captions and table

This commit is contained in:
Pierre-Francois Loos 2023-03-05 22:05:32 +01:00
parent 89db450a0c
commit d15b4d65a2

View File

@ -681,8 +681,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{fig3.pdf} \includegraphics[width=\linewidth]{fig3.pdf}
\caption{ \caption{
Principal IP of the water molecule in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. Error [with respect to $\Delta$CCSD(T)] in the principal IP of water in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines. The HF and qs$GW$ (with and without TDA) values are reported as dashed lines.
\PFL{Should we have a similar figure for EAs? (maybe not water though)} \PFL{Should we have a similar figure for EAs? (maybe not water though)}
\ANT{I did the plot, let's discuss it at the next meeting} \ANT{I did the plot, let's discuss it at the next meeting}
\label{fig:fig2}} \label{fig:fig2}}
@ -693,8 +693,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q
\begin{figure*} \begin{figure*}
\includegraphics[width=\linewidth]{fig4.pdf} \includegraphics[width=\linewidth]{fig4.pdf}
\caption{ \caption{
Principal IP of the \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. Error [with respect to $\Delta$CCSD(T)] in the principal IP of \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines. The HF and qs$GW$ (with and without TDA) values are reported as dashed lines.
\label{fig:fig3}} \label{fig:fig3}}
\end{figure*} \end{figure*}
%%% %%% %%% %%% %%% %%% %%% %%%
@ -766,8 +766,8 @@ Therefore, it seems that the effect of the TDA cannot be systematically predicte
\begin{figure*} \begin{figure*}
\includegraphics[width=\linewidth]{fig5.pdf} \includegraphics[width=\linewidth]{fig5.pdf}
\caption{ \caption{
Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first ionization potential of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal IP of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$.
\PFL{Add MAE and MSE values to each figure.} All calculations are performed with the aug-cc-pVTZ basis.
\label{fig:fig4}} \label{fig:fig4}}
\end{figure*} \end{figure*}
%%% %%% %%% %%% %%% %%% %%% %%%
@ -789,12 +789,16 @@ The evolution of the statistical descriptors with respect to the various methods
The decrease of the MSE and SDE correspond to a shift of the maximum toward zero and a shrink of the distribution width, respectively. The decrease of the MSE and SDE correspond to a shift of the maximum toward zero and a shrink of the distribution width, respectively.
\begin{table*} \begin{table*}
\caption{First ionization potential (left) and first electron attachment (right) in eV calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. The statistical descriptors are computed for the errors with respect to the reference.} \caption{Principal IP and EA (in eV) of the $GW$50 test set calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$.
The statistical descriptors associated with the errors with respect to the reference values are also reported.
All calculations are performed with the aug-cc-pVTZ basis.}
\label{tab:tab1} \label{tab:tab1}
\begin{ruledtabular} \begin{ruledtabular}
\begin{tabular}{l|ddddd|ddddd} \begin{tabular}{ldddddddddd}
Mol. & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\ & \mc{5}{c}{Principal IP} & \mc{5}{c}{Principal EA} \\
& \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\ \cline{2-6} \cline{7-11}
& \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\
Mol. & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} \\
\hline \hline
\ce{He} & 24.54 & 24.98 & 24.59 & 24.58 & 24.55 & -2.66 & -2.70 & -2.66 & -2.66 & -2.66 \\ \ce{He} & 24.54 & 24.98 & 24.59 & 24.58 & 24.55 & -2.66 & -2.70 & -2.66 & -2.66 & -2.66 \\
\ce{Ne} & 21.47 & 23.15 & 21.46 & 21.83 & 21.59 & -5.09 & -5.47 & -5.25 & -5.19 & -5.19 \\ \ce{Ne} & 21.47 & 23.15 & 21.46 & 21.83 & 21.59 & -5.09 & -5.47 & -5.25 & -5.19 & -5.19 \\
@ -846,9 +850,6 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero
\ce{OCS} & 11.23 & 11.44 & 11.52 & 11.37 & 11.32 & -1.43 & -1.27 & -1.03 & -0.97 & -0.98 \\ \ce{OCS} & 11.23 & 11.44 & 11.52 & 11.37 & 11.32 & -1.43 & -1.27 & -1.03 & -0.97 & -0.98 \\
\ce{SO2} & 10.48 & 11.47 & 11.38 & 10.85 & 10.82 & 2.24 & 1.84 & 2.82 & 2.74 & 2.68 \\ \ce{SO2} & 10.48 & 11.47 & 11.38 & 10.85 & 10.82 & 2.24 & 1.84 & 2.82 & 2.74 & 2.68 \\
\ce{C2H3Cl} & 10.17 & 10.13 & 10.39 & 10.27 & 10.24 & -0.61 & -0.79 & -0.66 & -0.65 & -0.65 \\ \ce{C2H3Cl} & 10.17 & 10.13 & 10.39 & 10.27 & 10.24 & -0.61 & -0.79 & -0.66 & -0.65 & -0.65 \\
\hline
& \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\
& \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\
\hline \hline
MSE & & 0.56 & 0.29 & 0.23 & 0.17 & & -0.25 & 0.02 & 0.04 & 0.04 \\ MSE & & 0.56 & 0.29 & 0.23 & 0.17 & & -0.25 & 0.02 & 0.04 & 0.04 \\
MAE & & 0.69 & 0.33 & 0.25 & 0.19 & & 0.31 & 0.16 & 0.13 & 0.12 \\ MAE & & 0.69 & 0.33 & 0.25 & 0.19 & & 0.31 & 0.16 & 0.13 & 0.12 \\
@ -864,7 +865,7 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero
\centering \centering
\includegraphics[width=\linewidth]{fig6.pdf} \includegraphics[width=\linewidth]{fig6.pdf}
\caption{ \caption{
SRG-qs$GW$ and qs$GW$ MAE of the IPs for the GW50 test set. The bottom and top axes are equivalent and related by $\eta=1/2s^2$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules. SRG-qs$GW$ and qs$GW$ MAEs for the principal IPs of the $GW$50 test set. The bottom and top axes are equivalent and related by $\eta=1/(2s^2)$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules.
\label{fig:fig5}} \label{fig:fig5}}
\end{figure} \end{figure}
%%% %%% %%% %%% %%% %%% %%% %%%
@ -889,8 +890,8 @@ On the other hand, the imaginary shift regularizer acts equivalently on intruder
\begin{figure*} \begin{figure*}
\includegraphics[width=\linewidth]{fig7.pdf} \includegraphics[width=\linewidth]{fig7.pdf}
\caption{ \caption{
Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first electron attachment of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal EA of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$.
\PFL{Add MAE and MSE values to each figure.} All calculations are performed with the aug-cc-pVTZ basis.
\label{fig:fig6}} \label{fig:fig6}}
\end{figure*} \end{figure*}
%%% %%% %%% %%% %%% %%% %%% %%%