Manu: polished the theory and the approximations
This commit is contained in:
parent
20780fe96b
commit
05d56f12d0
@ -333,7 +333,9 @@ c}\left[n\right]}{\partial w_K}
|
|||||||
\right|
|
\right|
|
||||||
_{n=n_{\opGamma{\bw}}}.
|
_{n=n_{\opGamma{\bw}}}.
|
||||||
\eeq
|
\eeq
|
||||||
|
%%%%%%%%%%%%%%%%
|
||||||
|
\subsection{One-electron reduced density matrix formulation}
|
||||||
|
%%%%%%%%%%%%%%%%
|
||||||
For implementation purposes, we will use in the rest of this work
|
For implementation purposes, we will use in the rest of this work
|
||||||
(one-electron reduced) density matrices
|
(one-electron reduced) density matrices
|
||||||
as basic variables, rather than Slater determinants. If we expand the
|
as basic variables, rather than Slater determinants. If we expand the
|
||||||
@ -362,7 +364,9 @@ n_{\bmg^{(K)}}(\br)=
|
|||||||
%\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,
|
%\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\br,
|
||||||
%\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{(K)}_{\mu\nu}.
|
%\sigma})\AO{\nu}(\br,\sigma){\Gamma}^{(K)}_{\mu\nu}.
|
||||||
\eeq
|
\eeq
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
% Manu's derivation %%%
|
% Manu's derivation %%%
|
||||||
|
\iffalse%%
|
||||||
\blue{
|
\blue{
|
||||||
\beq
|
\beq
|
||||||
n_{\bmg^{(K)}}(\br)&=&\sum_\sigma\left\langle\hat{\Psi}^\dagger(\br\sigma)\hat{\Psi}(\br\sigma)\right\rangle^{(K)}
|
n_{\bmg^{(K)}}(\br)&=&\sum_\sigma\left\langle\hat{\Psi}^\dagger(\br\sigma)\hat{\Psi}(\br\sigma)\right\rangle^{(K)}
|
||||||
@ -378,11 +382,13 @@ p}}c^\sigma_{{\nu p}}\AO{\mu}(\br)\AO{\nu}(\br)
|
|||||||
p}}c^\sigma_{{\nu p}}
|
p}}c^\sigma_{{\nu p}}
|
||||||
\eeq
|
\eeq
|
||||||
}
|
}
|
||||||
%%%%
|
\fi%%%
|
||||||
|
%%%% end Manu
|
||||||
We can then construct the ensemble density matrix
|
We can then construct the ensemble density matrix
|
||||||
and the ensemble density as follows:
|
and the ensemble density as follows:
|
||||||
\beq
|
\beq
|
||||||
{\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}
|
{\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}\equiv
|
||||||
|
\Gamma_{\mu\nu}^{\bw\sigma}=\sum_{K\geq 0}w_K \Gamma_{\mu\nu}^{(K)\sigma}
|
||||||
\eeq
|
\eeq
|
||||||
and
|
and
|
||||||
\beq
|
\beq
|
||||||
@ -406,12 +412,43 @@ n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
|||||||
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
||||||
,
|
,
|
||||||
\eeq
|
\eeq
|
||||||
where ${\bm
|
where
|
||||||
h}\equiv\left\{\langle\AO{\mu}\vert-\frac{1}{2}\nabla_{\br}^2+v_{\rm
|
\beq
|
||||||
ne}(\br)\vert\AO{\nu}\rangle\right\}_{\mu\nu}$ and ${\bm G}\equiv{\bm J}-{\bm K}$ denote
|
{\bm
|
||||||
the Coulomb-exchange
|
h}\equiv h_{\mu\nu}=
|
||||||
integrals.
|
%\langle\AO{\mu}\vert-\frac{1}{2}\nabla_{\br}^2+v_{\rm
|
||||||
|
%ne}(\br)\vert\AO{\nu}\rangle
|
||||||
|
\int d\br\;\AO{\mu}(\br)\left[-\frac{1}{2}\nabla_{\br}^2+v_{\rm
|
||||||
|
ne}(\br)\right]\AO{\nu}(\br)
|
||||||
|
\eeq
|
||||||
|
denote the one-electron integrals matrix.
|
||||||
|
The individual Hx energy is obtained from the following trace
|
||||||
|
\beq
|
||||||
|
\Tr(\bmg^{(K)} \, \bG \,
|
||||||
|
\bmg^{(L)})=\sum_{\mu\nu\lambda\omega}\sum_{\sigma=\alpha, \beta}\sum_{\tau=\alpha,\beta}G_{\mu\nu\lambda\omega}^{\sigma\tau}
|
||||||
|
\Gamma_{\mu\nu}^{(K)\sigma}\Gamma_{\lambda\omega}^{(L)\tau}
|
||||||
|
\nonumber\\
|
||||||
|
\eeq
|
||||||
|
where the two-electron Coulomb-exchange integrals read
|
||||||
|
\beq
|
||||||
|
G_{\mu\nu\lambda\omega}^{\sigma\tau}=({\mu}{\nu}\vert{\lambda}{\omega})
|
||||||
|
-\delta_{\sigma\tau}(\mu\omega\vert\lambda\nu),
|
||||||
|
\eeq
|
||||||
|
with
|
||||||
|
\beq
|
||||||
|
(\mu\nu|\la\omega) = \iint \frac{\AO\mu(\br_1) \AO\nu(\br_1)
|
||||||
|
\AO\la(\br_2) \AO\omega(\br_2)}{\abs{\br_1 - \br_2}} d\br_1 d\br_2
|
||||||
|
.
|
||||||
|
\nonumber\\
|
||||||
|
\eeq
|
||||||
|
Note that, in Sec.~\ref{sec:results}, the theory is applied to (1D) spin
|
||||||
|
polarized systems in which $\Gamma_{\mu\nu}^{(K)\beta}=0$ and
|
||||||
|
$G_{\mu\nu\lambda\omega}^{\alpha\alpha}\equiv G_{\mu\nu\lambda\omega}=({\mu}{\nu}\vert{\lambda}{\omega})
|
||||||
|
-(\mu\omega\vert\lambda\nu)$.
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%%%%%%%%%%%%%%% Hx energy ...
|
||||||
%%% Manu's derivation
|
%%% Manu's derivation
|
||||||
|
\iffalse%%%%
|
||||||
\blue{
|
\blue{
|
||||||
\beq
|
\beq
|
||||||
&&\dfrac{1}{2}\sum_{PQRS}\langle PQ\vert\vert
|
&&\dfrac{1}{2}\sum_{PQRS}\langle PQ\vert\vert
|
||||||
@ -460,9 +497,10 @@ n_{p^\sigma}^{(K)\sigma}n_{q^\sigma}^{(L)\sigma}\right)
|
|||||||
\Gamma_{\mu\nu}^{(K)\sigma}\Gamma_{\lambda\omega}^{(L)\tau}
|
\Gamma_{\mu\nu}^{(K)\sigma}\Gamma_{\lambda\omega}^{(L)\tau}
|
||||||
\eeq
|
\eeq
|
||||||
}
|
}
|
||||||
|
\fi%%%%%%%
|
||||||
%%%%
|
%%%%
|
||||||
%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
%\iffalse%%%% Manu's derivation ...
|
\iffalse%%%% Manu's derivation ...
|
||||||
\blue{
|
\blue{
|
||||||
\beq
|
\beq
|
||||||
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
||||||
@ -488,33 +526,8 @@ w}_K
|
|||||||
\nonumber\\
|
\nonumber\\
|
||||||
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
|
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
|
||||||
\eeq
|
\eeq
|
||||||
With the notations T2 prefers ...
|
|
||||||
\beq
|
|
||||||
n^{\bw}({\br})&=&\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
|
||||||
w}_Kn^{(K)}({\bfx})
|
|
||||||
\nonumber\\
|
|
||||||
&=&
|
|
||||||
\sum_{K\geq 0}\sum_{\sigma=\alpha,\beta}{\tt
|
|
||||||
w}_K\sum_{pq}\varphi_p({\br})\varphi_q({\br})\Gamma_{pq}^{(K)}
|
|
||||||
\nonumber\\
|
|
||||||
&=&
|
|
||||||
\sum_{\sigma=\alpha,\beta}
|
|
||||||
\sum_{K\geq 0}
|
|
||||||
{\tt
|
|
||||||
w}_K\sum_{p\in (K)}\varphi^2_p({\bfx})
|
|
||||||
\nonumber\\
|
|
||||||
&=&
|
|
||||||
\sum_{\sigma=\alpha,\beta}
|
|
||||||
\sum_{K\geq 0}
|
|
||||||
{\tt
|
|
||||||
w}_K
|
|
||||||
\sum_{\mu\nu}
|
|
||||||
\sum_{p\in (K)}c_{\mu p}c_{\nu p}\AO{\mu}({\bfx})\AO{\nu}({\bfx})
|
|
||||||
\nonumber\\
|
|
||||||
&=&\sum_{\sigma=\alpha,\beta}\sum_{\mu\nu}\AO{\mu}({\bfx})\AO{\nu}({\bfx}){\Gamma}^{\bw}_{\mu\nu}
|
|
||||||
\eeq
|
|
||||||
}
|
}
|
||||||
%\fi%%%%%%%% end
|
\fi%%%%%%%% end
|
||||||
%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%
|
||||||
%\subsection{Hybrid GOK-DFT}
|
%\subsection{Hybrid GOK-DFT}
|
||||||
%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%
|
||||||
@ -544,6 +557,29 @@ c}\left[n_{\bm\gamma^{\bw}}\right]
|
|||||||
\Big\}.
|
\Big\}.
|
||||||
\nonumber\\
|
\nonumber\\
|
||||||
\eeq
|
\eeq
|
||||||
|
The minimizing ensemble density matrix fulfills the following
|
||||||
|
stationarity condition
|
||||||
|
\beq
|
||||||
|
{\bm F}^{\bw\sigma}{\bm \Gamma}^{\bw\sigma}{\bm S}={\bm S}{\bm
|
||||||
|
\Gamma}^{\bw\sigma}{\bm F}^{\bw\sigma},
|
||||||
|
\eeq
|
||||||
|
where ${\bm S}\equiv S_{\mu\nu}=\braket{\AO{\mu}}{\AO{\nu}}$ is the
|
||||||
|
metric and the ensemble Fock-like matrix reads
|
||||||
|
\beq
|
||||||
|
F_{\mu\nu}^{\bw\sigma}=h^\bw_{\mu\nu}+\sum_{\lambda\omega}\sum_{\tau=\alpha,\beta}
|
||||||
|
G_{\mu\nu\lambda\omega}^{\sigma\tau}\Gamma^{\bw\tau}_{\lambda\omega}
|
||||||
|
\eeq
|
||||||
|
with
|
||||||
|
\beq
|
||||||
|
h^\bw_{\mu\nu}=h_{\mu\nu}+
|
||||||
|
%\left\langle\AO{\mu}\middle\vert\dfrac{\delta E^\bw_{\rm
|
||||||
|
%c}[n_{\bmg^\bw}]}{\delta n(\br)}\middle\vert\AO{\nu}\right\rangle
|
||||||
|
\int d\br\;\AO{\mu}(\br)\dfrac{\delta E^\bw_{\rm
|
||||||
|
c}[n_{\bmg^\bw}]}{\delta n(\br)}\AO{\nu}(\br).
|
||||||
|
\eeq
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%
|
||||||
|
\iffalse%%%%%%
|
||||||
% Manu's derivation %%%%
|
% Manu's derivation %%%%
|
||||||
\color{blue}
|
\color{blue}
|
||||||
I am teaching myself ...\\
|
I am teaching myself ...\\
|
||||||
@ -659,13 +695,11 @@ F_{\mu\nu}^\sigma=h_{\mu\nu}+\sum_{\lambda\omega}\sum_\tau
|
|||||||
G_{\mu\nu\lambda\omega}^{\sigma\tau}\Gamma^{\bw\tau}_{\lambda\omega}
|
G_{\mu\nu\lambda\omega}^{\sigma\tau}\Gamma^{\bw\tau}_{\lambda\omega}
|
||||||
\eeq
|
\eeq
|
||||||
and
|
and
|
||||||
\beq
|
|
||||||
G_{\mu\nu\lambda\omega}^{\sigma\tau}=({\mu}{\nu}\vert{\lambda}{\omega})
|
|
||||||
-\delta_{\sigma\tau}(\mu\omega\vert\lambda\nu)
|
|
||||||
\eeq
|
|
||||||
\color{black}
|
\color{black}
|
||||||
\\
|
\\
|
||||||
%%%%%
|
\fi%%%%%%%%%%%
|
||||||
|
%%%%% end Manu
|
||||||
|
%%%%%%%%%%%%%%%%%%%%
|
||||||
Note that this approximation, where the ensemble density matrix is
|
Note that this approximation, where the ensemble density matrix is
|
||||||
optimized from a non-local exchange potential [rather than a local one,
|
optimized from a non-local exchange potential [rather than a local one,
|
||||||
as expected from Eq.~(\ref{eq:var_ener_gokdft})] is applicable to real
|
as expected from Eq.~(\ref{eq:var_ener_gokdft})] is applicable to real
|
||||||
@ -994,7 +1028,7 @@ For TDLDA, the validity of the Tamm-Dancoff approximation (TDA) has been also te
|
|||||||
Concerning the eKS calculations, two sets of weight have been tested: the zero-weight limit where $\bw = (0,0)$ and the equi-ensemble (or state-averaged) limit where $\bw = (1/3,1/3)$.
|
Concerning the eKS calculations, two sets of weight have been tested: the zero-weight limit where $\bw = (0,0)$ and the equi-ensemble (or state-averaged) limit where $\bw = (1/3,1/3)$.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Results and discussion}
|
\section{Results and discussion}\label{sec:results}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
In Fig.~\ref{fig:EvsL}, we report the error (in \%) in excitation energies (compared to FCI) for various methods and box sizes in the case of 5-boxium (i.e., $\Nel = 5$).
|
In Fig.~\ref{fig:EvsL}, we report the error (in \%) in excitation energies (compared to FCI) for various methods and box sizes in the case of 5-boxium (i.e., $\Nel = 5$).
|
||||||
Similar graphs are obtained for the other $\Nel$ values and they can be found --- alongside the numerical data associated with each method --- in the {\SI}.
|
Similar graphs are obtained for the other $\Nel$ values and they can be found --- alongside the numerical data associated with each method --- in the {\SI}.
|
||||||
|
Loading…
Reference in New Issue
Block a user