From d89470b442b1eab3dbf308c43b49d3908508d761 Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Mon, 3 Feb 2020 16:21:06 +0100 Subject: [PATCH] Updates from Overleaf --- BSE-PES.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/BSE-PES.tex b/BSE-PES.tex index 360c7e2..98224ed 100644 --- a/BSE-PES.tex +++ b/BSE-PES.tex @@ -333,19 +333,19 @@ In the standard BSE approach, the screened Coulomb potential $W^{\lambda}$ is bu with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual molecular orbitals product basis, the spectral representation of $W^{\lambda}$ can be written as follows in the case of real molecular orbitals: \cite{complexw} \begin{multline} \label{eq:W} - \W{ij,ab}{\IS}(\omega) = \textcolor{red}{\sout{2}} \ERI{ij}{ab} + \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m} + \W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m} \\ \times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} \textcolor{red}{-} \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}) \end{multline} -where the \xavier{ \sout{screened two-electron integrals} spectral weights} $\sERI{pq}{m}$ at coupling strength $\lambda$ read: +where the spectral weights $\sERI{pq}{m}$ at coupling strength $\lambda$ read: \begin{equation} \sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia} \end{equation} In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements \begin{subequations} +\label{eq:LR_RPA} \begin{align} - \label{eq:LR_RPA} \ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \ERI{ia}{jb}, \\ \BRPA{ia,jb}{\IS} & = \IS \ERI{ia}{bj}, @@ -357,8 +357,8 @@ The relation between the BSE formalism and the well-known RPAx approach can be o %namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$ so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\ref{eq:LR_BSE} to the RPAx equations: \begin{subequations} +\label{eq:LR_RPAx} \begin{align} - \label{eq:LR_RPAx} \ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \left[ \ERI{ia}{jb} - \ERI{ij}{ab} \right], \\ \BRPAx{ia,jb}{\IS} & = \IS \left[ \ERI{ia}{bj} - \ERI{ib}{aj} \right].