saving work
This commit is contained in:
parent
eb7206ca5c
commit
8a91bee0e0
@ -1,4 +1,4 @@
|
||||
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress,onecolumn]{revtex4-1}
|
||||
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
||||
@ -148,26 +148,26 @@ Here comes the introduction.
|
||||
In the case of {\GOWO}, the quasiparticle equation reads
|
||||
\begin{equation}
|
||||
\label{eq:qp_eq}
|
||||
\eps{p}{\HF} + \SigC{p}(\omega) - \omega = 0
|
||||
\eps{p}{} + \SigC{p}(\omega) - \omega = 0
|
||||
\end{equation}
|
||||
where $\eps{p}{\HF}$ is the HF one-electron energy of the spatial orbital $\MO{p}(\br)$ and the correlation part of the frequency-dependent self-energy is
|
||||
where $\eps{p}{}$ is the one-electron energy of the HF spatial orbital $\MO{p}(\br)$ and the correlation part of the frequency-dependent self-energy is
|
||||
\begin{equation}
|
||||
\label{eq:SigC}
|
||||
\SigC{p}(\omega)
|
||||
= \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{\HF} + \Om{m}{\RPA}}
|
||||
+ \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{\HF} - \Om{m}{\RPA}}
|
||||
= \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{} + \Om{m}{}}
|
||||
+ \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{} - \Om{m}{}}
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
\ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}^\RPA
|
||||
\ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}
|
||||
\end{equation}
|
||||
are the screened two-electron repulsion integrals where $\Om{m}{\RPA}$ and $\bX{m}{\RPA}$ are the $m$th RPA eigenvalue and eigenvector obtained by solving the following (linear) RPA eigenvalue system:
|
||||
are the screened two-electron repulsion integrals where $\Om{m}{}$ and $\bX{m}{}$ are the $m$th RPA eigenvalue and eigenvector obtained by solving the following (linear) RPA eigenvalue system within the Tamm-Dancoff approximation:
|
||||
\begin{equation}
|
||||
\bA{}{\RPA} \cdot \bX{m}{\RPA} = \Om{m}{\RPA} \bX{m}{\RPA}
|
||||
\bA{}{\RPA} \cdot \bX{m}{} = \Om{m}{\RPA} \bX{m}{}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
A_{ia,jb}^{\RPA} = (\eps{a}{\HF} - \eps{i}{\HF}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj}
|
||||
A_{ia,jb}^{} = (\eps{a}{} - \eps{i}{}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
@ -183,7 +183,7 @@ with the following sum rules:
|
||||
\begin{align}
|
||||
\sum_{s} Z_{p,s} & = 1
|
||||
&
|
||||
\sum_{s} Z_{p,s} \eps{p,s}{\GW} & = \eps{p}{\HF}
|
||||
\sum_{s} Z_{p,s} \eps{p,s}{\GW} & = \eps{p}{}
|
||||
\end{align}
|
||||
|
||||
As shown recently, the quasiparticle equation \eqref{eq:qp_eq} can be recast as a linear eigensystem with exactly the same solution:
|
||||
@ -195,7 +195,7 @@ with
|
||||
\label{eq:Hp}
|
||||
\bH^{(p)} =
|
||||
\begin{pmatrix}
|
||||
\eps{p}{\HF} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
||||
\eps{p}{} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
||||
\\
|
||||
\T{(\bV{p}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
|
||||
\\
|
||||
@ -203,27 +203,38 @@ with
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
and where the expressions of the 2h1p and 2p1h blocks reads
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
C^\text{2h1p}_{IJA,KCL} & = \qty[ \qty( \eps{I}{\HF} + \eps{J}{\HF} - \eps{A}{\HF}) \delta_{JL} \delta_{AC} - 2 \ERI{JA}{CL} ] \delta_{IK}
|
||||
\label{eq:C2h1p}
|
||||
C^\text{2h1p}_{IJA,KCL} & = \qty[ \qty( \eps{I}{} + \eps{J}{} - \eps{A}{}) \delta_{JL} \delta_{AC} - 2 \ERI{JA}{CL} ] \delta_{IK}
|
||||
\\
|
||||
C^\text{2p1h}_{IAB,KCD} & = \qty[ \qty( \eps{A}{\HF} + \eps{B}{\HF} - \eps{I}{\HF}) \delta_{IK} \delta_{AC} + 2 \ERI{AI}{KC} ] \delta_{BD}
|
||||
\label{eq:C2p1h}
|
||||
C^\text{2p1h}_{IAB,KCD} & = \qty[ \qty( \eps{A}{} + \eps{B}{} - \eps{I}{}) \delta_{IK} \delta_{AC} + 2 \ERI{AI}{KC} ] \delta_{BD}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
with the following expressions for the coupling blocks:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\label{eq:V2h1p}
|
||||
V^\text{2h1p}_{p,KLC} & = \sqrt{2} \ERI{pK}{CL}
|
||||
&
|
||||
\\
|
||||
\label{eq:V2p1h}
|
||||
V^\text{2p1h}_{p,KCD} & = \sqrt{2} \ERI{pD}{KC}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
Here, we use lower case letters for the electronic configurations belonging to the reference model state and upper case letters for the external determinants (\ie, the perturbers).
|
||||
|
||||
By solving the secular equation
|
||||
\begin{equation}
|
||||
\det[ \bH^{(p)} - \omega \bI ] = 0
|
||||
\end{equation}
|
||||
we recover the dynamical expression of the self-energy \eqref{eq:SigC}, \ie,
|
||||
\begin{equation}
|
||||
\begin{multline}
|
||||
\SigC{p}(\omega)
|
||||
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
||||
\\
|
||||
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
||||
\end{equation}
|
||||
\end{multline}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:Z_proj}
|
||||
@ -236,9 +247,9 @@ Let us label as $p$ the reference 1h ($p = i$) or 1p ($p = a$) determinant and $
|
||||
\label{eq:Hp_qia}
|
||||
\bH^{(p,qia)} =
|
||||
\begin{pmatrix}
|
||||
\eps{p}{\HF} & V_{p,qia} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
||||
\eps{p}{} & V_{p,qia} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
||||
\\
|
||||
V_{qia,p} & C_{qia,qia} & \bC{qia}{\text{2h1p}} & \bC{qia}{\text{2p1h}}
|
||||
V_{qia,p} & \eps{qia}{} & \bC{qia}{\text{2h1p}} & \bC{qia}{\text{2p1h}}
|
||||
\\
|
||||
\T{(\bV{p}{\text{2h1p}})} & \T{(\bC{qia}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
|
||||
\\
|
||||
@ -247,51 +258,68 @@ Let us label as $p$ the reference 1h ($p = i$) or 1p ($p = a$) determinant and $
|
||||
\end{equation}
|
||||
with new blocks defined as
|
||||
\begin{gather}
|
||||
V_{p,qia} = V_{qia,p} \sqrt{2} = \ERI{pq}{ia}
|
||||
V_{p,qia} = V_{qia,p} = \sqrt{2} \ERI{pq}{ia}
|
||||
\\
|
||||
C_{qia,qia} = \text{sgn}(\eps{q}{\HF} - \mu) \qty[ \qty(\eps{q}{\HF} + \eps{a}{\HF} - \eps{i}{\HF} ) + 2 \ERI{ia}{ia} ]
|
||||
\eps{qia}{} \equiv C_{qia,qia} = \text{sgn}(\eps{q}{} - \mu) \qty[ \qty(\eps{q}{} + \eps{a}{} - \eps{i}{} ) + 2 \ERI{ia}{ia} ]
|
||||
\\
|
||||
C_{qia,KLC}^\text{2h1p} = - 2 \ERI{ia}{CL} \delta_{qK}
|
||||
\\
|
||||
C_{qia,KCD}^\text{2p1h} = + 2 \ERI{ia}{KC} \delta_{qD}
|
||||
\end{gather}
|
||||
The expressions of $\bC{p}{\text{2h1p}}$, $\bC{p}{\text{2p1h}}$, $\bV{}{\text{2h1p}}$, and $\bV{}{\text{2p1h}}$ remain identical to the ones given in Eqs.~\eqref{eq:C2h1p}, \eqref{eq:C2p1h}, \eqref{eq:V2h1p}, and \eqref{eq:V2p1h} but one has remove the contribution from the 2h1p or 2p1h configuration $qia$.
|
||||
While $\eps{p}{\HF}$ represents the relative energy (with respect to the $N$-electron HF reference determinant) of the 1h or 1p configuration, $\eps{qia}{} \equiv C_{qia,qia}$ is the relative energy of the 2h1p or 2p1h configuration.
|
||||
Therefore, when $\eps{p}{\HF}$ and $\eps{qia}{}$ becomes of similar mangitude, one might want to move the 2h1p or 2p1h configuration from the external to the internal space in order to avoid intruder state problems.
|
||||
|
||||
Downfolding Eq.~\eqref{eq:Hp_qia} yields the following frequency-dependent self-energy
|
||||
Downfolding Eq.~\eqref{eq:Hp_qia} yields the following frequency-dependent self-energy matrix
|
||||
\begin{equation}
|
||||
\label{eq:Hp}
|
||||
\bSigC{p,qia}(\omega) =
|
||||
\begin{pmatrix}
|
||||
\eps{p}{\HF} + \SigC{p}(\omega) & V_{p,qia} + \SigC{p,qia}(\omega)
|
||||
\eps{p}{} + \SigC{p}(\omega) & V_{p,qia} + \SigC{p,qia}(\omega)
|
||||
\\
|
||||
V_{qia,p} + \SigC{qia,p}(\omega) & C_{qia,qia} + \SigC{qia}(\omega)
|
||||
V_{qia,p} + \SigC{qia,p}(\omega) & \eps{qia}{} + \SigC{qia}(\omega)
|
||||
\\
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
\SigC{p}(\omega)
|
||||
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
||||
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
||||
\begin{split}
|
||||
\SigC{p}(\omega)
|
||||
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
||||
\\
|
||||
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
||||
\end{split}
|
||||
\\
|
||||
\begin{split}
|
||||
\SigC{qia}(\omega)
|
||||
= \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
||||
+ \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
||||
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
||||
\\
|
||||
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
||||
\end{split}
|
||||
\\
|
||||
\begin{split}
|
||||
\SigC{p,qia}(\omega)
|
||||
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
||||
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
||||
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
||||
\\
|
||||
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
||||
\end{split}
|
||||
\\
|
||||
\begin{split}
|
||||
\SigC{qia,p}(\omega)
|
||||
= \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
||||
+ \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
||||
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
||||
\\
|
||||
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
||||
\end{split}
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
Of course, the present procedure can be generalized to any number of states.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
Here comes the conclusion.
|
||||
d
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\acknowledgements{
|
||||
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
|
||||
|
Loading…
Reference in New Issue
Block a user