Manu: done with self-teaching. Will clean the all thing after lunch

This commit is contained in:
Emmanuel Fromager 2020-02-14 13:51:24 +01:00
parent 3b9c09ce2e
commit 20780fe96b

View File

@ -546,31 +546,122 @@ c}\left[n_{\bm\gamma^{\bw}}\right]
\eeq \eeq
% Manu's derivation %%%% % Manu's derivation %%%%
\color{blue} \color{blue}
Fock operator:\\ I am teaching myself ...\\
Stationarity condition Stationarity condition
\beq \beq
&&\sum_{t^\sigma}\Big(f_{p^\sigma\sigma,t^\sigma\sigma}\Gamma^{(K)\sigma}_{t^\sigma &&0=\sum_{K\geq 0}w_K\sum_{t^\sigma}\Big(f_{p^\sigma\sigma,t^\sigma\sigma}\Gamma^{(K)\sigma}_{t^\sigma
q^\sigma}-\Gamma^{(K)\sigma}_{p^\sigma q^\sigma}-\Gamma^{(K)\sigma}_{p^\sigma
t^\sigma}f_{t^\sigma\sigma,q^\sigma\sigma}\Big) t^\sigma}f_{t^\sigma\sigma,q^\sigma\sigma}\Big)
\nonumber\\ \nonumber\\
&&= &&=\sum_{K\geq 0}w_K
f_{p^\sigma\sigma,q^\sigma\sigma}n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}f_{p^\sigma\sigma,q^\sigma\sigma} \Big(f_{p^\sigma\sigma,q^\sigma\sigma}n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}f_{p^\sigma\sigma,q^\sigma\sigma}\Big)
\nonumber\\ \nonumber\\
&&= &&
=\sum_{\mu\nu}\sum_{K\geq 0}w_KF_{\mu\nu}^\sigma c^\sigma_{\mu
p}c^\sigma_{\nu q}\left(n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}\right)
\eeq
thus leading to
\beq
&&0=\sum_{p^\sigma q^\sigma}c^\sigma_{\lambda
p}c^\sigma_{\omega q}\left(\sum_{\mu\nu}\sum_{K\geq 0}w_KF_{\mu\nu}^\sigma c^\sigma_{\mu
p}c^\sigma_{\nu q}\left(n^{(K)\sigma}_{q^\sigma}-n^{(K)\sigma}_{p^\sigma}\right)\right)
\nonumber\\
&&=\sum_{\mu\nu}\sum_{K\geq 0}w_K
F_{\mu\nu}^\sigma\left(\Gamma^{(K)\sigma}_{\nu\omega}\sum_{p^\sigma}c^\sigma_{\lambda
p}c^\sigma_{\mu
p}-\Gamma^{(K)\sigma}_{\mu\lambda}\sum_{q^\sigma}c^\sigma_{\omega q}c^\sigma_{\nu q}\right)
\nonumber\\
\eeq
If we denote $M^\sigma_{\lambda\mu}=\sum_{p^\sigma}c^\sigma_{\lambda
p}c^\sigma_{\mu
p}$ it comes
\beq
S_{\mu\nu}=\sum_{\lambda\omega}S_{\mu\lambda}M^\sigma_{\lambda\omega}S_{\omega\nu}
\eeq
which simply means that
\beq
{\bm S}={\bm S}{\bm M}{\bm S}
\eeq
or, equivalently,
\beq
{\bm M}={\bm S}^{-1}.
\eeq
The stationarity condition simply reads
\beq
\sum_{\mu\nu}F_{\mu\nu}^\sigma\left(\Gamma^{\bw\sigma}_{\nu\omega}
\left[{\bm S}^{-1}\right]_{\lambda\mu}
-\Gamma^{\bw\sigma}_{\mu\lambda}\left[{\bm S}^{-1}\right]_{\omega\nu}\right)
=0
\eeq
thus leading to
\beq
{\bm S}^{-1}{{\bm F}^\sigma}{\bm \Gamma}^{\bw\sigma}={\bm \Gamma}^{\bw\sigma}{{\bm F}^\sigma}{\bm S}^{-1}
\eeq
or, equivalently,
\beq
{{\bm F}^\sigma}{\bm \Gamma}^{\bw\sigma}{\bm S}={\bm S}{\bm
\Gamma}^{\bw\sigma}{{\bm F}^\sigma}.
\eeq \eeq
%%%%% %%%%%
Fock operator:\\
\beq \beq
&&f_{p^\sigma\sigma,q^\sigma\sigma}=\langle\varphi_p^\sigma\vert\hat{h}\vert\varphi_q^\sigma\rangle &&f_{p^\sigma\sigma,q^\sigma\sigma}-\langle\varphi_p^\sigma\vert\hat{h}\vert\varphi_q^\sigma\rangle
\nonumber\\ \nonumber\\
&&+\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau s^\tau} &&=\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau s^\tau}
\nonumber\\ \nonumber\\
&&\Big(\langle p^\sigma r^\tau\vert &&
q^\sigma s^\tau\rangle\Gamma^{(L)\tau}_{r^\tau \Big(\langle p^\sigma r^\tau\vert
s^\tau} q^\sigma s^\tau\rangle
-\delta_{\sigma\tau}\langle p^\sigma r^\sigma\vert -\delta_{\sigma\tau}\langle p^\sigma r^\sigma\vert
s^\sigma q^\sigma\rangle\Gamma^{(L)\tau}_{r^\tau s^\sigma q^\sigma\rangle
s^\tau}
\Big) \Big)
\Gamma^{(L)\tau}_{r^\tau
s^\tau}
\nonumber\\
&&
=\sum_{L\geq 0}w_L\sum_{\tau}\sum_{r^\tau}\Big(\langle p^\sigma r^\tau\vert
q^\sigma r^\tau\rangle
-\delta_{\sigma\tau}\langle p^\sigma r^\tau\vert
r^\tau q^\sigma\rangle
\Big)
n^{(L)\tau}_{r^\tau}
\nonumber\\
&&=\sum_{L\geq 0}w_L
\sum_{\lambda\omega}\sum_{\tau}\Big[\langle
p^\sigma\lambda\vert q^\sigma\omega\rangle
-\delta_{\sigma\tau}
\langle
p^\sigma\lambda\vert \omega q^\sigma\rangle\Big]
\Gamma^{(L)\tau}_{\lambda\omega}
\nonumber\\
&&=
\sum_{\lambda\omega}\sum_{\tau}\Big[\langle
p^\sigma\lambda\vert q^\sigma\omega\rangle
-\delta_{\sigma\tau}
\langle
p^\sigma\lambda\vert \omega q^\sigma\rangle\Big]
\Gamma^{\bw\tau}_{\lambda\omega}
\nonumber\\
&&=\sum_{\mu\nu\lambda\omega}\sum_{\tau}
\Big(\langle{\mu}{\lambda}\vert{\nu}{\omega}\rangle
-\delta_{\sigma\tau}\langle\mu\lambda\vert\omega\nu\rangle
\Big)\Gamma^{\bw\tau}_{\lambda\omega}c^\sigma_{\mu p}c^\sigma_{\nu q}
\nonumber\\
\eeq
or, equivalently,
\beq
f_{p^\sigma\sigma,q^\sigma\sigma}=\sum_{\mu\nu}F_{\mu\nu}^\sigma c^\sigma_{\mu p}c^\sigma_{\nu q}
\eeq
where
\beq
F_{\mu\nu}^\sigma=h_{\mu\nu}+\sum_{\lambda\omega}\sum_\tau
G_{\mu\nu\lambda\omega}^{\sigma\tau}\Gamma^{\bw\tau}_{\lambda\omega}
\eeq
and
\beq
G_{\mu\nu\lambda\omega}^{\sigma\tau}=({\mu}{\nu}\vert{\lambda}{\omega})
-\delta_{\sigma\tau}(\mu\omega\vert\lambda\nu)
\eeq \eeq
\color{black} \color{black}
\\ \\