:35 +01:00
parent 88866a4207
commit 2c5191d49b

View File

@ -206,7 +206,7 @@ The GOK ensemble energy~\cite{Gross_1988a,Oliveira_1988,Gross_1988b} is defined
\eeq \eeq
where the $K$th energy level $\E{}{(K)}$ [$K=0$ refers to the ground state] is the eigenvalue of the electronic Hamiltonian $\hH = \hh + \hWee$, where where the $K$th energy level $\E{}{(K)}$ [$K=0$ refers to the ground state] is the eigenvalue of the electronic Hamiltonian $\hH = \hh + \hWee$, where
\beq \beq
\hh = \sum_{i=1}^\nEl \qty[ -\frac{1}{2} \nabla_{\br{i}}^2 + \vne(\br{i}) ] \hh = \sum_{i=1}^\nEl \qty[ -\frac{1}{2} \nabla_{i}^2 + \vne(\br{i}) ]
\eeq \eeq
is the one-electron operator describing kinetic and nuclear attraction energies, and $\hat{W}_{\rm ee}$ is the electron repulsion operator. is the one-electron operator describing kinetic and nuclear attraction energies, and $\hat{W}_{\rm ee}$ is the electron repulsion operator.
The (positive) ensemble weights $\ew{K}$ decrease with increasing index $K$. They are normalized, \ie, The (positive) ensemble weights $\ew{K}$ decrease with increasing index $K$. They are normalized, \ie,
@ -251,10 +251,10 @@ where, according to the {\it variational} ensemble energy expression of Eq.~\eqr
\pdv{\E{}{\bw}}{\ew{K}} \pdv{\E{}{\bw}}{\ew{K}}
& = \mel*{\Det{(K)}}{\hh}{\Det{(K)}}-\mel*{\Det{(0)}}{\hh}{\Det{(0)}} & = \mel*{\Det{(K)}}{\hh}{\Det{(K)}}-\mel*{\Det{(0)}}{\hh}{\Det{(0)}}
\\ \\
& + \Bigg\{\int d\br{}\,\fdv{\E{Hx}{\bw}[\n{}{}]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] & + \Bigg\{\int \fdv{\E{Hx}{\bw}[\n{}{}]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br{}
+ \pdv{\E{Hx}{\bw} [\n{}{}]}{\ew{K}} + \pdv{\E{Hx}{\bw} [\n{}{}]}{\ew{K}}
\\ \\
& + \int d\br{} \fdv{\E{c}{\bw}[n]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] & + \int \fdv{\E{c}{\bw}[n]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br{}
+ \pdv{\E{c}{\bw}[n]}{\ew{K}} + \pdv{\E{c}{\bw}[n]}{\ew{K}}
\Bigg\}_{\n{}{} = \n{\opGam{\bw}}{}}. \Bigg\}_{\n{}{} = \n{\opGam{\bw}}{}}.
\end{split} \end{split}
@ -275,8 +275,7 @@ from the exact expression in Eq.~\ref{eq:exact_ens_Hx} that
\beq \beq
\E{Hx}{\bxi}[\n{}{\bxi,\bxi}] = \sum_{K \geq 0} \xi_K \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}} \E{Hx}{\bxi}[\n{}{\bxi,\bxi}] = \sum_{K \geq 0} \xi_K \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}}
\eeq \eeq
with $\xi_0 = 1 - \sum_{K>0}\xi_K$ with $\xi_0 = 1 - \sum_{K>0}\xi_K$, and
and
\beq \beq
\E{Hx}{\bw}[\n{}{\bw,\bxi}] = \sum_{K \geq 0} \ew{K} \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}}, \E{Hx}{\bw}[\n{}{\bw,\bxi}] = \sum_{K \geq 0} \ew{K} \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}},
\eeq \eeq
@ -288,11 +287,11 @@ thus leading, according to Eqs.~\eqref{eq:deriv_Ew_wk} and \eqref{eq:_deriv_wk_H
- \mel*{\Det{(0)}}{\hH}{\Det{(0)}} - \mel*{\Det{(0)}}{\hH}{\Det{(0)}}
\\ \\
& + \qty{ & + \qty{
\int d\br{} \fdv{\E{c}{\bw}[\n{}{}]}{\n{}{}({\br{}})} \int \fdv{\E{c}{\bw}[\n{}{}]}{\n{}{}({\br{}})}
\qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ]
+ +
\pdv{\E{c}{\bw} [\n{}{}]}{\ew{K}} \pdv{\E{c}{\bw} [\n{}{}]}{\ew{K}}
}_{\n{}{} = \n{\opGam{\bw}}{}}. }_{\n{}{} = \n{\opGam{\bw}}{}} d\br{}.
\end{split} \end{split}
\eeq \eeq
Since the ensemble energy can be evaluated as follows: Since the ensemble energy can be evaluated as follows:
@ -307,8 +306,8 @@ we finally recover from Eqs.~\eqref{eq:KS_ens_density} and
\E{}{(I)} \E{}{(I)}
& = \mel*{\Det{(I)}}{\hH}{\Det{(I)}} + \E{c}{{\bw}}[\n{\opGam{\bw}}{}] & = \mel*{\Det{(I)}}{\hH}{\Det{(I)}} + \E{c}{{\bw}}[\n{\opGam{\bw}}{}]
\\ \\
& + \int d\br{} \fdv{\E{c}{\bw}[\n{\opGam{\bw}}{}]}{\n{}{}(\br{})} & + \int \fdv{\E{c}{\bw}[\n{\opGam{\bw}}{}]}{\n{}{}(\br{})}
\qty[ \n{\Det{(I)}}{}(\br{}) - \n{\opGam{\bw}}{}(\br{}) ] \qty[ \n{\Det{(I)}}{}(\br{}) - \n{\opGam{\bw}}{}(\br{}) ] d\br{}
\\ \\
&+ &+
\sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \sum_{K>0} \qty(\delta_{IK} - \ew{K} )
@ -379,8 +378,8 @@ rewritten as follows:
+ \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
+ \E{c}{{\bw}}[\n{\bGam{\bw}}{}] + \E{c}{{\bw}}[\n{\bGam{\bw}}{}]
\\ \\
& + \int d\br{} \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} & + \int \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})}
\qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] d\br{}
\\ \\
& + \sum_{K>0} \qty(\delta_{IK} - \ew{K}) & + \sum_{K>0} \qty(\delta_{IK} - \ew{K})
\left. \pdv{\E{c}{\bw}[\n{}{}]}{\ew{K}}\right|_{\n{}{} = \n{\bGam{\bw}}{}} \left. \pdv{\E{c}{\bw}[\n{}{}]}{\ew{K}}\right|_{\n{}{} = \n{\bGam{\bw}}{}}
@ -389,7 +388,7 @@ rewritten as follows:
\eeq \eeq
where where
\beq \beq
\bh \equiv h_{\mu\nu} = \int d\br{} \AO{\mu}(\br{}) \qty[-\frac{1}{2} \nabla_{\br{}}^2 + \vne(\br{}) ]\AO{\nu}(\br{}) \bh \equiv h_{\mu\nu} = \int \AO{\mu}(\br{}) \qty[-\frac{1}{2} \nabla_{\br{}}^2 + \vne(\br{}) ]\AO{\nu}(\br{}) d\br{}
\eeq \eeq
denote the one-electron integrals matrix. denote the one-electron integrals matrix.
The individual Hx energy is obtained from the following trace The individual Hx energy is obtained from the following trace
@ -528,7 +527,7 @@ where $\bS \equiv \eS{\mu\nu} = \braket*{\AO{\mu}}{\AO{\nu}}$ is the metric and
with with
\beq \beq
\eh{\mu\nu}{\bw} \eh{\mu\nu}{\bw}
= \eh{\mu\nu}{} + \int d\br{} \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}). = \eh{\mu\nu}{} + \int \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}) d\br{}.
\eeq \eeq
%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%
@ -673,7 +672,7 @@ according to Eq.~\eqref{eq:exact_ind_ener_rdm}.
Turning to the density-functional ensemble correlation energy, the Turning to the density-functional ensemble correlation energy, the
following eLDA will be employed: following eLDA will be employed:
\beq\label{eq:eLDA_corr_fun} \beq\label{eq:eLDA_corr_fun}
\E{c}{\bw}[\n{}{}] = \int d\br{} \n{}{}(\br{}) \e{c}{\bw}[\n{}{}(\br{})], \E{c}{\bw}[\n{}{}] = \int \n{}{}(\br{}) \e{c}{\bw}[\n{}{}(\br{})] d\br{},
\eeq \eeq
where the correlation energy per particle is {\it weight-dependent}. Its where the correlation energy per particle is {\it weight-dependent}. Its
construction from a finite uniform electron gas model is discussed construction from a finite uniform electron gas model is discussed
@ -686,14 +685,14 @@ within eLDA:
\E{}{(I)} \E{}{(I)}
& \approx \Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}] & \approx \Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
\\ \\
& + \int d\br{} \e{c}{\bw}[\n{\bGam{\bw}}{}(\br{})] \n{\bGam{(I)}}{}(\br{}) & + \int \e{c}{\bw}[\n{\bGam{\bw}}{}(\br{})] \n{\bGam{(I)}}{}(\br{}) d\br{}
\\ \\
& &
+ \int d\br{} \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] + \int \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} \left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} d\br{}
\\ \\
& + \int d\br{} \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{}) & + \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}. \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}.
\end{split} \end{split}
\eeq \eeq