This commit is contained in:
Pierre-Francois Loos 2020-02-05 09:39:44 +01:00
parent 1f8f003999
commit 56f3da7820
48 changed files with 397 additions and 49 deletions

2
.gitignore vendored
View File

@ -1,2 +0,0 @@
Data
References

View File

@ -456,6 +456,54 @@ Because Eq.~\eqref{eq:EcBSE} requires the entire BSE singlet excitation spectrum
This step is, by far, the computational bottleneck in our current implementation. This step is, by far, the computational bottleneck in our current implementation.
However, we are currently pursuing different avenues to lower this cost by computing the two-electron density matrix of Eq.~\eqref{eq:2DM} via a quadrature in frequency space. \cite{Duchemin_2019,Duchemin_2020} However, we are currently pursuing different avenues to lower this cost by computing the two-electron density matrix of Eq.~\eqref{eq:2DM} via a quadrature in frequency space. \cite{Duchemin_2019,Duchemin_2020}
%%% FIG 1 %%%
\begin{figure*}
\includegraphics[width=0.49\linewidth]{H2_GS_VQZ}
\includegraphics[width=0.49\linewidth]{LiH_GS_VQZ}
\caption{
Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-H2-LiH}
}
\end{figure*}
%%% %%% %%%
%%% FIG 2 %%%
\begin{figure*}
\includegraphics[height=0.35\linewidth]{LiF_GS_VQZ}
\includegraphics[height=0.35\linewidth]{HCl_GS_VQZ}
\caption{
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-LiF-HCl}
}
\end{figure*}
%%% %%% %%%
%%% FIG 3 %%%
\begin{figure*}
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
\includegraphics[height=0.26\linewidth]{BF_GS_VQZ}
\caption{
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-N2-CO-BF}
}
\end{figure*}
%%% %%% %%%
%%% FIG 4 %%%
\begin{figure}
\includegraphics[width=\linewidth]{F2_GS_VQZ}
\caption{
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-F2}
}
\end{figure}
%%% %%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{Potential energy surfaces} %\section{Potential energy surfaces}
%\label{sec:PES} %\label{sec:PES}
@ -547,18 +595,6 @@ Albeit the shallow nature of the \ce{LiH} PES, the scenario is almost identical
In this case, RPAx@HF and BSE@{\GOWO}@HF nestle the CCSD and CC3 energy curves, and they are almost perfectly parallel. In this case, RPAx@HF and BSE@{\GOWO}@HF nestle the CCSD and CC3 energy curves, and they are almost perfectly parallel.
Here again, the BSE@{\GOWO}@HF equilibrium bond length (obtained with cc-pVQZ) is extremely accurate ($3.017$ bohr) as compared to FCI ($3.019$ bohr). Here again, the BSE@{\GOWO}@HF equilibrium bond length (obtained with cc-pVQZ) is extremely accurate ($3.017$ bohr) as compared to FCI ($3.019$ bohr).
%%% FIG 1 %%%
\begin{figure*}
\includegraphics[width=0.49\linewidth]{H2_GS_VQZ}
\includegraphics[width=0.49\linewidth]{LiH_GS_VQZ}
\caption{
Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-H2-LiH}
}
\end{figure*}
%%% %%% %%%
The cases of \ce{LiF} and \ce{HCl} (see Fig.~\ref{fig:PES-LiF-HCl}) are interesting as they corresponds to strongly polarized bonds towards the halogen atoms which are much more electronegative than the first row elements. The cases of \ce{LiF} and \ce{HCl} (see Fig.~\ref{fig:PES-LiF-HCl}) are interesting as they corresponds to strongly polarized bonds towards the halogen atoms which are much more electronegative than the first row elements.
For these ionic bonds, the performance of BSE@{\GOWO}@HF are terrific with an almost perfect match to the CC3 curve. For these ionic bonds, the performance of BSE@{\GOWO}@HF are terrific with an almost perfect match to the CC3 curve.
%For \ce{LiF}, the two curves starting to deviate a few tenths of bohr after the equilibrium geometry, but they remain tightly bound for much longer in the case of \ce{HCl}. %For \ce{LiF}, the two curves starting to deviate a few tenths of bohr after the equilibrium geometry, but they remain tightly bound for much longer in the case of \ce{HCl}.
@ -568,49 +604,14 @@ As observed in Refs.~\onlinecite{vanSetten_2015,Maggio_2017,Loos_2018} and expla
Including a broadening via the increasing the value of $\eta$ in the $GW$ self-energy and the screened Coulomb operator soften the problem, but does not remove it completely. Including a broadening via the increasing the value of $\eta$ in the $GW$ self-energy and the screened Coulomb operator soften the problem, but does not remove it completely.
Note that these irregularities would be genuine discontinuities in the case of {\evGW}. \cite{Veril_2018} Note that these irregularities would be genuine discontinuities in the case of {\evGW}. \cite{Veril_2018}
%%% FIG 2 %%%
\begin{figure*}
\includegraphics[height=0.35\linewidth]{LiF_GS_VQZ}
\includegraphics[height=0.35\linewidth]{HCl_GS_VQZ}
\caption{
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-LiF-HCl}
}
\end{figure*}
%%% %%% %%%
Let us now look at the isoelectronic series \ce{N2}, \ce{CO}, and \ce{BF}, which have a decreasing bond order (from triple bond to single bond). Let us now look at the isoelectronic series \ce{N2}, \ce{CO}, and \ce{BF}, which have a decreasing bond order (from triple bond to single bond).
In that case again, the performance of BSE@{\GOWO}@HF are outstanding, as shown in Fig.~\ref{fig:PES-N2-CO-BF}, and systematically outperforms both CC2 and CCSD. In that case again, the performance of BSE@{\GOWO}@HF are outstanding, as shown in Fig.~\ref{fig:PES-N2-CO-BF}, and systematically outperforms both CC2 and CCSD.
%%% FIG 3 %%%
\begin{figure*}
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
\includegraphics[height=0.26\linewidth]{BF_GS_VQZ}
\caption{
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-N2-CO-BF}
}
\end{figure*}
%%% %%% %%%
The \ce{F2} molecule is a notoriously difficult case to treat due to the weakness of its covalent bond (see Fig.~\ref{fig:PES-F2}), hence its relatively long equilibrium bond length ($2.663$ bohr at the CC3/cc-pVQZ level). The \ce{F2} molecule is a notoriously difficult case to treat due to the weakness of its covalent bond (see Fig.~\ref{fig:PES-F2}), hence its relatively long equilibrium bond length ($2.663$ bohr at the CC3/cc-pVQZ level).
Similarly to what we have observed for \ce{LiF} and \ce{BF}, there is an irregularities near the minimum of the {\GOWO}-based curves. Similarly to what we have observed for \ce{LiF} and \ce{BF}, there is an irregularities near the minimum of the {\GOWO}-based curves.
However, BSE@{\GOWO}@HF is the closest to the CC3 curve However, BSE@{\GOWO}@HF is the closest to the CC3 curve
%%% FIG 4 %%%
\begin{figure}
\includegraphics[width=\linewidth]{F2_GS_VQZ}
\caption{
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
%Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-F2}
}
\end{figure}
%%% %%% %%%
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%\section{Conclusion} %\section{Conclusion}
%\label{sec:conclusion} %\label{sec:conclusion}

BIN
Data/BF_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/BF_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/BF_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/BF_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/BF_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/BF_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/CO_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/F2_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/H2_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/H2_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/H2_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/HCl_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/LiF_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/LiH_GS_VTZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VDZ.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VDZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VQZ.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VQZ_FC.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VTZ.pdf Normal file

Binary file not shown.

BIN
Data/N2_GS_VTZ_FC.pdf Normal file

Binary file not shown.

349
SI/BSE-PES-SI.tex Normal file
View File

@ -0,0 +1,349 @@
\documentclass[aps,prb,reprint,noshowkeys,onecolumn,superscriptaddress]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\eg}{\textit{e.g.}}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\denis}[1]{\textcolor{purple}{#1}}
\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashDJ}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\renewcommand{\DJ}[1]{\denis{(\underline{\bf DJ}: #1)}}
\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
\newcommand{\T}[1]{#1^{\intercal}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}}
% methods
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{x}}
%
\newcommand{\Norb}{N}
\newcommand{\Nocc}{O}
\newcommand{\Nvir}{V}
\newcommand{\IS}{\lambda}
% operators
\newcommand{\hH}{\Hat{H}}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
\newcommand{\Ec}{E_\text{c}}
\newcommand{\EHF}{E^\text{HF}}
\newcommand{\EBSE}{E^\text{BSE}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}}
\newcommand{\EcBSE}{E_\text{c}^\text{BSE}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
% orbital energies
\newcommand{\e}[1]{\epsilon_{#1}}
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
\newcommand{\eGW}[1]{\epsilon^{GW}_{#1}}
\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}}
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
% Matrix elements
\newcommand{\A}[2]{A_{#1}^{#2}}
\newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}}
\newcommand{\B}[2]{B_{#1}^{#2}}
\renewcommand{\S}[1]{S_{#1}}
\newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}}
\newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}}
\newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}}
\newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}}
\newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}}
\newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}}
\newcommand{\G}[1]{G_{#1}}
\newcommand{\LBSE}[1]{L_{#1}}
\newcommand{\XiBSE}[1]{\Xi_{#1}}
\newcommand{\Po}[1]{P_{#1}}
\newcommand{\W}[2]{W_{#1}^{#2}}
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
\newcommand{\vc}[1]{v_{#1}}
\newcommand{\Sig}[1]{\Sigma_{#1}}
\newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}}
\newcommand{\Z}[1]{Z_{#1}}
\newcommand{\MO}[1]{\phi_{#1}}
\newcommand{\ERI}[2]{(#1|#2)}
\newcommand{\sERI}[2]{[#1|#2]}
%% bold in Table
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\rb}[1]{\textbf{\textcolor{red}{#1}}}
\newcommand{\gb}[1]{\textbf{\textcolor{darkgreen}{#1}}}
% excitation energies
\newcommand{\OmRPA}[2]{\Omega_{#1}^{#2,\text{RPA}}}
\newcommand{\OmRPAx}[2]{\Omega_{#1}^{#2,\text{RPAx}}}
\newcommand{\OmBSE}[2]{\Omega_{#1}^{#2,\text{BSE}}}
\newcommand{\spinup}{\downarrow}
\newcommand{\spindw}{\uparrow}
\newcommand{\singlet}{\uparrow\downarrow}
\newcommand{\triplet}{\uparrow\uparrow}
% Matrices
\newcommand{\bO}{\mathbf{0}}
\newcommand{\bI}{\mathbf{1}}
\newcommand{\bvc}{\mathbf{v}}
\newcommand{\bSig}{\mathbf{\Sigma}}
\newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}}
\newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}}
\newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}}
\newcommand{\be}{\mathbf{\epsilon}}
\newcommand{\beGW}{\mathbf{\epsilon}^{GW}}
\newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bde}{\mathbf{\Delta\epsilon}}
\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}}
\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}}
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
\newcommand{\bX}[1]{\mathbf{X}^{#1}}
\newcommand{\bY}[1]{\mathbf{Y}^{#1}}
\newcommand{\bZ}[1]{\mathbf{Z}^{#1}}
\newcommand{\bK}{\mathbf{K}}
\newcommand{\bP}[1]{\mathbf{P}^{#1}}
% units
\newcommand{\IneV}[1]{#1 eV}
\newcommand{\InAU}[1]{#1 a.u.}
\newcommand{\InAA}[1]{#1 \AA}
\newcommand{\kcal}{kcal/mol}
\newcommand{\NEEL}{Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
\newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\CEA}{ Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France }
\begin{document}
\title{Supporting Information for ``Ground-State Potential Energy Surfaces Within the Bethe-Salpeter Formalism: Pros and Cons''}
\author{Xavier \surname{Blase}}
\email{xavier.blase@neel.cnrs.fr }
\affiliation{\NEEL}
\author{Ivan \surname{Duchemin}}
\email{ivan.duchemin@cea.fr}
\affiliation{\CEA}
\author{Anthony \surname{Scemama}}
\email{scemama@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\author{Denis \surname{Jacquemin}}
\email{denis.jacquemin@univ-nantes.fr}
\affiliation{\CEISAM}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
\end{abstract}
\maketitle
%%% FIG 1 %%%
\begin{figure*}
% H2
\includegraphics[width=0.49\linewidth]{../Data/H2_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/H2_GS_VTZ}
\caption{
Ground-state potential energy surfaces of \ce{H2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-H2}
}
\end{figure*}
%%% %%% %%%
%%% FIG 2 %%%
\begin{figure*}
% LiH
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/LiH_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{LiH} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-LiH}
}
\end{figure*}
%%% %%% %%%
%%% FIG 3 %%%
\begin{figure*}
% LiF
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/LiF_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{LiF} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-LiF}
}
\end{figure*}
%%% %%% %%%
%%% FIG 5 %%%
\begin{figure*}
% HCl
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/HCl_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{HCl} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-HCl}
}
\end{figure*}
%%% %%% %%%
%%% FIG 6 %%%
\begin{figure*}
% N2
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/N2_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{N2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-N2}
}
\end{figure*}
%%% %%% %%%
%%% FIG 6 %%%
\begin{figure*}
% CO
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/CO_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{CO} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-CO}
}
\end{figure*}
%%% %%% %%%
%%% FIG 6 %%%
\begin{figure*}
% N2
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/BF_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{BF} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-BF}
}
\end{figure*}
%%% %%% %%%
%%% FIG 6 %%%
\begin{figure*}
% N2
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ}
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ}
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VDZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VTZ_FC}
\includegraphics[width=0.49\linewidth]{../Data/F2_GS_VQZ_FC}
\caption{
Ground-state potential energy surfaces of \ce{F2} around its respective equilibrium geometry obtained at various levels of theory and basis sets.
\label{fig:PES-F2}
}
\end{figure*}
%%% %%% %%%
%%% %%% %%%
%%% TABLE I %%%
%\begin{table*}
%\caption{
%Equilibrium distances (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets.
%All these values have been obtained within the frozen-core approximation.
%The reference CC3 and corresponding BSE@{\GOWO}@HF data are highlighted in bold black and bold red for visual convenience, respectively.
%The values in parenthesis have been obtained by fitting a Morse potential to the PES.
%}
%\label{tab:Req-FC}
%
% \begin{ruledtabular}
% \begin{tabular}{llcccccccc}
% & & \mc{8}{c}{Molecules} \\
% \cline{3-10}
% Method & Basis & \ce{H2} & \ce{LiH} & \ce{LiF} & \ce{HCl} & \ce{N2} & \ce{CO} & \ce{BF} & \ce{F2} \\
% \hline
% CC3 & cc-pVDZ & 1.438 & 3.052 & 3.014 & 2.115 & 2.167 & 2.447 & 2.741 & 2.438 \\
% & cc-pVTZ & 1.403 & 3.036 & 2.985 & 2.087 & 2.150 & 2.405 & 2.672 & 2.414 \\
% & cc-pVQZ & 1.402 & 3.037 & 2.985 & 2.080 & 2.142 & 2.398 & 2.667 & 2.413 \\
% CCSD & cc-pVDZ & 1.438 & 3.044 & 3.006 & 2.101 & 2.149 & 2.435 & 2.695 & 2.433 \\
% & cc-pVTZ & 1.403 & 3.012 & 2.954 & 2.064 & 2.126 & 2.382 & 2.629 & 2.409 \\
% & cc-pVQZ & 1.402 & 3.020 & 2.953 & 2.059 & 2.118 & 2.380 & 2.621 & 2.398 \\
% CC2 & cc-pVDZ & 1.426 & & & & & & & \\
% & cc-pVTZ & 1.393 & & & & & & & \\
% & cc-pVQZ & 1.391 & & & & & & & \\
% MP2 & cc-pVDZ & 1.426 & 3.049 & 3.012 & 2.134 & 2.167 & 2.433 & 2.681 & 2.429 \\
% & cc-pVTZ & 1.393 & 3.026 & 2.990 & 2.104 & 2.151 & 2.395 & 2.640 & 2.407 \\
% & cc-pVQZ & 1.391 & 3.026 & 2.990 & 2.098 & 2.144 & 2.389 & 2.638 & 2.405 \\
% BSE@{\GOWO}@HF & cc-pVDZ & 1.437 & & & & & & & \\
% & cc-pVTZ & 1.404 & & & & & & & \\
% & cc-pVQZ & 1.399 & & & & & & & \\
% RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & & & & & & & \\
% & cc-pVTZ & 1.388 & & & & & & & \\
% & cc-pVQZ & 1.382 & & & & & & & \\
% RPAx@HF & cc-pVDZ & 1.428 & & & & & & & \\
% & cc-pVTZ & 1.395 & & & & & & & \\
% & cc-pVQZ & 1.394 & & & & & & & \\
% RPA@HF & cc-pVDZ & 1.431 & & & & & & & \\
% & cc-pVTZ & 1.388 & & & & & & & \\
% & cc-pVQZ & 1.386 & & & & & & & \\
% \end{tabular}
% \end{ruledtabular}
%\end{table*}
\bibliography{../BSE-PES,../BSE-PES-control}
\end{document}