Merge pull request #1 from pfloos/overleaf-2020-02-03-1521
Updates from Overleaf
This commit is contained in:
commit
09aff3b148
@ -337,6 +337,7 @@ with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$
|
|||||||
\\
|
\\
|
||||||
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
|
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
|
||||||
where the spectral weights at coupling strength $\lambda$ read
|
where the spectral weights at coupling strength $\lambda$ read
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
||||||
@ -344,6 +345,7 @@ where the spectral weights at coupling strength $\lambda$ read
|
|||||||
|
|
||||||
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
|
\label{eq:LR_RPA}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_RPA}
|
\label{eq:LR_RPA}
|
||||||
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
|
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
|
||||||
@ -357,6 +359,7 @@ The relation between the BSE formalism and the well-known RPAx approach can be o
|
|||||||
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
||||||
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\ref{eq:LR_BSE} to the RPAx equations:
|
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\ref{eq:LR_BSE} to the RPAx equations:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
|
\label{eq:LR_RPAx}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_RPAx}
|
\label{eq:LR_RPAx}
|
||||||
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
|
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
|
||||||
|
Loading…
Reference in New Issue
Block a user