typos
This commit is contained in:
parent
77b28f4a31
commit
e96f05da6c
@ -480,9 +480,9 @@ We select STO-3G as minimal basis, and study the behaviour of the total energy o
|
|||||||
The bonding and antibonding orbitals of the \ce{H2} molecule are given by
|
The bonding and antibonding orbitals of the \ce{H2} molecule are given by
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\MO{1}{}(\br{}) & = \qty[ \AO{A}(\br{}) + \AO{B}(\br{}) ]/\sqrt{2 + S_{AB}},
|
\MO{1}{}(\br{}) & = \qty[ \AO{A}(\br{}) + \AO{B}(\br{}) ]/\sqrt{2(1 + S_{AB})},
|
||||||
\\
|
\\
|
||||||
\MO{2}{}(\br{}) & = \qty[ \AO{A}(\br{}) - \AO{B}(\br{}) ]/\sqrt{2 - S_{AB}},
|
\MO{2}{}(\br{}) & = \qty[ \AO{A}(\br{}) - \AO{B}(\br{}) ]/\sqrt{2(1 - S_{AB})},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
where $\AO{A}$ and $\AO{B}$ are the two contracted Gaussian basis functions centred on each of the nucleus, and $S_{AB} = \braket{\AO{A}}{\AO{B}}$.
|
where $\AO{A}$ and $\AO{B}$ are the two contracted Gaussian basis functions centred on each of the nucleus, and $S_{AB} = \braket{\AO{A}}{\AO{B}}$.
|
||||||
@ -501,10 +501,10 @@ with
|
|||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:HF0}
|
\label{eq:HF0}
|
||||||
\E{\HF}{(0)} & = \eHc{1} + 2 \eJ{11} - \eK{11},
|
\E{\HF}{(0)} & = 2 \eHc{1} + 2 \eJ{11} - \eK{11},
|
||||||
\\
|
\\
|
||||||
\label{eq:HF1}
|
\label{eq:HF1}
|
||||||
\E{\HF}{(1)} & = \eHc{2} + 2 \eJ{22} - \eK{22},
|
\E{\HF}{(1)} & = 2 \eHc{2} + 2 \eJ{22} - \eK{22},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
and
|
and
|
||||||
@ -536,10 +536,10 @@ At the (ground-state) LDA level (\ie, we only consider ground-state functionals)
|
|||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LDA0}
|
\label{eq:LDA0}
|
||||||
\E{\LDA}{(0)} & = \eHc{1} + 2 \eJ{11} + \int \e{\xc}{\LDA}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{},
|
\E{\LDA}{(0)} & = 2 \eHc{1} + 2 \eJ{11} + \int \e{\xc}{\LDA}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{},
|
||||||
\\
|
\\
|
||||||
\label{eq:LDA1}
|
\label{eq:LDA1}
|
||||||
\E{\LDA}{(1)} & = \eHc{2} + 2 \eJ{22} + \int \e{\xc}{\LDA}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{},
|
\E{\LDA}{(1)} & = 2 \eHc{2} + 2 \eJ{22} + \int \e{\xc}{\LDA}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
with
|
with
|
||||||
@ -554,13 +554,13 @@ At the eLDA, we have
|
|||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:eLDA0}
|
\label{eq:eLDA0}
|
||||||
\E{\eLDA}{(0)} & = \eHc{1} + 2 \eJ{11} + \int \be{\xc}{(0)}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{},
|
\E{\eLDA}{(0)} & = 2 \eHc{1} + 2 \eJ{11} + \int \be{\xc}{(0)}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{},
|
||||||
\\
|
\\
|
||||||
\label{eq:eLDA1}
|
\label{eq:eLDA1}
|
||||||
\E{\eLDA}{(1)} & = \eHc{2} + 2 \eJ{22} + \int \be{\xc}{(1)}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{},
|
\E{\eLDA}{(1)} & = 2 \eHc{2} + 2 \eJ{22} + \int \be{\xc}{(1)}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
with $\be{\xc}{(0)} \equiv \e{\xc}{\LDA}$ and $\be{\xc}{(1)}(\n{}{}) = \e{\xc}{\LDA}(\n{}{}) + \e{\xc}{(1)}(\n{}{}) - \e{\xc}{(0)}(\n{}{})$.
|
with $\be{\xc}{(0)}(\n{}{}) \equiv \e{\xc}{\LDA}(\n{}{})$ and $\be{\xc}{(1)}(\n{}{}) = \e{\xc}{\LDA}(\n{}{}) + \e{\xc}{(1)}(\n{}{}) - \e{\xc}{(0)}(\n{}{})$.
|
||||||
|
|
||||||
%\titou{Note that we do not consider symmetry-broken solutions.}
|
%\titou{Note that we do not consider symmetry-broken solutions.}
|
||||||
|
|
||||||
@ -592,19 +592,19 @@ For HF, we have
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\bE{\HF}{\ew{}}
|
\bE{\HF}{\ew{}}
|
||||||
& = (1-\ew{}) \eHc{1} + \ew{} \eHc{2}
|
& = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2}
|
||||||
+ \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
+ \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||||
\\
|
\\
|
||||||
& = \ldots
|
& = \ldots
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
which is clearly quadratic with respect to $\ew{}$.
|
which is clearly quadratic with respect to $\ew{}$ due to the ghost interaction error in the Hartree term.
|
||||||
|
|
||||||
For LDA, we have
|
For LDA, we have
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\bE{\LDA}{\ew{}}
|
\bE{\LDA}{\ew{}}
|
||||||
& = (1-\ew{}) \eHc{1} + \ew{} \eHc{2}
|
& = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2}
|
||||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||||
\\
|
\\
|
||||||
& + \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
& + \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||||
@ -618,7 +618,7 @@ For eLDA, we have
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\bE{\eLDA}{\ew{}}
|
\bE{\eLDA}{\ew{}}
|
||||||
& = (1-\ew{}) \eHc{1} + \ew{} \eHc{2}
|
& = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2}
|
||||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||||
\\
|
\\
|
||||||
& + \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
& + \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||||
|
Loading…
Reference in New Issue
Block a user