saving work
This commit is contained in:
parent
b04c90c8d8
commit
79f3bf9e0d
@ -78,14 +78,12 @@
|
||||
date-added = {2023-01-30 22:12:16 +0100},
|
||||
date-modified = {2023-01-30 22:12:32 +0100},
|
||||
doi = {10.1021/acs.jctc.9b00353},
|
||||
eprint = {https://doi.org/10.1021/acs.jctc.9b00353},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {8},
|
||||
pages = {4399-4414},
|
||||
title = {Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation},
|
||||
volume = {15},
|
||||
year = {2019},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.9b00353}}
|
||||
year = {2019}}
|
||||
|
||||
@article{ChenyangLi_2021,
|
||||
author = {Li,Chenyang and Evangelista,Francesco A.},
|
||||
@ -106,28 +104,24 @@
|
||||
date-added = {2023-01-30 22:09:49 +0100},
|
||||
date-modified = {2023-01-30 22:10:02 +0100},
|
||||
doi = {10.1021/acs.jctc.1c00980},
|
||||
eprint = {https://doi.org/10.1021/acs.jctc.1c00980},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {12},
|
||||
pages = {7666-7681},
|
||||
title = {Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory},
|
||||
volume = {17},
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.1c00980}}
|
||||
year = {2021}}
|
||||
|
||||
@article{Wang_2023,
|
||||
author = {Wang, Meng and Fang, Wei-Hai and Li, Chenyang},
|
||||
date-added = {2023-01-30 22:07:40 +0100},
|
||||
date-modified = {2023-01-30 22:07:50 +0100},
|
||||
doi = {10.1021/acs.jctc.2c00966},
|
||||
eprint = {https://doi.org/10.1021/acs.jctc.2c00966},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {1},
|
||||
pages = {122-136},
|
||||
title = {Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases},
|
||||
volume = {19},
|
||||
year = {2023},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.2c00966}}
|
||||
year = {2023}}
|
||||
|
||||
@misc{Scott_2023,
|
||||
author = {Scott, Charles J. C. and Backhouse, Oliver J. and Booth, George H.},
|
||||
@ -166,7 +160,6 @@
|
||||
date-added = {2023-01-30 15:45:22 +0100},
|
||||
date-modified = {2023-01-30 15:45:39 +0100},
|
||||
doi = {10.1021/acs.jctc.7b00586},
|
||||
eprint = {https://doi.org/10.1021/acs.jctc.7b00586},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {10},
|
||||
pages = {4765-4778},
|
||||
@ -386,14 +379,12 @@
|
||||
date-added = {2023-01-30 13:59:42 +0100},
|
||||
date-modified = {2023-01-30 14:00:00 +0100},
|
||||
doi = {10.1021/acs.jctc.2c00617},
|
||||
eprint = {https://doi.org/10.1021/acs.jctc.2c00617},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {12},
|
||||
pages = {7570-7585},
|
||||
title = {Benchmark of GW Methods for Core-Level Binding Energies},
|
||||
volume = {18},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.2c00617}}
|
||||
year = {2022}}
|
||||
|
||||
@incollection{CsanakBook,
|
||||
author = {Csanak, Gy and Taylor, HS and Yaris, Robert},
|
||||
@ -471,50 +462,42 @@
|
||||
bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/0009261494011834},
|
||||
bdsk-url-2 = {https://doi.org/10.1016/0009-2614(94)01183-4}}
|
||||
|
||||
@article{Frosini_2022c,
|
||||
author = {M. Frosini and T. Duguet and J.-P. Ebran and B. Bally and H. Hergert and T. R. Rodr{\'{\i}}guez and R. Roth and J. M. Yao and V. Som{\`{a}}},
|
||||
date-added = {2023-01-20 09:45:17 +0100},
|
||||
date-modified = {2023-01-20 09:45:37 +0100},
|
||||
doi = {10.1140/epja/s10050-022-00694-x},
|
||||
journal = {Eur. Phys. J. A},
|
||||
month = apr,
|
||||
number = {4},
|
||||
publisher = {Springer Science and Business Media {LLC}},
|
||||
title = {Multi-reference many-body perturbation theory for nuclei},
|
||||
url = {https://doi.org/10.1140/epja/s10050-022-00694-x},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00694-x}}
|
||||
|
||||
@article{Frosini_2022b,
|
||||
author = {M. Frosini and T. Duguet and J.-P. Ebran and B. Bally and H. Hergert and T. R. Rodr{\'{\i}}guez and R. Roth and J. M. Yao and V. Som{\`{a}}},
|
||||
date-added = {2023-01-20 09:44:49 +0100},
|
||||
date-modified = {2023-01-20 09:45:46 +0100},
|
||||
doi = {10.1140/epja/s10050-022-00694-x},
|
||||
journal = {Eur. Phys. J. A},
|
||||
month = apr,
|
||||
number = {4},
|
||||
publisher = {Springer Science and Business Media {LLC}},
|
||||
title = {Multi-reference many-body perturbation theory for nuclei},
|
||||
url = {https://doi.org/10.1140/epja/s10050-022-00694-x},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00694-x}}
|
||||
@article{Frosini_2022,
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {62},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00692-z}
|
||||
}
|
||||
|
||||
@article{Frosini_2022a,
|
||||
author = {M. Frosini and T. Duguet and J.-P. Ebran and V. Som{\`{a}}},
|
||||
date-added = {2023-01-20 09:44:22 +0100},
|
||||
date-modified = {2023-01-20 09:45:43 +0100},
|
||||
doi = {10.1140/epja/s10050-022-00692-z},
|
||||
journal = {Eur. Phys. J. A},
|
||||
month = apr,
|
||||
number = {4},
|
||||
publisher = {Springer Science and Business Media {LLC}},
|
||||
title = {Multi-reference many-body perturbation theory for nuclei},
|
||||
url = {https://doi.org/10.1140/epja/s10050-022-00692-z},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00692-z}}
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Mongelli, T. and Rodr{\'i}guez, T. R. and Roth, R. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {63},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00693-y}
|
||||
}
|
||||
|
||||
@article{Frosini_2022b,
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Hergert, H. and Rodr{\'i}guez, T. R. and Roth, R. and Yao, J. M. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {64},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00694-x}
|
||||
}
|
||||
|
||||
|
||||
@misc{Tolle_2022,
|
||||
archiveprefix = {arXiv},
|
||||
@ -1920,8 +1903,7 @@
|
||||
pages = {6203-6210},
|
||||
title = {Renormalized Singles Green's Function in the T-Matrix Approximation for Accurate Quasiparticle Energy Calculation},
|
||||
volume = {12},
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jpclett.1c01723}}
|
||||
year = {2021}}
|
||||
|
||||
@article{Scuseria_2013,
|
||||
author = {Scuseria,Gustavo E. and Henderson,Thomas M. and Bulik,Ireneusz W.},
|
||||
@ -1945,9 +1927,7 @@
|
||||
pages = {012809},
|
||||
title = {Hydrogen-molecule spectrum by the many-body $GW$ approximation and the Bethe-Salpeter equation},
|
||||
volume = {103},
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://link.aps.org/doi/10.1103/PhysRevA.103.012809},
|
||||
bdsk-url-2 = {https://doi.org/10.1103/PhysRevA.103.012809}}
|
||||
year = {2021}}
|
||||
|
||||
@article{Vitale_2020,
|
||||
author = {Vitale, Eugenio and Alavi, Ali and Kats, Daniel},
|
||||
@ -2192,7 +2172,7 @@ note={Gaussian Inc. Wallingford CT}
|
||||
title = {Coupled-Cluster Techniques for Computational Chemistry: {{The CFOUR}} Program Package},
|
||||
author = {Matthews, Devin A. and Cheng, Lan and Harding, Michael E. and Lipparini, Filippo and Stopkowicz, Stella and Jagau, Thomas-C. and Szalay, P{\'e}ter G. and Gauss, J{\"u}rgen and Stanton, John F.},
|
||||
year = {2020},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
journal = {J. Chem. Phys.},
|
||||
volume = {152},
|
||||
number = {21},
|
||||
pages = {214108},
|
||||
@ -14955,7 +14935,7 @@ note={Gaussian Inc. Wallingford CT}
|
||||
author = {Surj{\'a}n, P. R. and Szabados, {\'A}.},
|
||||
doi = {10.1063/1.471814},
|
||||
issn = {0021-9606},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
journal = {J. Chem. Phys.},
|
||||
number = {9},
|
||||
pages = {3320--3324},
|
||||
title = {Damping of Perturbation Corrections in Quasidegenerate Situations},
|
||||
@ -16464,7 +16444,7 @@ note={Gaussian Inc. Wallingford CT}
|
||||
author = {{Ismail-Beigi}, Sohrab},
|
||||
doi = {10.1088/1361-648X/aa7803},
|
||||
issn = {0953-8984},
|
||||
journal = {Journal of Physics: Condensed Matter},
|
||||
journal = {J. Phys. Cond. Mat.},
|
||||
number = {38},
|
||||
pages = {385501},
|
||||
title = {Justifying Quasiparticle Self-Consistent Schemes via Gradient Optimization in {{Baym}}\textendash{{Kadanoff}} Theory},
|
||||
@ -16476,7 +16456,7 @@ note={Gaussian Inc. Wallingford CT}
|
||||
author = {Bruneval, Fabien and Marques, Miguel A. L.},
|
||||
doi = {10.1021/ct300835h},
|
||||
issn = {1549-9618},
|
||||
journal = {Journal of Chemical Theory and Computation},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {1},
|
||||
pages = {324--329},
|
||||
title = {Benchmarking the {{Starting Points}} of the {{GW Approximation}} for {{Molecules}}},
|
||||
@ -17127,7 +17107,6 @@ note={Gaussian Inc. Wallingford CT}
|
||||
@article{Tiago_2006,
|
||||
author = {Tiago, Murilo L. and Chelikowsky, James R.},
|
||||
doi = {10.1103/PhysRevB.73.205334},
|
||||
file = {/Users/loos/Zotero/storage/3YTWEDNW/Tiago_2006.pdf},
|
||||
issn = {1098-0121, 1550-235X},
|
||||
journal = {Phys. Rev. B},
|
||||
language = {en},
|
||||
@ -17135,8 +17114,8 @@ note={Gaussian Inc. Wallingford CT}
|
||||
number = {20},
|
||||
title = {Optical Excitations in Organic Molecules, Clusters, and Defects Studied by First-Principles {{Green}}'s Function Methods},
|
||||
volume = {73},
|
||||
year = {2006},
|
||||
bdsk-url-1 = {https://dx.doi.org/10.1103/PhysRevB.73.205334}}
|
||||
year = {2006}
|
||||
}
|
||||
|
||||
@article{Ou_2016,
|
||||
author = {Ou, Qi and Subotnik, Joseph E.},
|
||||
|
@ -44,7 +44,9 @@
|
||||
showstringspaces=false,
|
||||
showtabs=false,
|
||||
tabsize=2
|
||||
}
|
||||
}
|
||||
|
||||
\newcolumntype{d}{D{.}{.}{-1}}
|
||||
|
||||
\lstset{style=mystyle}
|
||||
|
||||
@ -134,7 +136,7 @@ In particular, we focus here on the possibility of curing the qs$GW$ convergence
|
||||
The SRG formalism has been developed independently by Wegner \cite{Wegner_1994} and Glazek and Wilson \cite{Glazek_1993,Glazek_1994} in the context of condensed matter systems and light-front quantum field theories, respectively.
|
||||
This formalism has been introduced in quantum chemistry by White \cite{White_2002} before being explored in more detail by Evangelista and coworkers in the context of multi-reference electron correlation theories. \cite{Evangelista_2014b,ChenyangLi_2015, ChenyangLi_2016,ChenyangLi_2017,ChenyangLi_2018,ChenyangLi_2019a,Zhang_2019,ChenyangLi_2021,Wang_2021,Wang_2023}
|
||||
The SRG has also been successful in the context of nuclear structure theory, where it was first developed as a mature computational tool thanks to the work of several research groups.
|
||||
\cite{Bogner_2007,Tsukiyama_2011,Tsukiyama_2012,Hergert_2013,Hergert_2016,Frosini_2022a,Frosini_2022b,Frosini_2022c}
|
||||
\cite{Bogner_2007,Tsukiyama_2011,Tsukiyama_2012,Hergert_2013,Hergert_2016,Frosini_2022,Frosini_2022a,Frosini_2022b}
|
||||
See Ref.~\onlinecite{Hergert_2016a} for a recent review in this field.
|
||||
|
||||
The SRG transformation aims at decoupling an internal (or reference) space from an external space while incorporating information about their coupling in the reference space.
|
||||
@ -500,15 +502,6 @@ It is worth noting the close similarity of the first-order elements with the one
|
||||
\subsection{Second-order matrix elements}
|
||||
% ///////////////////////////%
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[width=0.8\linewidth]{fig1.pdf}
|
||||
\caption{
|
||||
Functional form of the qs$GW$ self-energy (left) for $\eta = 1$ and the SRG-qs$GW$ self-energy (right) for $s = 1/(2\eta^2) = 1/2$.
|
||||
\label{fig:plot}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
The second-order renormalized quasiparticle equation is given by
|
||||
\begin{equation}
|
||||
\label{eq:GW_renorm}
|
||||
@ -529,8 +522,8 @@ with elements
|
||||
\label{eq:SRG-GW_selfenergy}
|
||||
\begin{split}
|
||||
\widetilde{\bSig}_{pq}(\omega; s)
|
||||
&= \sum_{i\nu} \frac{W_{p,i\nu} W_{q,i\nu}}{\omega - \epsilon_i + \Omega_{\nu} - \ii \eta} e^{-(\Delta_{pi\nu}^2 + \Delta_{qi\nu}^2) s} \\
|
||||
&+ \sum_{a\nu} \frac{W_{p,a\nu}W_{q,a\nu}}{\omega - \epsilon_a - \Omega_{\nu} + \ii \eta}e^{-(\Delta_{pa\nu}^2 + \Delta_{qa\nu}^2) s}.
|
||||
&= \sum_{i\nu} \frac{W_{p,i\nu} W_{q,i\nu}}{\omega - \epsilon_i + \Omega_{\nu}} e^{-(\Delta_{pi\nu}^2 + \Delta_{qi\nu}^2) s} \\
|
||||
&+ \sum_{a\nu} \frac{W_{p,a\nu}W_{q,a\nu}}{\omega - \epsilon_a - \Omega_{\nu}}e^{-(\Delta_{pa\nu}^2 + \Delta_{qa\nu}^2) s}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
@ -546,6 +539,16 @@ which can be solved by simple integration along with the initial condition $\bF^
|
||||
\times \qty[1 - e^{-(\Delta_{pr\nu}^2 + \Delta_{qr\nu}^2) s}].
|
||||
\end{multline}
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{flow}
|
||||
\caption{
|
||||
\ant{Schematic} evolution of the quasiparticle equation as a function of the flow parameter $s$ in the case of the dynamic SRG-$GW$ flow (magenta) and the static SRG-qs$GW$ flow (cyan). \ANT{Maybe we should replace dynamic by full?}
|
||||
\label{fig:flow}}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
At $s=0$, the second-order correction vanishes, hence giving
|
||||
\begin{equation}
|
||||
\lim_{s\to0} \widetilde{\bF}(s) = \bF^{(0)}.
|
||||
@ -563,13 +566,12 @@ Therefore, the SRG flow continuously transforms the dynamical self-energy $\wide
|
||||
As illustrated in Fig.~\ref{fig:flow}, this transformation is done gradually starting from the states that have the largest denominators in Eq.~\eqref{eq:static_F2}.
|
||||
|
||||
%%% FIG 2 %%%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{flow}
|
||||
\begin{figure*}
|
||||
\includegraphics[width=0.8\linewidth]{fig1.pdf}
|
||||
\caption{
|
||||
Evolution of the quasiparticle equation as a function of the flow parameter $s$ in the case of the dynamic SRG-$GW$ flow (magenta) and the static SRG-qs$GW$ flow (cyan).
|
||||
\label{fig:flow}}
|
||||
\end{figure}
|
||||
Functional form of the qs$GW$ self-energy (left) for $\eta = 1$ and the SRG-qs$GW$ self-energy (right) for $s = 1/(2\eta^2) = 1/2$.
|
||||
\label{fig:plot}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%///////////////////////////%
|
||||
@ -717,9 +719,9 @@ Therefore, it seems that the effect of the TDA can not be systematically predict
|
||||
\caption{First ionization potential in eV calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. The statistical descriptors are computed for the errors with respect to the reference.}
|
||||
\label{tab:tab1}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lccccc}
|
||||
Mol. & $\Delta$CCSD(T) & HF & $G_0W_0$@HF & qs$GW$ & SRG-qs$GW$ \\
|
||||
& & & $\eta=\num{e-3}$ & $\eta=\num{e-1}$ & $s=\num{e2}$ \\
|
||||
\begin{tabular}{lddddd}
|
||||
Mol. & \multicolumn{1}{c}{$\Delta\text{CCSD(T)}$} & \multicolumn{1}{c}{HF} & \multicolumn{1}{c}{$G_0W_0$@HF} & \multicolumn{1}{c}{qs$GW$} & \multicolumn{1}{c}{SRg-qs$GW$} \\
|
||||
& & & \multicolumn{1}{c}{$\eta=\num{e-3}$} & \multicolumn{1}{c}{$\eta=\num{e-1}$} & \multicolumn{1}{c}{$s=\num{e2}$} \\
|
||||
\hline
|
||||
\ce{He} & 24.54 & 24.98 & 24.59 & 24.58 & 24.54 \\
|
||||
\ce{Ne} & 21.47 & 23.15 & 21.46 & 21.83 & 21.59 \\
|
||||
@ -785,65 +787,119 @@ Of course these are slight improvements but this is done with no additional comp
|
||||
The evolution of the statistical descriptors with respect to the various methods considered in Table~\ref{tab:tab1} is graphically illustrated by Fig.~\ref{fig:fig4}.
|
||||
The decrease of the MSE and SDE correspond to a shift of the maximum toward zero and a shrink of the distribution width, respectively.
|
||||
|
||||
%%% FIG 5 %%%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{fig5.pdf}
|
||||
\caption{
|
||||
Temporary figure about convergence
|
||||
\label{fig:fig5}}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
In addition to this improvement of the accuracy, the SRG-qs$GW$ scheme is also much easier to converge than its qs$GW$ counterpart.
|
||||
Indeed, up to $s=10^3$ self-consistency of the SRG-qs$GW$ scheme can be converged without any problems.
|
||||
For $s=10^4$, convergence could not be attained for the following molecules \ANT{waiting for calculation}.
|
||||
On the other hand, the qs$GW$ convergence is much more erratic.
|
||||
Indeed, up to $s=10^3$ self-consistency can be attained without any problems (mean and max number of iterations = n for s=100).
|
||||
For $s=10^4$, convergence could not be attained for 12 molecules out of 22, meaning that some intruder states were included in the static correction for this value of $s$.
|
||||
This is illustrated in the case of \ce{H2O} in the upper panel Fig.
|
||||
However, this is not a problem as the MAE is already well converged before the intruder states are added to the SRG-qs$GW$ static self-energy (lower panel).
|
||||
|
||||
On the other hand, the qs$GW$ convergence with respect to $\eta$ is more difficult to evaluate.
|
||||
The whole set considered in this work could be converged for $\eta=0.1$.
|
||||
However, if we decrease $\eta$ then self-consistency could not be attained for the whole set of molecules using the black-box convergence parameters (see Sec.~\ref{sec:comp_det}).
|
||||
Unfortunately, the convergence of the IP is not as tight as in the SRG case because for $\eta=0.01$ the values of the IP that could be converged can vary between $10^{-3}$ and $10^{-1}$ with respect to $\eta=0.1$.
|
||||
However, as soon as we decrease $\eta$ self-consistency could not be attained for the whole set of molecules using the black-box convergence parameters (see Sec.~\ref{sec:comp_det}).
|
||||
Unfortunately, the convergence of the IP is not as tight as in the SRG case.
|
||||
The values of the IP that could be converged for $\eta=0.01$ can vary between $10^{-3}$ and $10^{-1}$ with respect to $\eta=0.1$.
|
||||
|
||||
We will now gauge the effect of the TDA for the screening on the accuracy of the various methods considered previously.
|
||||
% \begin{table}
|
||||
% \caption{First ionization potential in eV calculated using $G_0W_0^{\text{TDA}}$@HF, qs$GW^{\text{TDA}}$ and SRG-qs$GW^{\text{TDA}}$. The statistical descriptors are computed for the errors with respect to the reference.}
|
||||
% \label{tab:tab1}
|
||||
% \begin{ruledtabular}
|
||||
% \begin{tabular}{lddd}
|
||||
% Mol. & \multicolumn{1}{c}{$G_0W_0^{\text{TDA}}$@HF} & \multicolumn{1}{c}{qs$GW^{\text{TDA}}$} & \multicolumn{1}{c}{SRG-qs$GW^{\text{TDA}}$} \\
|
||||
% & \multicolumn{1}{c}{$\eta=\num{e-3}$} & \multicolumn{1}{c}{$\eta=\num{5e-2}$} & \multicolumn{1}{c}{$s=\num{e2}$} \\
|
||||
% \hline
|
||||
% \ce{He} & 24.45 & 24.48 & 24.39 \\
|
||||
% \ce{Ne} & 20.85 & 21.23 & 20.92 \\
|
||||
% \ce{H2} & 16.53 & 16.46 & 16.50 \\
|
||||
% \ce{Li2} & 5.45 & 5.50 & 5.46 \\
|
||||
% \ce{LiH} & 8.14 & 8.17 & 8.05 \\
|
||||
% \ce{HF} & 15.64 & 15.79 & 15.66 \\
|
||||
% \ce{Ar} & 15.60 & 15.42 & 15.46 \\
|
||||
% \ce{H2O} & 12.42 & 12.40 & 12.31 \\
|
||||
% \ce{LiF} & 10.75 & 11.02 & 10.85 \\
|
||||
% \ce{HCl} & 12.70 & 12.65 & 12.59 \\
|
||||
% \ce{BeO} & 9.33 & 10.21 & 10.05 \\
|
||||
% \ce{CO} & 14.60 & 13.82 & 13.84 \\
|
||||
% \ce{N2} & 17.36 & 15.15 & 15.21 \\
|
||||
% \ce{CH4} & 14.67 & 14.50 & 14.47 \\
|
||||
% \ce{BH3} & 13.66 & 13.57 & 13.54 \\
|
||||
% \ce{NH3} & 10.91 & 10.75 & 10.68 \\
|
||||
% \ce{BF} & 11.38 & 11.11 & 11.12 \\
|
||||
% \ce{BN} & 11.85 & 12.05 & 12.04 \\
|
||||
% \ce{SH2} & 10.47 & 10.44 & 10.38 \\
|
||||
% \ce{F2} & 15.55 & 15.23 & 15.22 \\
|
||||
% \ce{MgO} & 8.10 & 7.76 & 7.58 \\
|
||||
% \ce{O3} & 13.68 & 12.22 & 12.22 \\
|
||||
% \hline
|
||||
% MSE & 0.07 & -0.12 & -0.18 \\
|
||||
% MAE & 0.37 & 0.22 & 0.25 \\
|
||||
% SDE & 0.55 & 0.26 & 0.27 \\
|
||||
% Min & -0.72 & -0.63 & -0.63 \\
|
||||
% Max & 1.82 & 0.26 & 0.22 \\
|
||||
% \end{tabular}
|
||||
% \end{ruledtabular}
|
||||
% \end{table}
|
||||
|
||||
Part on approximation and correction for W:
|
||||
TDHF G0W0 not that bad in GW100 but bad in GW22, qsGW TDHF even worse even with SRG,
|
||||
Maybe that would be nice to add SRG G0W0 to see if it mitigates the outliers of GW20 cf Bruneval 2021,
|
||||
That would be nice to understand clearly why qsGWTDHF is worse (screening, gap, etc)
|
||||
Part on EA:
|
||||
MgO- does not converge yet but when we have it same analysis as Table 1 and Fig 4 but for the EA
|
||||
|
||||
\begin{table}
|
||||
\caption{First ionization potential in eV calculated using $G_0W_0^{\text{TDA}x}$@HF, qs$GW^{\text{TDA}}$ and SRG-qs$GW^{\text{TDA}}$. The statistical descriptors are computed for the errors with respect to the reference.}
|
||||
\caption{First electron attachment in eV calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. The statistical descriptors are computed for the errors with respect to the reference.}
|
||||
\label{tab:tab1}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lccc}
|
||||
Mol. & $G_0W_0^{\text{TDA}}$@HF & qs$GW^{\text{TDA}}$ & SRG-qs$GW^{\text{TDA}}$ \\
|
||||
& $\eta=\num{e-3}$ & $\eta=\num{5e-2}$ & $s=\num{e2}$ \\
|
||||
\hline
|
||||
\ce{He} & 24.45 & 24.48 & 24.39 \\
|
||||
\ce{Ne} & 20.85 & 21.23 & 20.92 \\
|
||||
\ce{H2} & 16.53 & 16.46 & 16.50 \\
|
||||
\ce{Li2} & 5.45 & 5.50 & 5.46 \\
|
||||
\ce{LiH} & 8.14 & 8.17 & 8.05 \\
|
||||
\ce{HF} & 15.64 & 15.79 & 15.66 \\
|
||||
\ce{Ar} & 15.60 & 15.42 & 15.46 \\
|
||||
\ce{H2O} & 12.42 & 12.40 & 12.31 \\
|
||||
\ce{LiF} & 10.75 & 11.02 & 10.85 \\
|
||||
\ce{HCl} & 12.70 & 12.65 & 12.59 \\
|
||||
\ce{BeO} & 9.33 & 10.21 & 10.05 \\
|
||||
\ce{CO} & 14.60 & 13.82 & 13.84 \\
|
||||
\ce{N2} & 17.36 & 15.15 & 15.21 \\
|
||||
\ce{CH4} & 14.67 & 14.50 & 14.47 \\
|
||||
\ce{BH3} & 13.66 & 13.57 & 13.54 \\
|
||||
\ce{NH3} & 10.91 & 10.75 & 10.68 \\
|
||||
\ce{BF} & 11.38 & 11.11 & 11.12 \\
|
||||
\ce{BN} & 11.85 & 12.05 & 12.04 \\
|
||||
\ce{SH2} & 10.47 & 10.44 & 10.38 \\
|
||||
\ce{F2} & 15.55 & 15.23 & 15.22 \\
|
||||
\ce{MgO} & 8.10 & 7.76 & 7.58 \\
|
||||
\ce{O3} & 13.68 & 12.22 & 12.22 \\
|
||||
\hline
|
||||
MSE & 0.07 & -0.12 & -0.18 \\
|
||||
MAE & 0.37 & 0.22 & 0.25 \\
|
||||
SDE & 0.55 & 0.26 & 0.27 \\
|
||||
Min & -0.72 & -0.63 & -0.63 \\
|
||||
Max & 1.82 & 0.26 & 0.22 \\
|
||||
\hline
|
||||
\begin{tabular}{lddddd}
|
||||
Mol. & \multicolumn{1}{c}{$\Delta\text{CCSD(T)}$} & \multicolumn{1}{c}{HF} & \multicolumn{1}{c}{$G_0W_0$@HF} & \multicolumn{1}{c}{qs$GW$} & \multicolumn{1}{c}{SRg-qs$GW$} \\
|
||||
& & & \multicolumn{1}{c}{$\eta=\num{e-3}$} & \multicolumn{1}{c}{$\eta=\num{e-1}$} & \multicolumn{1}{c}{$s=\num{e2}$} \\
|
||||
\hline
|
||||
\ce{He} & 2.66 & 2.70 & 2.66 & 2.66 & 2.66 \\
|
||||
\ce{Ne} & 5.09 & 5.47 & 5.25 & 5.19 & 5.19 \\
|
||||
\ce{H2} & 1.35 & 1.33 & 1.28 & 1.28 & 1.28 \\
|
||||
\ce{Li2} & -0.34 & 0.08 & -0.17 & -0.18 & -0.21 \\
|
||||
\ce{LiH} & 0.29 & -0.20 & -0.27 & -0.27 & -0.27 \\
|
||||
\ce{HF} & 0.66 & 0.81 & 0.71 & 0.70 & 0.70 \\
|
||||
\ce{Ar} & 2.55 & 2.97 & 2.68 & 2.64 & 2.65 \\
|
||||
\ce{H2O} & 0.61 & 0.80 & 0.68 & 0.65 & 0.66 \\
|
||||
\ce{LiF} & -0.35 & -0.29 & -0.33 & -0.32 & -0.33 \\
|
||||
\ce{HCl} & 0.57 & 0.79 & 0.64 & 0.63 & 0.63 \\
|
||||
\ce{BeO} & -2.17 & -1.80 & -2.28 & -2.10 & -2.13 \\
|
||||
\ce{CO} & 1.57 & 1.80 & 1.66 & 1.61 & 1.62 \\
|
||||
\ce{N2} & 2.37 & 2.20 & 2.10 & 2.10 & 2.10 \\
|
||||
\ce{CH4} & 0.65 & 0.79 & 0.70 & 0.68 & 0.68 \\
|
||||
\ce{BH3} & 0.09 & 0.81 & 0.46 & 0.29 & 0.30 \\
|
||||
\ce{NH3} & 0.61 & 0.80 & 0.68 & 0.66 & 0.66 \\
|
||||
\ce{BF} & 0.80 & 1.06 & 0.90 & 0.87 & 0.87 \\
|
||||
\ce{BN} & -3.02 & -2.97 & -3.90 & -3.41 & -3.44 \\
|
||||
\ce{SH2} & 0.52 & 0.76 & 0.60 & 0.58 & 0.59 \\
|
||||
\ce{F2} & -0.32 & 1.71 & 0.53 & -0.10 & -0.07 \\
|
||||
\ce{MgO} & -1.54 & -1.40 & -1.64 & -1.72 & -1.71 \\
|
||||
\ce{O3} & -1.82 & -1.32 & -2.19 & -2.22 & -2.17 \\
|
||||
\hline
|
||||
MSE & & -0.30 & -0.02 & 0.00 & 0.00 \\
|
||||
MAE & & 0.32 & 0.19 & 0.11 & 0.12 \\
|
||||
SDE & & 0.43 & 0.31 & 0.17 & 0.17 \\
|
||||
Min & & -2.03 & -0.85 & -0.22 & -0.25 \\
|
||||
Max & & 0.17 & 0.88 & 0.41 & 0.42 \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
|
||||
Part on EA:
|
||||
MgO- does not converge yet but when we have it same analysis as Table 1 and Fig 4 but for the EA
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[width=\linewidth]{fig6.pdf}
|
||||
\caption{
|
||||
Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first electron attachment calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$.
|
||||
\label{fig:fig4}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%=================================================================%
|
||||
\section{Conclusion}
|
||||
|
Binary file not shown.
BIN
Manuscript/fig5.pdf
Normal file
BIN
Manuscript/fig5.pdf
Normal file
Binary file not shown.
BIN
Manuscript/fig6.pdf
Normal file
BIN
Manuscript/fig6.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user