From d15b4d65a2dc781aa7be4def96b2e22576e6be97 Mon Sep 17 00:00:00 2001 From: pfloos Date: Sun, 5 Mar 2023 22:05:32 +0100 Subject: [PATCH] captions and table --- Manuscript/SRGGW.tex | 35 ++++++++++++++++++----------------- 1 file changed, 18 insertions(+), 17 deletions(-) diff --git a/Manuscript/SRGGW.tex b/Manuscript/SRGGW.tex index 07fb2d6..d9a435b 100644 --- a/Manuscript/SRGGW.tex +++ b/Manuscript/SRGGW.tex @@ -681,8 +681,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q \begin{figure} \includegraphics[width=\linewidth]{fig3.pdf} \caption{ - Principal IP of the water molecule in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. - Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines. + Error [with respect to $\Delta$CCSD(T)] in the principal IP of water in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. + The HF and qs$GW$ (with and without TDA) values are reported as dashed lines. \PFL{Should we have a similar figure for EAs? (maybe not water though)} \ANT{I did the plot, let's discuss it at the next meeting} \label{fig:fig2}} @@ -693,8 +693,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q \begin{figure*} \includegraphics[width=\linewidth]{fig4.pdf} \caption{ - Principal IP of the \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. - Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines. + Error [with respect to $\Delta$CCSD(T)] in the principal IP of \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA. + The HF and qs$GW$ (with and without TDA) values are reported as dashed lines. \label{fig:fig3}} \end{figure*} %%% %%% %%% %%% @@ -766,8 +766,8 @@ Therefore, it seems that the effect of the TDA cannot be systematically predicte \begin{figure*} \includegraphics[width=\linewidth]{fig5.pdf} \caption{ - Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first ionization potential of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. - \PFL{Add MAE and MSE values to each figure.} + Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal IP of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$. + All calculations are performed with the aug-cc-pVTZ basis. \label{fig:fig4}} \end{figure*} %%% %%% %%% %%% @@ -789,12 +789,16 @@ The evolution of the statistical descriptors with respect to the various methods The decrease of the MSE and SDE correspond to a shift of the maximum toward zero and a shrink of the distribution width, respectively. \begin{table*} - \caption{First ionization potential (left) and first electron attachment (right) in eV calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. The statistical descriptors are computed for the errors with respect to the reference.} + \caption{Principal IP and EA (in eV) of the $GW$50 test set calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$. + The statistical descriptors associated with the errors with respect to the reference values are also reported. + All calculations are performed with the aug-cc-pVTZ basis.} \label{tab:tab1} \begin{ruledtabular} - \begin{tabular}{l|ddddd|ddddd} - Mol. & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\ - & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\ + \begin{tabular}{ldddddddddd} + & \mc{5}{c}{Principal IP} & \mc{5}{c}{Principal EA} \\ + \cline{2-6} \cline{7-11} + & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\ + Mol. & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} \\ \hline \ce{He} & 24.54 & 24.98 & 24.59 & 24.58 & 24.55 & -2.66 & -2.70 & -2.66 & -2.66 & -2.66 \\ \ce{Ne} & 21.47 & 23.15 & 21.46 & 21.83 & 21.59 & -5.09 & -5.47 & -5.25 & -5.19 & -5.19 \\ @@ -846,10 +850,7 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero \ce{OCS} & 11.23 & 11.44 & 11.52 & 11.37 & 11.32 & -1.43 & -1.27 & -1.03 & -0.97 & -0.98 \\ \ce{SO2} & 10.48 & 11.47 & 11.38 & 10.85 & 10.82 & 2.24 & 1.84 & 2.82 & 2.74 & 2.68 \\ \ce{C2H3Cl} & 10.17 & 10.13 & 10.39 & 10.27 & 10.24 & -0.61 & -0.79 & -0.66 & -0.65 & -0.65 \\ - \hline - & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\ - & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\ - \hline + \hline MSE & & 0.56 & 0.29 & 0.23 & 0.17 & & -0.25 & 0.02 & 0.04 & 0.04 \\ MAE & & 0.69 & 0.33 & 0.25 & 0.19 & & 0.31 & 0.16 & 0.13 & 0.12 \\ SDE & & 0.68 & 0.31 & 0.18 & 0.16 & & 0.43 & 0.29 & 0.23 & 0.22 \\ @@ -864,7 +865,7 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero \centering \includegraphics[width=\linewidth]{fig6.pdf} \caption{ - SRG-qs$GW$ and qs$GW$ MAE of the IPs for the GW50 test set. The bottom and top axes are equivalent and related by $\eta=1/2s^2$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules. + SRG-qs$GW$ and qs$GW$ MAEs for the principal IPs of the $GW$50 test set. The bottom and top axes are equivalent and related by $\eta=1/(2s^2)$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules. \label{fig:fig5}} \end{figure} %%% %%% %%% %%% @@ -889,8 +890,8 @@ On the other hand, the imaginary shift regularizer acts equivalently on intruder \begin{figure*} \includegraphics[width=\linewidth]{fig7.pdf} \caption{ - Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first electron attachment of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. - \PFL{Add MAE and MSE values to each figure.} + Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal EA of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. + All calculations are performed with the aug-cc-pVTZ basis. \label{fig:fig6}} \end{figure*} %%% %%% %%% %%%