fix problem with Eq (7)
This commit is contained in:
parent
4118afd1bb
commit
8b70a52134
@ -49,6 +49,7 @@
|
|||||||
\newcommand{\F}[2]{F_{#1}^{#2}}
|
\newcommand{\F}[2]{F_{#1}^{#2}}
|
||||||
\newcommand{\Ts}[1]{T_\text{s}^{#1}}
|
\newcommand{\Ts}[1]{T_\text{s}^{#1}}
|
||||||
\newcommand{\eps}[2]{\varepsilon_{#1}^{#2}}
|
\newcommand{\eps}[2]{\varepsilon_{#1}^{#2}}
|
||||||
|
\newcommand{\Eps}[2]{\mathcal{E}_{#1}^{#2}}
|
||||||
\newcommand{\e}[2]{\epsilon_{#1}^{#2}}
|
\newcommand{\e}[2]{\epsilon_{#1}^{#2}}
|
||||||
\newcommand{\kin}[2]{t_\text{#1}^{#2}}
|
\newcommand{\kin}[2]{t_\text{#1}^{#2}}
|
||||||
\newcommand{\E}[2]{E_{#1}^{#2}}
|
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||||||
@ -91,11 +92,12 @@
|
|||||||
\newcommand{\hGamma}[2]{\Hat{\Gamma}_{#1}^{#2}}
|
\newcommand{\hGamma}[2]{\Hat{\Gamma}_{#1}^{#2}}
|
||||||
\newcommand{\eHc}[1]{h_{#1}}
|
\newcommand{\eHc}[1]{h_{#1}}
|
||||||
\newcommand{\eF}[2]{F_{#1}^{#2}}
|
\newcommand{\eF}[2]{F_{#1}^{#2}}
|
||||||
|
\newcommand{\ON}[2]{f_{#1}^{#2}}
|
||||||
|
|
||||||
% Numbers
|
% Numbers
|
||||||
\newcommand{\Nens}{M}
|
\newcommand{\Nens}{M}
|
||||||
\newcommand{\Nel}{N}
|
\newcommand{\Nel}{N}
|
||||||
\newcommand{\Nbas}{K}
|
\newcommand{\Norb}{K}
|
||||||
|
|
||||||
% Ao and MO basis
|
% Ao and MO basis
|
||||||
\newcommand{\MO}[2]{\phi_{#1}^{#2}}
|
\newcommand{\MO}[2]{\phi_{#1}^{#2}}
|
||||||
@ -228,13 +230,13 @@ From the GOK-DFT ensemble energy expression in Eq.~\eqref{eq:Ew-GOK}, we obtain
|
|||||||
\label{eq:dEdw}
|
\label{eq:dEdw}
|
||||||
\pdv{\E{}{\bw}}{\ew{I}}
|
\pdv{\E{}{\bw}}{\ew{I}}
|
||||||
= \E{}{(I)} - \E{}{(0)}
|
= \E{}{(I)} - \E{}{(0)}
|
||||||
= \eps{I}{\bw} - \eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}},
|
= \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\titou{where $\eps{I}{\bw}$ is the $I$th KS orbital energy (T2: wrong!)} given by the ensemble KS equation
|
where $\Eps{I}{\bw} = \sum_{p}^{\Norb} \ON{p}{(I)} \eps{p}{\bw}$, $\eps{p}{\bw}$ is the $p$th KS orbital energy given by the ensemble KS equation
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\qty( -\frac{\nabla^2}{2} + \vext(\br{}) + \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}) \MO{p}{\bw}(\br{}) = \eps{p}{\bw} \MO{p}{\bw}(\br{}),
|
\qty( -\frac{\nabla^2}{2} + \vext(\br{}) + \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}) \MO{p}{\bw}(\br{}) = \eps{p}{\bw} \MO{p}{\bw}(\br{}),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
(where $\MO{p}{\bw}(\br{})$ is a KS orbital) and $\n{}{\bw} = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}$ is the ensemble density.
|
(where $\MO{p}{\bw}(\br{})$ is a KS orbital), $\ON{p}{(I)}$ its occupancy for the state $I$, and $\n{}{\bw} = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}$ is the ensemble density.
|
||||||
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies.
|
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%
|
||||||
@ -476,8 +478,8 @@ As concluding remarks, we would like to say that, what we have done is awesome.
|
|||||||
%%% ACKNOWLEDGEMENTS %%%
|
%%% ACKNOWLEDGEMENTS %%%
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\begin{acknowledgements}
|
\begin{acknowledgements}
|
||||||
PFL acknowledges funding from the \textit{Centre National de la Recherche Scientifique}.
|
|
||||||
CM thanks the \textit{Universit\'e Paul Sabatier} (Toulouse, France) for a PhD scholarship.
|
CM thanks the \textit{Universit\'e Paul Sabatier} (Toulouse, France) for a PhD scholarship.
|
||||||
|
PFL acknowledges funding from the \textit{Centre National de la Recherche Scientifique}.
|
||||||
\end{acknowledgements}
|
\end{acknowledgements}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%
|
||||||
|
Loading…
Reference in New Issue
Block a user