SRGGW/Manuscript/MRGW.tex
2022-05-02 16:15:33 +02:00

338 lines
11 KiB
TeX

\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\eg}{\textit{e.g.}}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\QP}{\textsc{quantum package}}
\newcommand{\T}[1]{#1^{\intercal}}
% coordinates
\newcommand{\br}{\boldsymbol{r}}
\newcommand{\bx}{\boldsymbol{x}}
\newcommand{\dbr}{d\br}
\newcommand{\dbx}{d\bx}
% methods
\newcommand{\GW}{\text{$GW$}}
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{c}}
\newcommand{\x}{\text{x}}
\newcommand{\KS}{\text{KS}}
\newcommand{\HF}{\text{HF}}
\newcommand{\RPA}{\text{RPA}}
%
\newcommand{\Ne}{N}
\newcommand{\Norb}{K}
\newcommand{\Nocc}{O}
\newcommand{\Nvir}{V}
% operators
\newcommand{\hH}{\Hat{H}}
\newcommand{\hS}{\Hat{S}}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
\newcommand{\EHF}{E^\text{HF}}
% orbital energies
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
\newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}}
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
% Matrix elements
\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}}
\newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}}
\newcommand{\rSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}}
\newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}}
\newcommand{\SigXC}[1]{\Sigma^\text{xc}_{#1}}
\newcommand{\MO}[1]{\phi_{#1}}
\newcommand{\SO}[1]{\psi_{#1}}
\newcommand{\ERI}[2]{(#1|#2)}
\newcommand{\rbra}[1]{(#1|}
\newcommand{\rket}[1]{|#1)}
% Matrices
\newcommand{\bO}{\boldsymbol{0}}
\newcommand{\bI}{\boldsymbol{1}}
\newcommand{\bH}{\boldsymbol{H}}
\newcommand{\bvc}{\boldsymbol{v}}
\newcommand{\bSig}[2]{\boldsymbol{\Sigma}_{#1}^{#2}}
\newcommand{\bSigC}[1]{\boldsymbol{\Sigma}_{#1}^{\text{c}}}
\newcommand{\be}{\boldsymbol{\epsilon}}
\newcommand{\bOm}[1]{\boldsymbol{\Omega}^{#1}}
\newcommand{\bA}[2]{\boldsymbol{A}_{#1}^{#2}}
\newcommand{\bB}[2]{\boldsymbol{B}_{#1}^{#2}}
\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}}
\newcommand{\bD}[2]{\boldsymbol{D}_{#1}^{#2}}
\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}}
\newcommand{\bW}[2]{\boldsymbol{W}_{#1}^{#2}}
\newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}}
\newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}}
\newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}}
\newcommand{\bc}[2]{\boldsymbol{c}_{#1}^{#2}}
% orbitals, gaps, etc
\newcommand{\IP}{I}
\newcommand{\EA}{A}
\newcommand{\HOMO}{\text{HOMO}}
\newcommand{\LUMO}{\text{LUMO}}
\newcommand{\Eg}{E_\text{g}}
\newcommand{\EgFun}{\Eg^\text{fund}}
\newcommand{\EgOpt}{\Eg^\text{opt}}
\newcommand{\EB}{E_B}
\newcommand{\RHH}{R_{\ce{H-H}}}
\newcommand{\ii}{\mathrm{i}}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\begin{document}
\title{Undressing $GW$ one determinant at a time}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
Here comes the abstract.
%\bigskip
%\begin{center}
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
%\end{center}
%\bigskip
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%
Here comes the introduction.
%%%%%%%%%%%%%%%%%
\section{Theory}
%%%%%%%%%%%%%%%%%
In the case of {\GOWO}, the quasiparticle equation reads
\begin{equation}
\label{eq:qp_eq}
\eps{p}{} + \SigC{p}(\omega) - \omega = 0
\end{equation}
where $\eps{p}{}$ is the one-electron energy of the HF spatial orbital $\MO{p}(\br)$ and the correlation part of the frequency-dependent self-energy is
\begin{equation}
\label{eq:SigC}
\SigC{p}(\omega)
= \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{} + \Om{m}{}}
+ \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{} - \Om{m}{}}
\end{equation}
where
\begin{equation}
\ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}
\end{equation}
are the screened two-electron repulsion integrals where $\Om{m}{}$ and $\bX{m}{}$ are the $m$th RPA eigenvalue and eigenvector obtained by solving the following (linear) RPA eigenvalue system within the Tamm-Dancoff approximation:
\begin{equation}
\bA{}{\RPA} \cdot \bX{m}{} = \Om{m}{\RPA} \bX{m}{}
\end{equation}
with
\begin{equation}
A_{ia,jb}^{} = (\eps{a}{} - \eps{i}{}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj}
\end{equation}
and
\begin{equation}
\ERI{pq}{ia} = \iint \MO{p}(\br_1) \MO{q}(\br_1) \frac{1}{\abs{\br_1 - \br_2}} \MO{i}(\br_2) \MO{a}(\br_2) d\br_1 \dbr_2
\end{equation}
The spectral weight of the solution $\eps{p,s}{\GW}$ is given by
\begin{equation}
\label{eq:Z}
0 \le Z_{p,s} = \qty[ 1 - \eval{\pdv{\SigC{p}(\omega)}{\omega}}_{\omega = \eps{p,s}{\GW}} ]^{-1} \le 1
\end{equation}
with the following sum rules:
\begin{align}
\sum_{s} Z_{p,s} & = 1
&
\sum_{s} Z_{p,s} \eps{p,s}{\GW} & = \eps{p}{}
\end{align}
As shown recently, the quasiparticle equation \eqref{eq:qp_eq} can be recast as a linear eigensystem with exactly the same solution:
\begin{equation}
\bH^{(p)} \cdot \bc{}{(p,s)} = \eps{p,s}{\GW} \bc{}{(p,s)}
\end{equation}
with
\begin{equation}
\label{eq:Hp}
\bH^{(p)} =
\begin{pmatrix}
\eps{p}{} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
\\
\T{(\bV{p}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
\\
\T{(\bV{p}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}}
\end{pmatrix}
\end{equation}
and where the expressions of the 2h1p and 2p1h blocks reads
\begin{subequations}
\begin{align}
\label{eq:C2h1p}
C^\text{2h1p}_{IJA,KCL} & = \qty[ \qty( \eps{I}{} + \eps{J}{} - \eps{A}{}) \delta_{JL} \delta_{AC} - 2 \ERI{JA}{CL} ] \delta_{IK}
\\
\label{eq:C2p1h}
C^\text{2p1h}_{IAB,KCD} & = \qty[ \qty( \eps{A}{} + \eps{B}{} - \eps{I}{}) \delta_{IK} \delta_{AC} + 2 \ERI{AI}{KC} ] \delta_{BD}
\end{align}
\end{subequations}
with the following expressions for the coupling blocks:
\begin{subequations}
\begin{align}
\label{eq:V2h1p}
V^\text{2h1p}_{p,KLC} & = \sqrt{2} \ERI{pK}{CL}
\\
\label{eq:V2p1h}
V^\text{2p1h}_{p,KCD} & = \sqrt{2} \ERI{pD}{KC}
\end{align}
\end{subequations}
Here, we use lower case letters for the electronic configurations belonging to the reference model state and upper case letters for the external determinants (\ie, the perturbers).
By solving the secular equation
\begin{equation}
\det[ \bH^{(p)} - \omega \bI ] = 0
\end{equation}
we recover the dynamical expression of the self-energy \eqref{eq:SigC}, \ie,
\begin{multline}
\SigC{p}(\omega)
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
\\
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
\end{multline}
with
\begin{equation}
\label{eq:Z_proj}
Z_{p,s} = \qty[ c_{1}^{(p,s)} ]^{2}
\end{equation}
In the presence of intruder states, it might be interesting to move additional electronic configurations in the reference space.
Let us label as $p$ the reference 1h ($p = i$) or 1p ($p = a$) determinant and $qia$ the additional 2h1p ($qia = ija$) or 2p1h ($qia = iab$)
\begin{equation}
\label{eq:Hp_qia}
\bH^{(p,qia)} =
\begin{pmatrix}
\eps{p}{} & V_{p,qia} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
\\
V_{qia,p} & \eps{qia}{} & \bC{qia}{\text{2h1p}} & \bC{qia}{\text{2p1h}}
\\
\T{(\bV{p}{\text{2h1p}})} & \T{(\bC{qia}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
\\
\T{(\bV{p}{\text{2p1h}})} & \T{(\bC{qia}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}}
\end{pmatrix}
\end{equation}
with new blocks defined as
\begin{gather}
V_{p,qia} = V_{qia,p} = \sqrt{2} \ERI{pq}{ia}
\\
\eps{qia}{} \equiv C_{qia,qia} = \text{sgn}(\eps{q}{} - \mu) \qty[ \qty(\eps{q}{} + \eps{a}{} - \eps{i}{} ) + 2 \ERI{ia}{ia} ]
\\
C_{qia,KLC}^\text{2h1p} = - 2 \ERI{ia}{CL} \delta_{qK}
\\
C_{qia,KCD}^\text{2p1h} = + 2 \ERI{ia}{KC} \delta_{qD}
\end{gather}
The expressions of $\bC{p}{\text{2h1p}}$, $\bC{p}{\text{2p1h}}$, $\bV{}{\text{2h1p}}$, and $\bV{}{\text{2p1h}}$ remain identical to the ones given in Eqs.~\eqref{eq:C2h1p}, \eqref{eq:C2p1h}, \eqref{eq:V2h1p}, and \eqref{eq:V2p1h} but one has remove the contribution from the 2h1p or 2p1h configuration $qia$.
While $\eps{p}{\HF}$ represents the relative energy (with respect to the $N$-electron HF reference determinant) of the 1h or 1p configuration, $\eps{qia}{} \equiv C_{qia,qia}$ is the relative energy of the 2h1p or 2p1h configuration.
Therefore, when $\eps{p}{\HF}$ and $\eps{qia}{}$ becomes of similar mangitude, one might want to move the 2h1p or 2p1h configuration from the external to the internal space in order to avoid intruder state problems.
Downfolding Eq.~\eqref{eq:Hp_qia} yields the following frequency-dependent self-energy matrix
\begin{equation}
\label{eq:Hp}
\bSigC{p,qia}(\omega) =
\begin{pmatrix}
\eps{p}{} + \SigC{p}(\omega) & V_{p,qia} + \SigC{p,qia}(\omega)
\\
V_{qia,p} + \SigC{qia,p}(\omega) & \eps{qia}{} + \SigC{qia}(\omega)
\\
\end{pmatrix}
\end{equation}
with
\begin{subequations}
\begin{gather}
\begin{split}
\SigC{p}(\omega)
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
\\
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
\end{split}
\\
\begin{split}
\SigC{qia}(\omega)
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
\\
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
\end{split}
\\
\begin{split}
\SigC{p,qia}(\omega)
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
\\
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
\end{split}
\\
\begin{split}
\SigC{qia,p}(\omega)
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
\\
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
\end{split}
\end{gather}
\end{subequations}
Of course, the present procedure can be generalized to any number of states.
%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
%%%%%%%%%%%%%%%%%%%%%%
Here comes the conclusion.
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Data availability statement}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The data that supports the findings of this study are available within the article.% and its supplementary material.
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{MRGW}
%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}