diff --git a/Manuscript/FarDFT.tex b/Manuscript/FarDFT.tex index d15e516..eb5532f 100644 --- a/Manuscript/FarDFT.tex +++ b/Manuscript/FarDFT.tex @@ -480,9 +480,9 @@ We select STO-3G as minimal basis, and study the behaviour of the total energy o The bonding and antibonding orbitals of the \ce{H2} molecule are given by \begin{subequations} \begin{align} - \MO{1}{}(\br{}) & = \qty[ \AO{A}(\br{}) + \AO{B}(\br{}) ]/\sqrt{2 + S_{AB}}, + \MO{1}{}(\br{}) & = \qty[ \AO{A}(\br{}) + \AO{B}(\br{}) ]/\sqrt{2(1 + S_{AB})}, \\ - \MO{2}{}(\br{}) & = \qty[ \AO{A}(\br{}) - \AO{B}(\br{}) ]/\sqrt{2 - S_{AB}}, + \MO{2}{}(\br{}) & = \qty[ \AO{A}(\br{}) - \AO{B}(\br{}) ]/\sqrt{2(1 - S_{AB})}, \end{align} \end{subequations} where $\AO{A}$ and $\AO{B}$ are the two contracted Gaussian basis functions centred on each of the nucleus, and $S_{AB} = \braket{\AO{A}}{\AO{B}}$. @@ -501,10 +501,10 @@ with \begin{subequations} \begin{align} \label{eq:HF0} - \E{\HF}{(0)} & = \eHc{1} + 2 \eJ{11} - \eK{11}, + \E{\HF}{(0)} & = 2 \eHc{1} + 2 \eJ{11} - \eK{11}, \\ \label{eq:HF1} - \E{\HF}{(1)} & = \eHc{2} + 2 \eJ{22} - \eK{22}, + \E{\HF}{(1)} & = 2 \eHc{2} + 2 \eJ{22} - \eK{22}, \end{align} \end{subequations} and @@ -536,10 +536,10 @@ At the (ground-state) LDA level (\ie, we only consider ground-state functionals) \begin{subequations} \begin{align} \label{eq:LDA0} - \E{\LDA}{(0)} & = \eHc{1} + 2 \eJ{11} + \int \e{\xc}{\LDA}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{}, + \E{\LDA}{(0)} & = 2 \eHc{1} + 2 \eJ{11} + \int \e{\xc}{\LDA}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{}, \\ \label{eq:LDA1} - \E{\LDA}{(1)} & = \eHc{2} + 2 \eJ{22} + \int \e{\xc}{\LDA}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{}, + \E{\LDA}{(1)} & = 2 \eHc{2} + 2 \eJ{22} + \int \e{\xc}{\LDA}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{}, \end{align} \end{subequations} with @@ -554,13 +554,13 @@ At the eLDA, we have \begin{subequations} \begin{align} \label{eq:eLDA0} - \E{\eLDA}{(0)} & = \eHc{1} + 2 \eJ{11} + \int \be{\xc}{(0)}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{}, + \E{\eLDA}{(0)} & = 2 \eHc{1} + 2 \eJ{11} + \int \be{\xc}{(0)}[\n{}{(0)}(\br{})] \n{}{(0)}(\br{}) d\br{}, \\ \label{eq:eLDA1} - \E{\eLDA}{(1)} & = \eHc{2} + 2 \eJ{22} + \int \be{\xc}{(1)}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{}, + \E{\eLDA}{(1)} & = 2 \eHc{2} + 2 \eJ{22} + \int \be{\xc}{(1)}[\n{}{(1)}(\br{})] \n{}{(1)}(\br{}) d\br{}, \end{align} \end{subequations} -with $\be{\xc}{(0)} \equiv \e{\xc}{\LDA}$ and $\be{\xc}{(1)}(\n{}{}) = \e{\xc}{\LDA}(\n{}{}) + \e{\xc}{(1)}(\n{}{}) - \e{\xc}{(0)}(\n{}{})$. +with $\be{\xc}{(0)}(\n{}{}) \equiv \e{\xc}{\LDA}(\n{}{})$ and $\be{\xc}{(1)}(\n{}{}) = \e{\xc}{\LDA}(\n{}{}) + \e{\xc}{(1)}(\n{}{}) - \e{\xc}{(0)}(\n{}{})$. %\titou{Note that we do not consider symmetry-broken solutions.} @@ -592,19 +592,19 @@ For HF, we have \begin{equation} \begin{split} \bE{\HF}{\ew{}} - & = (1-\ew{}) \eHc{1} + \ew{} \eHc{2} + & = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2} + \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' \\ & = \ldots \end{split} \end{equation} -which is clearly quadratic with respect to $\ew{}$. +which is clearly quadratic with respect to $\ew{}$ due to the ghost interaction error in the Hartree term. For LDA, we have \begin{equation} \begin{split} \bE{\LDA}{\ew{}} - & = (1-\ew{}) \eHc{1} + \ew{} \eHc{2} + & = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2} + \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' \\ & + \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{} @@ -618,7 +618,7 @@ For eLDA, we have \begin{equation} \begin{split} \bE{\eLDA}{\ew{}} - & = (1-\ew{}) \eHc{1} + \ew{} \eHc{2} + & = (1-\ew{}) 2 \eHc{1} + \ew{} 2 \eHc{2} + \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' \\ & + \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}