SI
This commit is contained in:
parent
1f8f003999
commit
56f3da7820
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +0,0 @@
|
||||
Data
|
||||
References
|
95
BSE-PES.tex
95
BSE-PES.tex
@ -456,6 +456,54 @@ Because Eq.~\eqref{eq:EcBSE} requires the entire BSE singlet excitation spectrum
|
||||
This step is, by far, the computational bottleneck in our current implementation.
|
||||
However, we are currently pursuing different avenues to lower this cost by computing the two-electron density matrix of Eq.~\eqref{eq:2DM} via a quadrature in frequency space. \cite{Duchemin_2019,Duchemin_2020}
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[width=0.49\linewidth]{H2_GS_VQZ}
|
||||
\includegraphics[width=0.49\linewidth]{LiH_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-H2-LiH}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 2 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.35\linewidth]{LiF_GS_VQZ}
|
||||
\includegraphics[height=0.35\linewidth]{HCl_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-LiF-HCl}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 3 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
|
||||
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
|
||||
\includegraphics[height=0.26\linewidth]{BF_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-N2-CO-BF}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 4 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{F2_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-F2}
|
||||
}
|
||||
\end{figure}
|
||||
%%% %%% %%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\section{Potential energy surfaces}
|
||||
%\label{sec:PES}
|
||||
@ -547,18 +595,6 @@ Albeit the shallow nature of the \ce{LiH} PES, the scenario is almost identical
|
||||
In this case, RPAx@HF and BSE@{\GOWO}@HF nestle the CCSD and CC3 energy curves, and they are almost perfectly parallel.
|
||||
Here again, the BSE@{\GOWO}@HF equilibrium bond length (obtained with cc-pVQZ) is extremely accurate ($3.017$ bohr) as compared to FCI ($3.019$ bohr).
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[width=0.49\linewidth]{H2_GS_VQZ}
|
||||
\includegraphics[width=0.49\linewidth]{LiH_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-H2-LiH}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
The cases of \ce{LiF} and \ce{HCl} (see Fig.~\ref{fig:PES-LiF-HCl}) are interesting as they corresponds to strongly polarized bonds towards the halogen atoms which are much more electronegative than the first row elements.
|
||||
For these ionic bonds, the performance of BSE@{\GOWO}@HF are terrific with an almost perfect match to the CC3 curve.
|
||||
%For \ce{LiF}, the two curves starting to deviate a few tenths of bohr after the equilibrium geometry, but they remain tightly bound for much longer in the case of \ce{HCl}.
|
||||
@ -568,49 +604,14 @@ As observed in Refs.~\onlinecite{vanSetten_2015,Maggio_2017,Loos_2018} and expla
|
||||
Including a broadening via the increasing the value of $\eta$ in the $GW$ self-energy and the screened Coulomb operator soften the problem, but does not remove it completely.
|
||||
Note that these irregularities would be genuine discontinuities in the case of {\evGW}. \cite{Veril_2018}
|
||||
|
||||
%%% FIG 2 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.35\linewidth]{LiF_GS_VQZ}
|
||||
\includegraphics[height=0.35\linewidth]{HCl_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-LiF-HCl}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
Let us now look at the isoelectronic series \ce{N2}, \ce{CO}, and \ce{BF}, which have a decreasing bond order (from triple bond to single bond).
|
||||
In that case again, the performance of BSE@{\GOWO}@HF are outstanding, as shown in Fig.~\ref{fig:PES-N2-CO-BF}, and systematically outperforms both CC2 and CCSD.
|
||||
|
||||
%%% FIG 3 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
|
||||
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
|
||||
\includegraphics[height=0.26\linewidth]{BF_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-N2-CO-BF}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
The \ce{F2} molecule is a notoriously difficult case to treat due to the weakness of its covalent bond (see Fig.~\ref{fig:PES-F2}), hence its relatively long equilibrium bond length ($2.663$ bohr at the CC3/cc-pVQZ level).
|
||||
Similarly to what we have observed for \ce{LiF} and \ce{BF}, there is an irregularities near the minimum of the {\GOWO}-based curves.
|
||||
However, BSE@{\GOWO}@HF is the closest to the CC3 curve
|
||||
|
||||
%%% FIG 4 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{F2_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-F2}
|
||||
}
|
||||
\end{figure}
|
||||
%%% %%% %%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\section{Conclusion}
|
||||
%\label{sec:conclusion}
|
||||
|
BIN
Data/BF_GS_VDZ.pdf
Normal file
BIN
Data/BF_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/BF_GS_VDZ_FC.pdf
Normal file
BIN
Data/BF_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/BF_GS_VQZ.pdf
Normal file
BIN
Data/BF_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/BF_GS_VQZ_FC.pdf
Normal file
BIN
Data/BF_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/BF_GS_VTZ.pdf
Normal file
BIN
Data/BF_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/BF_GS_VTZ_FC.pdf
Normal file
BIN
Data/BF_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VDZ.pdf
Normal file
BIN
Data/CO_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VDZ_FC.pdf
Normal file
BIN
Data/CO_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VQZ.pdf
Normal file
BIN
Data/CO_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VQZ_FC.pdf
Normal file
BIN
Data/CO_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VTZ.pdf
Normal file
BIN
Data/CO_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/CO_GS_VTZ_FC.pdf
Normal file
BIN
Data/CO_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VDZ.pdf
Normal file
BIN
Data/F2_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VDZ_FC.pdf
Normal file
BIN
Data/F2_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VQZ.pdf
Normal file
BIN
Data/F2_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VQZ_FC.pdf
Normal file
BIN
Data/F2_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VTZ.pdf
Normal file
BIN
Data/F2_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/F2_GS_VTZ_FC.pdf
Normal file
BIN
Data/F2_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/H2_GS_VDZ.pdf
Normal file
BIN
Data/H2_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/H2_GS_VQZ.pdf
Normal file
BIN
Data/H2_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/H2_GS_VTZ.pdf
Normal file
BIN
Data/H2_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VDZ.pdf
Normal file
BIN
Data/HCl_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VDZ_FC.pdf
Normal file
BIN
Data/HCl_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VQZ.pdf
Normal file
BIN
Data/HCl_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VQZ_FC.pdf
Normal file
BIN
Data/HCl_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VTZ.pdf
Normal file
BIN
Data/HCl_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/HCl_GS_VTZ_FC.pdf
Normal file
BIN
Data/HCl_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VDZ.pdf
Normal file
BIN
Data/LiF_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VDZ_FC.pdf
Normal file
BIN
Data/LiF_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VQZ.pdf
Normal file
BIN
Data/LiF_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VQZ_FC.pdf
Normal file
BIN
Data/LiF_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VTZ.pdf
Normal file
BIN
Data/LiF_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiF_GS_VTZ_FC.pdf
Normal file
BIN
Data/LiF_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VDZ.pdf
Normal file
BIN
Data/LiH_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VDZ_FC.pdf
Normal file
BIN
Data/LiH_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VQZ.pdf
Normal file
BIN
Data/LiH_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VQZ_FC.pdf
Normal file
BIN
Data/LiH_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VTZ.pdf
Normal file
BIN
Data/LiH_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/LiH_GS_VTZ_FC.pdf
Normal file
BIN
Data/LiH_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VDZ.pdf
Normal file
BIN
Data/N2_GS_VDZ.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VDZ_FC.pdf
Normal file
BIN
Data/N2_GS_VDZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VQZ.pdf
Normal file
BIN
Data/N2_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VQZ_FC.pdf
Normal file
BIN
Data/N2_GS_VQZ_FC.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VTZ.pdf
Normal file
BIN
Data/N2_GS_VTZ.pdf
Normal file
Binary file not shown.
BIN
Data/N2_GS_VTZ_FC.pdf
Normal file
BIN
Data/N2_GS_VTZ_FC.pdf
Normal file
Binary file not shown.
349
SI/BSE-PES-SI.tex
Normal file
349
SI/BSE-PES-SI.tex
Normal file
@ -0,0 +1,349 @@
|
||||
\documentclass[aps,prb,reprint,noshowkeys,onecolumn,superscriptaddress]{revtex4-1}
|
||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{txfonts}
|
||||
|
||||
\usepackage[
|
||||
colorlinks=true,
|
||||
citecolor=blue,
|
||||
breaklinks=true
|
||||
]{hyperref}
|
||||
\urlstyle{same}
|
||||
|
||||
\newcommand{\ie}{\textit{i.e.}}
|
||||
\newcommand{\eg}{\textit{e.g.}}
|
||||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||
\definecolor{darkgreen}{HTML}{009900}
|
||||
\usepackage[normalem]{ulem}
|
||||
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
||||
\newcommand{\denis}[1]{\textcolor{purple}{#1}}
|
||||
\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}}
|
||||
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
|
||||
\newcommand{\trashDJ}[1]{\textcolor{purple}{\sout{#1}}}
|
||||
\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}}
|
||||
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||||
\renewcommand{\DJ}[1]{\denis{(\underline{\bf DJ}: #1)}}
|
||||
\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}}
|
||||
|
||||
\newcommand{\mc}{\multicolumn}
|
||||
\newcommand{\fnm}{\footnotemark}
|
||||
\newcommand{\fnt}{\footnotetext}
|
||||
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||||
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
||||
\newcommand{\QP}{\textsc{quantum package}}
|
||||
\newcommand{\T}[1]{#1^{\intercal}}
|
||||
|
||||
% coordinates
|
||||
\newcommand{\br}[1]{\mathbf{r}_{#1}}
|
||||
\newcommand{\dbr}[1]{d\br{#1}}
|
||||
|
||||
% methods
|
||||
\newcommand{\evGW}{ev$GW$}
|
||||
\newcommand{\qsGW}{qs$GW$}
|
||||
\newcommand{\GOWO}{$G_0W_0$}
|
||||
\newcommand{\Hxc}{\text{Hxc}}
|
||||
\newcommand{\xc}{\text{xc}}
|
||||
\newcommand{\Ha}{\text{H}}
|
||||
\newcommand{\co}{\text{x}}
|
||||
|
||||
%
|
||||
\newcommand{\Norb}{N}
|
||||
\newcommand{\Nocc}{O}
|
||||
\newcommand{\Nvir}{V}
|
||||
\newcommand{\IS}{\lambda}
|
||||
|
||||
% operators
|
||||
\newcommand{\hH}{\Hat{H}}
|
||||
|
||||
% energies
|
||||
\newcommand{\Enuc}{E^\text{nuc}}
|
||||
\newcommand{\Ec}{E_\text{c}}
|
||||
\newcommand{\EHF}{E^\text{HF}}
|
||||
\newcommand{\EBSE}{E^\text{BSE}}
|
||||
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
|
||||
\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}}
|
||||
\newcommand{\EcBSE}{E_\text{c}^\text{BSE}}
|
||||
\newcommand{\IP}{\text{IP}}
|
||||
\newcommand{\EA}{\text{EA}}
|
||||
|
||||
% orbital energies
|
||||
\newcommand{\e}[1]{\epsilon_{#1}}
|
||||
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
|
||||
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
|
||||
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
|
||||
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
|
||||
\newcommand{\eGW}[1]{\epsilon^{GW}_{#1}}
|
||||
\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}}
|
||||
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
|
||||
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||||
|
||||
% Matrix elements
|
||||
\newcommand{\A}[2]{A_{#1}^{#2}}
|
||||
\newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}}
|
||||
\newcommand{\B}[2]{B_{#1}^{#2}}
|
||||
\renewcommand{\S}[1]{S_{#1}}
|
||||
\newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}}
|
||||
\newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}}
|
||||
\newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}}
|
||||
\newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}}
|
||||
\newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}}
|
||||
\newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}}
|
||||
\newcommand{\G}[1]{G_{#1}}
|
||||
\newcommand{\LBSE}[1]{L_{#1}}
|
||||
\newcommand{\XiBSE}[1]{\Xi_{#1}}
|
||||
\newcommand{\Po}[1]{P_{#1}}
|
||||
\newcommand{\W}[2]{W_{#1}^{#2}}
|
||||
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
|
||||
\newcommand{\vc}[1]{v_{#1}}
|
||||
\newcommand{\Sig}[1]{\Sigma_{#1}}
|
||||
\newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}}
|
||||
\newcommand{\Z}[1]{Z_{#1}}
|
||||
\newcommand{\MO}[1]{\phi_{#1}}
|
||||
\newcommand{\ERI}[2]{(#1|#2)}
|
||||
\newcommand{\sERI}[2]{[#1|#2]}
|
||||
|
||||
%% bold in Table
|
||||
\newcommand{\bb}[1]{\textbf{#1}}
|
||||
\newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}}
|
||||
\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}}
|
||||
|
||||
% excitation energies
|
||||
\newcommand{\OmRPA}[2]{\Omega_{#1}^{#2,\text{RPA}}}
|
||||
\newcommand{\OmRPAx}[2]{\Omega_{#1}^{#2,\text{RPAx}}}
|
||||
\newcommand{\OmBSE}[2]{\Omega_{#1}^{#2,\text{BSE}}}
|
||||
|
||||
\newcommand{\spinup}{\downarrow}
|
||||
\newcommand{\spindw}{\uparrow}
|
||||
\newcommand{\singlet}{\uparrow\downarrow}
|
||||
\newcommand{\triplet}{\uparrow\uparrow}
|
||||
|
||||
% Matrices
|
||||
\newcommand{\bO}{\mathbf{0}}
|
||||
\newcommand{\bI}{\mathbf{1}}
|
||||
\newcommand{\bvc}{\mathbf{v}}
|
||||
\newcommand{\bSig}{\mathbf{\Sigma}}
|
||||
\newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}}
|
||||
\newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}}
|
||||
\newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}}
|
||||
\newcommand{\be}{\mathbf{\epsilon}}
|
||||
\newcommand{\beGW}{\mathbf{\epsilon}^{GW}}
|
||||
\newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}}
|
||||
\newcommand{\bde}{\mathbf{\Delta\epsilon}}
|
||||
\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}}
|
||||
\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}}
|
||||
\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}}
|
||||
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
|
||||
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
|
||||
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
|
||||
\newcommand{\bX}[1]{\mathbf{X}^{#1}}
|
||||
\newcommand{\bY}[1]{\mathbf{Y}^{#1}}
|
||||
\newcommand{\bZ}[1]{\mathbf{Z}^{#1}}
|
||||
\newcommand{\bK}{\mathbf{K}}
|
||||
\newcommand{\bP}[1]{\mathbf{P}^{#1}}
|
||||
|
||||
% units
|
||||
\newcommand{\IneV}[1]{#1 eV}
|
||||
\newcommand{\InAU}[1]{#1 a.u.}
|
||||
\newcommand{\InAA}[1]{#1 \AA}
|
||||
\newcommand{\kcal}{kcal/mol}
|
||||
|
||||
\newcommand{\NEEL}{Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
|
||||
\newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France}
|
||||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||
\newcommand{\CEA}{ Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France }
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Supporting Information for ``Ground-State Potential Energy Surfaces Within the Bethe-Salpeter Formalism: Pros and Cons''}
|
||||
|
||||
\author{Xavier \surname{Blase}}
|
||||
\email{xavier.blase@neel.cnrs.fr }
|
||||
\affiliation{\NEEL}
|
||||
\author{Ivan \surname{Duchemin}}
|
||||
\email{ivan.duchemin@cea.fr}
|
||||
\affiliation{\CEA}
|
||||
\author{Anthony \surname{Scemama}}
|
||||
\email{scemama@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
\author{Denis \surname{Jacquemin}}
|
||||
\email{denis.jacquemin@univ-nantes.fr}
|
||||
\affiliation{\CEISAM}
|
||||
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||||
\email{loos@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
|
||||
\begin{abstract}
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure*}
|
||||
% H2
|
||||
\includegraphics[width=0.49\linewidth]{../Data/H2_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/H2_GS_VTZ}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{H2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-H2}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 2 %%%
|
||||
\begin{figure*}
|
||||
% LiH
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{LiH} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-LiH}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 3 %%%
|
||||
\begin{figure*}
|
||||
% LiF
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{LiF} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-LiF}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 5 %%%
|
||||
\begin{figure*}
|
||||
% HCl
|
||||
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{HCl} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-HCl}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
% N2
|
||||
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{N2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-N2}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
% CO
|
||||
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{CO} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-CO}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
% N2
|
||||
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{BF} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-BF}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
% N2
|
||||
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ_FC}
|
||||
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VQZ_FC}
|
||||
\caption{
|
||||
Ground-state potential energy surfaces of \ce{F2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
|
||||
\label{fig:PES-F2}
|
||||
}
|
||||
\end{figure*}
|
||||
%%% %%% %%%
|
||||
|
||||
|
||||
%%% %%% %%%
|
||||
%%% TABLE I %%%
|
||||
%\begin{table*}
|
||||
%\caption{
|
||||
%Equilibrium distances (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets.
|
||||
%All these values have been obtained within the frozen-core approximation.
|
||||
%The reference CC3 and corresponding BSE@{\GOWO}@HF data are highlighted in bold black and bold red for visual convenience, respectively.
|
||||
%The values in parenthesis have been obtained by fitting a Morse potential to the PES.
|
||||
%}
|
||||
%\label{tab:Req-FC}
|
||||
%
|
||||
% \begin{ruledtabular}
|
||||
% \begin{tabular}{llcccccccc}
|
||||
% & & \mc{8}{c}{Molecules} \\
|
||||
% \cline{3-10}
|
||||
% Method & Basis & \ce{H2} & \ce{LiH} & \ce{LiF} & \ce{HCl} & \ce{N2} & \ce{CO} & \ce{BF} & \ce{F2} \\
|
||||
% \hline
|
||||
% CC3 & cc-pVDZ & 1.438 & 3.052 & 3.014 & 2.115 & 2.167 & 2.447 & 2.741 & 2.438 \\
|
||||
% & cc-pVTZ & 1.403 & 3.036 & 2.985 & 2.087 & 2.150 & 2.405 & 2.672 & 2.414 \\
|
||||
% & cc-pVQZ & 1.402 & 3.037 & 2.985 & 2.080 & 2.142 & 2.398 & 2.667 & 2.413 \\
|
||||
% CCSD & cc-pVDZ & 1.438 & 3.044 & 3.006 & 2.101 & 2.149 & 2.435 & 2.695 & 2.433 \\
|
||||
% & cc-pVTZ & 1.403 & 3.012 & 2.954 & 2.064 & 2.126 & 2.382 & 2.629 & 2.409 \\
|
||||
% & cc-pVQZ & 1.402 & 3.020 & 2.953 & 2.059 & 2.118 & 2.380 & 2.621 & 2.398 \\
|
||||
% CC2 & cc-pVDZ & 1.426 & & & & & & & \\
|
||||
% & cc-pVTZ & 1.393 & & & & & & & \\
|
||||
% & cc-pVQZ & 1.391 & & & & & & & \\
|
||||
% MP2 & cc-pVDZ & 1.426 & 3.049 & 3.012 & 2.134 & 2.167 & 2.433 & 2.681 & 2.429 \\
|
||||
% & cc-pVTZ & 1.393 & 3.026 & 2.990 & 2.104 & 2.151 & 2.395 & 2.640 & 2.407 \\
|
||||
% & cc-pVQZ & 1.391 & 3.026 & 2.990 & 2.098 & 2.144 & 2.389 & 2.638 & 2.405 \\
|
||||
% BSE@{\GOWO}@HF & cc-pVDZ & 1.437 & & & & & & & \\
|
||||
% & cc-pVTZ & 1.404 & & & & & & & \\
|
||||
% & cc-pVQZ & 1.399 & & & & & & & \\
|
||||
% RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & & & & & & & \\
|
||||
% & cc-pVTZ & 1.388 & & & & & & & \\
|
||||
% & cc-pVQZ & 1.382 & & & & & & & \\
|
||||
% RPAx@HF & cc-pVDZ & 1.428 & & & & & & & \\
|
||||
% & cc-pVTZ & 1.395 & & & & & & & \\
|
||||
% & cc-pVQZ & 1.394 & & & & & & & \\
|
||||
% RPA@HF & cc-pVDZ & 1.431 & & & & & & & \\
|
||||
% & cc-pVTZ & 1.388 & & & & & & & \\
|
||||
% & cc-pVQZ & 1.386 & & & & & & & \\
|
||||
% \end{tabular}
|
||||
% \end{ruledtabular}
|
||||
%\end{table*}
|
||||
|
||||
|
||||
\bibliography{../BSE-PES,../BSE-PES-control}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user