diff --git a/.gitignore b/.gitignore index 3cb4f5a..e69de29 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +0,0 @@ -Data -References diff --git a/BSE-PES.tex b/BSE-PES.tex index c0d3ab5..c9a9ecf 100644 --- a/BSE-PES.tex +++ b/BSE-PES.tex @@ -456,6 +456,54 @@ Because Eq.~\eqref{eq:EcBSE} requires the entire BSE singlet excitation spectrum This step is, by far, the computational bottleneck in our current implementation. However, we are currently pursuing different avenues to lower this cost by computing the two-electron density matrix of Eq.~\eqref{eq:2DM} via a quadrature in frequency space. \cite{Duchemin_2019,Duchemin_2020} +%%% FIG 1 %%% +\begin{figure*} + \includegraphics[width=0.49\linewidth]{H2_GS_VQZ} + \includegraphics[width=0.49\linewidth]{LiH_GS_VQZ} +\caption{ +Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. +%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. +\label{fig:PES-H2-LiH} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 2 %%% +\begin{figure*} + \includegraphics[height=0.35\linewidth]{LiF_GS_VQZ} + \includegraphics[height=0.35\linewidth]{HCl_GS_VQZ} +\caption{ +Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. +%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. +\label{fig:PES-LiF-HCl} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 3 %%% +\begin{figure*} + \includegraphics[height=0.26\linewidth]{N2_GS_VQZ} + \includegraphics[height=0.26\linewidth]{CO_GS_VQZ} + \includegraphics[height=0.26\linewidth]{BF_GS_VQZ} +\caption{ +Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. +%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. +\label{fig:PES-N2-CO-BF} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 4 %%% +\begin{figure} + \includegraphics[width=\linewidth]{F2_GS_VQZ} +\caption{ +Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. +%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. +\label{fig:PES-F2} +} +\end{figure} +%%% %%% %%% + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\section{Potential energy surfaces} %\label{sec:PES} @@ -547,18 +595,6 @@ Albeit the shallow nature of the \ce{LiH} PES, the scenario is almost identical In this case, RPAx@HF and BSE@{\GOWO}@HF nestle the CCSD and CC3 energy curves, and they are almost perfectly parallel. Here again, the BSE@{\GOWO}@HF equilibrium bond length (obtained with cc-pVQZ) is extremely accurate ($3.017$ bohr) as compared to FCI ($3.019$ bohr). -%%% FIG 1 %%% -\begin{figure*} - \includegraphics[width=0.49\linewidth]{H2_GS_VQZ} - \includegraphics[width=0.49\linewidth]{LiH_GS_VQZ} -\caption{ -Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. -%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. -\label{fig:PES-H2-LiH} -} -\end{figure*} -%%% %%% %%% - The cases of \ce{LiF} and \ce{HCl} (see Fig.~\ref{fig:PES-LiF-HCl}) are interesting as they corresponds to strongly polarized bonds towards the halogen atoms which are much more electronegative than the first row elements. For these ionic bonds, the performance of BSE@{\GOWO}@HF are terrific with an almost perfect match to the CC3 curve. %For \ce{LiF}, the two curves starting to deviate a few tenths of bohr after the equilibrium geometry, but they remain tightly bound for much longer in the case of \ce{HCl}. @@ -568,49 +604,14 @@ As observed in Refs.~\onlinecite{vanSetten_2015,Maggio_2017,Loos_2018} and expla Including a broadening via the increasing the value of $\eta$ in the $GW$ self-energy and the screened Coulomb operator soften the problem, but does not remove it completely. Note that these irregularities would be genuine discontinuities in the case of {\evGW}. \cite{Veril_2018} -%%% FIG 2 %%% -\begin{figure*} - \includegraphics[height=0.35\linewidth]{LiF_GS_VQZ} - \includegraphics[height=0.35\linewidth]{HCl_GS_VQZ} -\caption{ -Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. -%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. -\label{fig:PES-LiF-HCl} -} -\end{figure*} -%%% %%% %%% Let us now look at the isoelectronic series \ce{N2}, \ce{CO}, and \ce{BF}, which have a decreasing bond order (from triple bond to single bond). In that case again, the performance of BSE@{\GOWO}@HF are outstanding, as shown in Fig.~\ref{fig:PES-N2-CO-BF}, and systematically outperforms both CC2 and CCSD. -%%% FIG 3 %%% -\begin{figure*} - \includegraphics[height=0.26\linewidth]{N2_GS_VQZ} - \includegraphics[height=0.26\linewidth]{CO_GS_VQZ} - \includegraphics[height=0.26\linewidth]{BF_GS_VQZ} -\caption{ -Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. -%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. -\label{fig:PES-N2-CO-BF} -} -\end{figure*} -%%% %%% %%% - The \ce{F2} molecule is a notoriously difficult case to treat due to the weakness of its covalent bond (see Fig.~\ref{fig:PES-F2}), hence its relatively long equilibrium bond length ($2.663$ bohr at the CC3/cc-pVQZ level). Similarly to what we have observed for \ce{LiF} and \ce{BF}, there is an irregularities near the minimum of the {\GOWO}-based curves. However, BSE@{\GOWO}@HF is the closest to the CC3 curve -%%% FIG 4 %%% -\begin{figure} - \includegraphics[width=\linewidth]{F2_GS_VQZ} -\caption{ -Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set. -%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}. -\label{fig:PES-F2} -} -\end{figure} -%%% %%% %%% - %%%%%%%%%%%%%%%%%%%%%%%% %\section{Conclusion} %\label{sec:conclusion} diff --git a/Data/BF_GS_VDZ.pdf b/Data/BF_GS_VDZ.pdf new file mode 100644 index 0000000..ee55f0e Binary files /dev/null and b/Data/BF_GS_VDZ.pdf differ diff --git a/Data/BF_GS_VDZ_FC.pdf b/Data/BF_GS_VDZ_FC.pdf new file mode 100644 index 0000000..823bf79 Binary files /dev/null and b/Data/BF_GS_VDZ_FC.pdf differ diff --git a/Data/BF_GS_VQZ.pdf b/Data/BF_GS_VQZ.pdf new file mode 100644 index 0000000..9874a91 Binary files /dev/null and b/Data/BF_GS_VQZ.pdf differ diff --git a/Data/BF_GS_VQZ_FC.pdf b/Data/BF_GS_VQZ_FC.pdf new file mode 100644 index 0000000..97598e1 Binary files /dev/null and b/Data/BF_GS_VQZ_FC.pdf differ diff --git a/Data/BF_GS_VTZ.pdf b/Data/BF_GS_VTZ.pdf new file mode 100644 index 0000000..f392f1d Binary files /dev/null and b/Data/BF_GS_VTZ.pdf differ diff --git a/Data/BF_GS_VTZ_FC.pdf b/Data/BF_GS_VTZ_FC.pdf new file mode 100644 index 0000000..9d3c069 Binary files /dev/null and b/Data/BF_GS_VTZ_FC.pdf differ diff --git a/Data/CO_GS_VDZ.pdf b/Data/CO_GS_VDZ.pdf new file mode 100644 index 0000000..145c94f Binary files /dev/null and b/Data/CO_GS_VDZ.pdf differ diff --git a/Data/CO_GS_VDZ_FC.pdf b/Data/CO_GS_VDZ_FC.pdf new file mode 100644 index 0000000..1a87a3c Binary files /dev/null and b/Data/CO_GS_VDZ_FC.pdf differ diff --git a/Data/CO_GS_VQZ.pdf b/Data/CO_GS_VQZ.pdf new file mode 100644 index 0000000..e8ebd8f Binary files /dev/null and b/Data/CO_GS_VQZ.pdf differ diff --git a/Data/CO_GS_VQZ_FC.pdf b/Data/CO_GS_VQZ_FC.pdf new file mode 100644 index 0000000..34daeb4 Binary files /dev/null and b/Data/CO_GS_VQZ_FC.pdf differ diff --git a/Data/CO_GS_VTZ.pdf b/Data/CO_GS_VTZ.pdf new file mode 100644 index 0000000..dbd622c Binary files /dev/null and b/Data/CO_GS_VTZ.pdf differ diff --git a/Data/CO_GS_VTZ_FC.pdf b/Data/CO_GS_VTZ_FC.pdf new file mode 100644 index 0000000..6367a25 Binary files /dev/null and b/Data/CO_GS_VTZ_FC.pdf differ diff --git a/Data/F2_GS_VDZ.pdf b/Data/F2_GS_VDZ.pdf new file mode 100644 index 0000000..d969037 Binary files /dev/null and b/Data/F2_GS_VDZ.pdf differ diff --git a/Data/F2_GS_VDZ_FC.pdf b/Data/F2_GS_VDZ_FC.pdf new file mode 100644 index 0000000..7ed1f29 Binary files /dev/null and b/Data/F2_GS_VDZ_FC.pdf differ diff --git a/Data/F2_GS_VQZ.pdf b/Data/F2_GS_VQZ.pdf new file mode 100644 index 0000000..bc494b7 Binary files /dev/null and b/Data/F2_GS_VQZ.pdf differ diff --git a/Data/F2_GS_VQZ_FC.pdf b/Data/F2_GS_VQZ_FC.pdf new file mode 100644 index 0000000..1a14f25 Binary files /dev/null and b/Data/F2_GS_VQZ_FC.pdf differ diff --git a/Data/F2_GS_VTZ.pdf b/Data/F2_GS_VTZ.pdf new file mode 100644 index 0000000..748ca43 Binary files /dev/null and b/Data/F2_GS_VTZ.pdf differ diff --git a/Data/F2_GS_VTZ_FC.pdf b/Data/F2_GS_VTZ_FC.pdf new file mode 100644 index 0000000..e08fa0d Binary files /dev/null and b/Data/F2_GS_VTZ_FC.pdf differ diff --git a/Data/H2_GS_VDZ.pdf b/Data/H2_GS_VDZ.pdf new file mode 100644 index 0000000..ba4baf5 Binary files /dev/null and b/Data/H2_GS_VDZ.pdf differ diff --git a/Data/H2_GS_VQZ.pdf b/Data/H2_GS_VQZ.pdf new file mode 100644 index 0000000..be05396 Binary files /dev/null and b/Data/H2_GS_VQZ.pdf differ diff --git a/Data/H2_GS_VTZ.pdf b/Data/H2_GS_VTZ.pdf new file mode 100644 index 0000000..4c23d63 Binary files /dev/null and b/Data/H2_GS_VTZ.pdf differ diff --git a/Data/HCl_GS_VDZ.pdf b/Data/HCl_GS_VDZ.pdf new file mode 100644 index 0000000..73a0e94 Binary files /dev/null and b/Data/HCl_GS_VDZ.pdf differ diff --git a/Data/HCl_GS_VDZ_FC.pdf b/Data/HCl_GS_VDZ_FC.pdf new file mode 100644 index 0000000..553aa2f Binary files /dev/null and b/Data/HCl_GS_VDZ_FC.pdf differ diff --git a/Data/HCl_GS_VQZ.pdf b/Data/HCl_GS_VQZ.pdf new file mode 100644 index 0000000..e8cd155 Binary files /dev/null and b/Data/HCl_GS_VQZ.pdf differ diff --git a/Data/HCl_GS_VQZ_FC.pdf b/Data/HCl_GS_VQZ_FC.pdf new file mode 100644 index 0000000..4453694 Binary files /dev/null and b/Data/HCl_GS_VQZ_FC.pdf differ diff --git a/Data/HCl_GS_VTZ.pdf b/Data/HCl_GS_VTZ.pdf new file mode 100644 index 0000000..d8c4619 Binary files /dev/null and b/Data/HCl_GS_VTZ.pdf differ diff --git a/Data/HCl_GS_VTZ_FC.pdf b/Data/HCl_GS_VTZ_FC.pdf new file mode 100644 index 0000000..bd00fca Binary files /dev/null and b/Data/HCl_GS_VTZ_FC.pdf differ diff --git a/Data/LiF_GS_VDZ.pdf b/Data/LiF_GS_VDZ.pdf new file mode 100644 index 0000000..b530c0f Binary files /dev/null and b/Data/LiF_GS_VDZ.pdf differ diff --git a/Data/LiF_GS_VDZ_FC.pdf b/Data/LiF_GS_VDZ_FC.pdf new file mode 100644 index 0000000..15311f2 Binary files /dev/null and b/Data/LiF_GS_VDZ_FC.pdf differ diff --git a/Data/LiF_GS_VQZ.pdf b/Data/LiF_GS_VQZ.pdf new file mode 100644 index 0000000..48411ce Binary files /dev/null and b/Data/LiF_GS_VQZ.pdf differ diff --git a/Data/LiF_GS_VQZ_FC.pdf b/Data/LiF_GS_VQZ_FC.pdf new file mode 100644 index 0000000..4f66753 Binary files /dev/null and b/Data/LiF_GS_VQZ_FC.pdf differ diff --git a/Data/LiF_GS_VTZ.pdf b/Data/LiF_GS_VTZ.pdf new file mode 100644 index 0000000..3409dda Binary files /dev/null and b/Data/LiF_GS_VTZ.pdf differ diff --git a/Data/LiF_GS_VTZ_FC.pdf b/Data/LiF_GS_VTZ_FC.pdf new file mode 100644 index 0000000..539160b Binary files /dev/null and b/Data/LiF_GS_VTZ_FC.pdf differ diff --git a/Data/LiH_GS_VDZ.pdf b/Data/LiH_GS_VDZ.pdf new file mode 100644 index 0000000..9c24aee Binary files /dev/null and b/Data/LiH_GS_VDZ.pdf differ diff --git a/Data/LiH_GS_VDZ_FC.pdf b/Data/LiH_GS_VDZ_FC.pdf new file mode 100644 index 0000000..d9578db Binary files /dev/null and b/Data/LiH_GS_VDZ_FC.pdf differ diff --git a/Data/LiH_GS_VQZ.pdf b/Data/LiH_GS_VQZ.pdf new file mode 100644 index 0000000..22b7eed Binary files /dev/null and b/Data/LiH_GS_VQZ.pdf differ diff --git a/Data/LiH_GS_VQZ_FC.pdf b/Data/LiH_GS_VQZ_FC.pdf new file mode 100644 index 0000000..bded287 Binary files /dev/null and b/Data/LiH_GS_VQZ_FC.pdf differ diff --git a/Data/LiH_GS_VTZ.pdf b/Data/LiH_GS_VTZ.pdf new file mode 100644 index 0000000..f76b4ce Binary files /dev/null and b/Data/LiH_GS_VTZ.pdf differ diff --git a/Data/LiH_GS_VTZ_FC.pdf b/Data/LiH_GS_VTZ_FC.pdf new file mode 100644 index 0000000..7cd874a Binary files /dev/null and b/Data/LiH_GS_VTZ_FC.pdf differ diff --git a/Data/N2_GS_VDZ.pdf b/Data/N2_GS_VDZ.pdf new file mode 100644 index 0000000..91c300f Binary files /dev/null and b/Data/N2_GS_VDZ.pdf differ diff --git a/Data/N2_GS_VDZ_FC.pdf b/Data/N2_GS_VDZ_FC.pdf new file mode 100644 index 0000000..81fd7be Binary files /dev/null and b/Data/N2_GS_VDZ_FC.pdf differ diff --git a/Data/N2_GS_VQZ.pdf b/Data/N2_GS_VQZ.pdf new file mode 100644 index 0000000..e98d81e Binary files /dev/null and b/Data/N2_GS_VQZ.pdf differ diff --git a/Data/N2_GS_VQZ_FC.pdf b/Data/N2_GS_VQZ_FC.pdf new file mode 100644 index 0000000..912cca8 Binary files /dev/null and b/Data/N2_GS_VQZ_FC.pdf differ diff --git a/Data/N2_GS_VTZ.pdf b/Data/N2_GS_VTZ.pdf new file mode 100644 index 0000000..a82f2ac Binary files /dev/null and b/Data/N2_GS_VTZ.pdf differ diff --git a/Data/N2_GS_VTZ_FC.pdf b/Data/N2_GS_VTZ_FC.pdf new file mode 100644 index 0000000..3816e87 Binary files /dev/null and b/Data/N2_GS_VTZ_FC.pdf differ diff --git a/SI/BSE-PES-SI.tex b/SI/BSE-PES-SI.tex new file mode 100644 index 0000000..c6e8ceb --- /dev/null +++ b/SI/BSE-PES-SI.tex @@ -0,0 +1,349 @@ +\documentclass[aps,prb,reprint,noshowkeys,onecolumn,superscriptaddress]{revtex4-1} +\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts} +\usepackage[version=4]{mhchem} + +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{txfonts} + +\usepackage[ + colorlinks=true, + citecolor=blue, + breaklinks=true + ]{hyperref} +\urlstyle{same} + +\newcommand{\ie}{\textit{i.e.}} +\newcommand{\eg}{\textit{e.g.}} +\newcommand{\alert}[1]{\textcolor{red}{#1}} +\definecolor{darkgreen}{HTML}{009900} +\usepackage[normalem]{ulem} +\newcommand{\titou}[1]{\textcolor{red}{#1}} +\newcommand{\denis}[1]{\textcolor{purple}{#1}} +\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}} +\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}} +\newcommand{\trashDJ}[1]{\textcolor{purple}{\sout{#1}}} +\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}} +\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} +\renewcommand{\DJ}[1]{\denis{(\underline{\bf DJ}: #1)}} +\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}} + +\newcommand{\mc}{\multicolumn} +\newcommand{\fnm}{\footnotemark} +\newcommand{\fnt}{\footnotetext} +\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} +\newcommand{\SI}{\textcolor{blue}{supporting information}} +\newcommand{\QP}{\textsc{quantum package}} +\newcommand{\T}[1]{#1^{\intercal}} + +% coordinates +\newcommand{\br}[1]{\mathbf{r}_{#1}} +\newcommand{\dbr}[1]{d\br{#1}} + +% methods +\newcommand{\evGW}{ev$GW$} +\newcommand{\qsGW}{qs$GW$} +\newcommand{\GOWO}{$G_0W_0$} +\newcommand{\Hxc}{\text{Hxc}} +\newcommand{\xc}{\text{xc}} +\newcommand{\Ha}{\text{H}} +\newcommand{\co}{\text{x}} + +% +\newcommand{\Norb}{N} +\newcommand{\Nocc}{O} +\newcommand{\Nvir}{V} +\newcommand{\IS}{\lambda} + +% operators +\newcommand{\hH}{\Hat{H}} + +% energies +\newcommand{\Enuc}{E^\text{nuc}} +\newcommand{\Ec}{E_\text{c}} +\newcommand{\EHF}{E^\text{HF}} +\newcommand{\EBSE}{E^\text{BSE}} +\newcommand{\EcRPA}{E_\text{c}^\text{RPA}} +\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}} +\newcommand{\EcBSE}{E_\text{c}^\text{BSE}} +\newcommand{\IP}{\text{IP}} +\newcommand{\EA}{\text{EA}} + +% orbital energies +\newcommand{\e}[1]{\epsilon_{#1}} +\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}} +\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}} +\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}} +\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}} +\newcommand{\eGW}[1]{\epsilon^{GW}_{#1}} +\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}} +\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}} +\newcommand{\Om}[2]{\Omega_{#1}^{#2}} + +% Matrix elements +\newcommand{\A}[2]{A_{#1}^{#2}} +\newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}} +\newcommand{\B}[2]{B_{#1}^{#2}} +\renewcommand{\S}[1]{S_{#1}} +\newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}} +\newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}} +\newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}} +\newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}} +\newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}} +\newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}} +\newcommand{\G}[1]{G_{#1}} +\newcommand{\LBSE}[1]{L_{#1}} +\newcommand{\XiBSE}[1]{\Xi_{#1}} +\newcommand{\Po}[1]{P_{#1}} +\newcommand{\W}[2]{W_{#1}^{#2}} +\newcommand{\Wc}[1]{W^\text{c}_{#1}} +\newcommand{\vc}[1]{v_{#1}} +\newcommand{\Sig}[1]{\Sigma_{#1}} +\newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}} +\newcommand{\Z}[1]{Z_{#1}} +\newcommand{\MO}[1]{\phi_{#1}} +\newcommand{\ERI}[2]{(#1|#2)} +\newcommand{\sERI}[2]{[#1|#2]} + +%% bold in Table +\newcommand{\bb}[1]{\textbf{#1}} +\newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}} +\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}} + +% excitation energies +\newcommand{\OmRPA}[2]{\Omega_{#1}^{#2,\text{RPA}}} +\newcommand{\OmRPAx}[2]{\Omega_{#1}^{#2,\text{RPAx}}} +\newcommand{\OmBSE}[2]{\Omega_{#1}^{#2,\text{BSE}}} + +\newcommand{\spinup}{\downarrow} +\newcommand{\spindw}{\uparrow} +\newcommand{\singlet}{\uparrow\downarrow} +\newcommand{\triplet}{\uparrow\uparrow} + +% Matrices +\newcommand{\bO}{\mathbf{0}} +\newcommand{\bI}{\mathbf{1}} +\newcommand{\bvc}{\mathbf{v}} +\newcommand{\bSig}{\mathbf{\Sigma}} +\newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}} +\newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}} +\newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}} +\newcommand{\be}{\mathbf{\epsilon}} +\newcommand{\beGW}{\mathbf{\epsilon}^{GW}} +\newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}} +\newcommand{\bde}{\mathbf{\Delta\epsilon}} +\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}} +\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}} +\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}} +\newcommand{\bA}[1]{\mathbf{A}^{#1}} +\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}} +\newcommand{\bB}[1]{\mathbf{B}^{#1}} +\newcommand{\bX}[1]{\mathbf{X}^{#1}} +\newcommand{\bY}[1]{\mathbf{Y}^{#1}} +\newcommand{\bZ}[1]{\mathbf{Z}^{#1}} +\newcommand{\bK}{\mathbf{K}} +\newcommand{\bP}[1]{\mathbf{P}^{#1}} + +% units +\newcommand{\IneV}[1]{#1 eV} +\newcommand{\InAU}[1]{#1 a.u.} +\newcommand{\InAA}[1]{#1 \AA} +\newcommand{\kcal}{kcal/mol} + +\newcommand{\NEEL}{Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France} +\newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France} +\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} +\newcommand{\CEA}{ Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France } + +\begin{document} + +\title{Supporting Information for ``Ground-State Potential Energy Surfaces Within the Bethe-Salpeter Formalism: Pros and Cons''} + +\author{Xavier \surname{Blase}} +\email{xavier.blase@neel.cnrs.fr } +\affiliation{\NEEL} +\author{Ivan \surname{Duchemin}} +\email{ivan.duchemin@cea.fr} +\affiliation{\CEA} +\author{Anthony \surname{Scemama}} +\email{scemama@irsamc.ups-tlse.fr} +\affiliation{\LCPQ} +\author{Denis \surname{Jacquemin}} +\email{denis.jacquemin@univ-nantes.fr} +\affiliation{\CEISAM} +\author{Pierre-Fran\c{c}ois \surname{Loos}} +\email{loos@irsamc.ups-tlse.fr} +\affiliation{\LCPQ} + +\begin{abstract} +\end{abstract} + +\maketitle + +%%% FIG 1 %%% +\begin{figure*} + % H2 + \includegraphics[width=0.49\linewidth]{../Data/H2_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/H2_GS_VTZ} +\caption{ +Ground-state potential energy surfaces of \ce{H2} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-H2} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 2 %%% +\begin{figure*} + % LiH + \includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{LiH} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-LiH} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 3 %%% +\begin{figure*} + % LiF + \includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{LiF} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-LiF} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 5 %%% +\begin{figure*} + % HCl + \includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{HCl} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-HCl} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 6 %%% +\begin{figure*} + % N2 + \includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/N2_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{N2} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-N2} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 6 %%% +\begin{figure*} + % CO + \includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/CO_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{CO} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-CO} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 6 %%% +\begin{figure*} + % N2 + \includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/BF_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{BF} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-BF} +} +\end{figure*} +%%% %%% %%% + +%%% FIG 6 %%% +\begin{figure*} + % N2 + \includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ} + \includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ} + \includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ_FC} + \includegraphics[width=0.49\linewidth]{../Data/F2_GS_VQZ_FC} +\caption{ +Ground-state potential energy surfaces of \ce{F2} around its respective equilibrium geometry obtained at various levels of theory and basis sets. +\label{fig:PES-F2} +} +\end{figure*} +%%% %%% %%% + + +%%% %%% %%% +%%% TABLE I %%% +%\begin{table*} +%\caption{ +%Equilibrium distances (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets. +%All these values have been obtained within the frozen-core approximation. +%The reference CC3 and corresponding BSE@{\GOWO}@HF data are highlighted in bold black and bold red for visual convenience, respectively. +%The values in parenthesis have been obtained by fitting a Morse potential to the PES. +%} +%\label{tab:Req-FC} +% +% \begin{ruledtabular} +% \begin{tabular}{llcccccccc} +% & & \mc{8}{c}{Molecules} \\ +% \cline{3-10} +% Method & Basis & \ce{H2} & \ce{LiH} & \ce{LiF} & \ce{HCl} & \ce{N2} & \ce{CO} & \ce{BF} & \ce{F2} \\ +% \hline +% CC3 & cc-pVDZ & 1.438 & 3.052 & 3.014 & 2.115 & 2.167 & 2.447 & 2.741 & 2.438 \\ +% & cc-pVTZ & 1.403 & 3.036 & 2.985 & 2.087 & 2.150 & 2.405 & 2.672 & 2.414 \\ +% & cc-pVQZ & 1.402 & 3.037 & 2.985 & 2.080 & 2.142 & 2.398 & 2.667 & 2.413 \\ +% CCSD & cc-pVDZ & 1.438 & 3.044 & 3.006 & 2.101 & 2.149 & 2.435 & 2.695 & 2.433 \\ +% & cc-pVTZ & 1.403 & 3.012 & 2.954 & 2.064 & 2.126 & 2.382 & 2.629 & 2.409 \\ +% & cc-pVQZ & 1.402 & 3.020 & 2.953 & 2.059 & 2.118 & 2.380 & 2.621 & 2.398 \\ +% CC2 & cc-pVDZ & 1.426 & & & & & & & \\ +% & cc-pVTZ & 1.393 & & & & & & & \\ +% & cc-pVQZ & 1.391 & & & & & & & \\ +% MP2 & cc-pVDZ & 1.426 & 3.049 & 3.012 & 2.134 & 2.167 & 2.433 & 2.681 & 2.429 \\ +% & cc-pVTZ & 1.393 & 3.026 & 2.990 & 2.104 & 2.151 & 2.395 & 2.640 & 2.407 \\ +% & cc-pVQZ & 1.391 & 3.026 & 2.990 & 2.098 & 2.144 & 2.389 & 2.638 & 2.405 \\ +% BSE@{\GOWO}@HF & cc-pVDZ & 1.437 & & & & & & & \\ +% & cc-pVTZ & 1.404 & & & & & & & \\ +% & cc-pVQZ & 1.399 & & & & & & & \\ +% RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & & & & & & & \\ +% & cc-pVTZ & 1.388 & & & & & & & \\ +% & cc-pVQZ & 1.382 & & & & & & & \\ +% RPAx@HF & cc-pVDZ & 1.428 & & & & & & & \\ +% & cc-pVTZ & 1.395 & & & & & & & \\ +% & cc-pVQZ & 1.394 & & & & & & & \\ +% RPA@HF & cc-pVDZ & 1.431 & & & & & & & \\ +% & cc-pVTZ & 1.388 & & & & & & & \\ +% & cc-pVQZ & 1.386 & & & & & & & \\ +% \end{tabular} +% \end{ruledtabular} +%\end{table*} + + +\bibliography{../BSE-PES,../BSE-PES-control} + +\end{document}