diff --git a/Manuscript/eDFT.tex b/Manuscript/eDFT.tex index 3e20c1a..97797a2 100644 --- a/Manuscript/eDFT.tex +++ b/Manuscript/eDFT.tex @@ -206,7 +206,7 @@ The GOK ensemble energy~\cite{Gross_1988a,Oliveira_1988,Gross_1988b} is defined \eeq where the $K$th energy level $\E{}{(K)}$ [$K=0$ refers to the ground state] is the eigenvalue of the electronic Hamiltonian $\hH = \hh + \hWee$, where \beq - \hh = \sum_{i=1}^\nEl \qty[ -\frac{1}{2} \nabla_{\br{i}}^2 + \vne(\br{i}) ] + \hh = \sum_{i=1}^\nEl \qty[ -\frac{1}{2} \nabla_{i}^2 + \vne(\br{i}) ] \eeq is the one-electron operator describing kinetic and nuclear attraction energies, and $\hat{W}_{\rm ee}$ is the electron repulsion operator. The (positive) ensemble weights $\ew{K}$ decrease with increasing index $K$. They are normalized, \ie, @@ -251,10 +251,10 @@ where, according to the {\it variational} ensemble energy expression of Eq.~\eqr \pdv{\E{}{\bw}}{\ew{K}} & = \mel*{\Det{(K)}}{\hh}{\Det{(K)}}-\mel*{\Det{(0)}}{\hh}{\Det{(0)}} \\ - & + \Bigg\{\int d\br{}\,\fdv{\E{Hx}{\bw}[\n{}{}]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] + & + \Bigg\{\int \fdv{\E{Hx}{\bw}[\n{}{}]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br{} + \pdv{\E{Hx}{\bw} [\n{}{}]}{\ew{K}} \\ - & + \int d\br{} \fdv{\E{c}{\bw}[n]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] + & + \int \fdv{\E{c}{\bw}[n]}{\n{}{}(\br{})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] d\br{} + \pdv{\E{c}{\bw}[n]}{\ew{K}} \Bigg\}_{\n{}{} = \n{\opGam{\bw}}{}}. \end{split} @@ -275,8 +275,7 @@ from the exact expression in Eq.~\ref{eq:exact_ens_Hx} that \beq \E{Hx}{\bxi}[\n{}{\bxi,\bxi}] = \sum_{K \geq 0} \xi_K \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}} \eeq -with $\xi_0 = 1 - \sum_{K>0}\xi_K$ -and +with $\xi_0 = 1 - \sum_{K>0}\xi_K$, and \beq \E{Hx}{\bw}[\n{}{\bw,\bxi}] = \sum_{K \geq 0} \ew{K} \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}}, \eeq @@ -288,11 +287,11 @@ thus leading, according to Eqs.~\eqref{eq:deriv_Ew_wk} and \eqref{eq:_deriv_wk_H - \mel*{\Det{(0)}}{\hH}{\Det{(0)}} \\ & + \qty{ - \int d\br{} \fdv{\E{c}{\bw}[\n{}{}]}{\n{}{}({\br{}})} + \int \fdv{\E{c}{\bw}[\n{}{}]}{\n{}{}({\br{}})} \qty[ \n{\Det{(K)}}{}(\br{}) - \n{\Det{(0)}}{}(\br{}) ] + \pdv{\E{c}{\bw} [\n{}{}]}{\ew{K}} - }_{\n{}{} = \n{\opGam{\bw}}{}}. + }_{\n{}{} = \n{\opGam{\bw}}{}} d\br{}. \end{split} \eeq Since the ensemble energy can be evaluated as follows: @@ -307,8 +306,8 @@ we finally recover from Eqs.~\eqref{eq:KS_ens_density} and \E{}{(I)} & = \mel*{\Det{(I)}}{\hH}{\Det{(I)}} + \E{c}{{\bw}}[\n{\opGam{\bw}}{}] \\ - & + \int d\br{} \fdv{\E{c}{\bw}[\n{\opGam{\bw}}{}]}{\n{}{}(\br{})} - \qty[ \n{\Det{(I)}}{}(\br{}) - \n{\opGam{\bw}}{}(\br{}) ] + & + \int \fdv{\E{c}{\bw}[\n{\opGam{\bw}}{}]}{\n{}{}(\br{})} + \qty[ \n{\Det{(I)}}{}(\br{}) - \n{\opGam{\bw}}{}(\br{}) ] d\br{} \\ &+ \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) @@ -379,8 +378,8 @@ rewritten as follows: + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}] + \E{c}{{\bw}}[\n{\bGam{\bw}}{}] \\ - & + \int d\br{} \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} - \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] + & + \int \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} + \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] d\br{} \\ & + \sum_{K>0} \qty(\delta_{IK} - \ew{K}) \left. \pdv{\E{c}{\bw}[\n{}{}]}{\ew{K}}\right|_{\n{}{} = \n{\bGam{\bw}}{}} @@ -389,7 +388,7 @@ rewritten as follows: \eeq where \beq - \bh \equiv h_{\mu\nu} = \int d\br{} \AO{\mu}(\br{}) \qty[-\frac{1}{2} \nabla_{\br{}}^2 + \vne(\br{}) ]\AO{\nu}(\br{}) + \bh \equiv h_{\mu\nu} = \int \AO{\mu}(\br{}) \qty[-\frac{1}{2} \nabla_{\br{}}^2 + \vne(\br{}) ]\AO{\nu}(\br{}) d\br{} \eeq denote the one-electron integrals matrix. The individual Hx energy is obtained from the following trace @@ -528,7 +527,7 @@ where $\bS \equiv \eS{\mu\nu} = \braket*{\AO{\mu}}{\AO{\nu}}$ is the metric and with \beq \eh{\mu\nu}{\bw} - = \eh{\mu\nu}{} + \int d\br{} \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}). + = \eh{\mu\nu}{} + \int \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}) d\br{}. \eeq %%%%%%%%%%%%%%% @@ -673,7 +672,7 @@ according to Eq.~\eqref{eq:exact_ind_ener_rdm}. Turning to the density-functional ensemble correlation energy, the following eLDA will be employed: \beq\label{eq:eLDA_corr_fun} - \E{c}{\bw}[\n{}{}] = \int d\br{} \n{}{}(\br{}) \e{c}{\bw}[\n{}{}(\br{})], + \E{c}{\bw}[\n{}{}] = \int \n{}{}(\br{}) \e{c}{\bw}[\n{}{}(\br{})] d\br{}, \eeq where the correlation energy per particle is {\it weight-dependent}. Its construction from a finite uniform electron gas model is discussed @@ -686,14 +685,14 @@ within eLDA: \E{}{(I)} & \approx \Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}] \\ - & + \int d\br{} \e{c}{\bw}[\n{\bGam{\bw}}{}(\br{})] \n{\bGam{(I)}}{}(\br{}) + & + \int \e{c}{\bw}[\n{\bGam{\bw}}{}(\br{})] \n{\bGam{(I)}}{}(\br{}) d\br{} \\ & - + \int d\br{} \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] - \left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} + + \int \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ] + \left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} d\br{} \\ - & + \int d\br{} \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{}) - \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}. + & + \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{}) + \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}. \end{split} \eeq