BSE-PES/BSE-PES.tex

608 lines
37 KiB
TeX
Raw Normal View History

2020-01-24 22:31:19 +01:00
\documentclass[aps,prb,reprint,noshowkeys,superscriptaddress]{revtex4-1}
2020-01-07 15:52:00 +01:00
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
\usepackage[version=4]{mhchem}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage[
colorlinks=true,
citecolor=blue,
breaklinks=true
]{hyperref}
\urlstyle{same}
2020-01-26 20:53:36 +01:00
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\eg}{\textit{e.g.}}
2020-01-07 15:52:00 +01:00
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\denis}[1]{\textcolor{purple}{#1}}
\newcommand{\xavier}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashDJ}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashXB}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\renewcommand{\DJ}[1]{\denis{(\underline{\bf DJ}: #1)}}
\newcommand{\XB}[1]{\xavier{(\underline{\bf XB}: #1)}}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
\newcommand{\T}[1]{#1^{\intercal}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}}
% methods
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
2020-01-07 15:52:00 +01:00
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\Hxc}{\text{Hxc}}
\newcommand{\xc}{\text{xc}}
\newcommand{\Ha}{\text{H}}
\newcommand{\co}{\text{x}}
2020-01-07 22:11:40 +01:00
%
\newcommand{\Norb}{N}
\newcommand{\Nocc}{O}
\newcommand{\Nvir}{V}
2020-01-25 15:49:29 +01:00
\newcommand{\IS}{\lambda}
2020-01-07 22:11:40 +01:00
2020-01-07 15:52:00 +01:00
% operators
\newcommand{\hH}{\Hat{H}}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
\newcommand{\Ec}{E_\text{c}}
\newcommand{\EHF}{E^\text{HF}}
2020-01-25 21:58:47 +01:00
\newcommand{\EBSE}{E^\text{BSE}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}}
2020-01-07 15:52:00 +01:00
\newcommand{\EcBSE}{E_\text{c}^\text{BSE}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
% orbital energies
\newcommand{\e}[1]{\epsilon_{#1}}
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
\newcommand{\eGW}[1]{\epsilon^{GW}_{#1}}
2020-01-07 15:52:00 +01:00
\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}}
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
2020-01-25 21:58:47 +01:00
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
2020-01-07 15:52:00 +01:00
% Matrix elements
2020-01-25 21:58:47 +01:00
\newcommand{\A}[2]{A_{#1}^{#2}}
\newcommand{\tA}[2]{\Tilde{A}_{#1}^{#2}}
\newcommand{\B}[2]{B_{#1}^{#2}}
2020-01-07 15:52:00 +01:00
\renewcommand{\S}[1]{S_{#1}}
2020-01-25 21:58:47 +01:00
\newcommand{\ABSE}[2]{A_{#1}^{#2,\text{BSE}}}
\newcommand{\BBSE}[2]{B_{#1}^{#2,\text{BSE}}}
\newcommand{\ARPA}[2]{A_{#1}^{#2,\text{RPA}}}
\newcommand{\BRPA}[2]{B_{#1}^{#2,\text{RPA}}}
2020-01-26 13:34:58 +01:00
\newcommand{\ARPAx}[2]{A_{#1}^{#2,\text{RPAx}}}
\newcommand{\BRPAx}[2]{B_{#1}^{#2,\text{RPAx}}}
2020-01-07 15:52:00 +01:00
\newcommand{\G}[1]{G_{#1}}
\newcommand{\LBSE}[1]{L_{#1}}
\newcommand{\XiBSE}[1]{\Xi_{#1}}
\newcommand{\Po}[1]{P_{#1}}
2020-01-25 21:58:47 +01:00
\newcommand{\W}[2]{W_{#1}^{#2}}
2020-01-07 15:52:00 +01:00
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
\newcommand{\vc}[1]{v_{#1}}
\newcommand{\Sig}[1]{\Sigma_{#1}}
\newcommand{\SigGW}[1]{\Sigma^{GW}_{#1}}
2020-01-07 15:52:00 +01:00
\newcommand{\Z}[1]{Z_{#1}}
\newcommand{\MO}[1]{\phi_{#1}}
2020-01-25 21:58:47 +01:00
\newcommand{\ERI}[2]{(#1|#2)}
\newcommand{\sERI}[2]{[#1|#2]}
2020-01-07 15:52:00 +01:00
2020-01-27 17:41:38 +01:00
%% bold in Table
\newcommand{\bb}[1]{\textbf{#1}}
2020-01-07 15:52:00 +01:00
% excitation energies
2020-01-25 21:58:47 +01:00
\newcommand{\OmRPA}[2]{\Omega_{#1}^{#2,\text{RPA}}}
\newcommand{\OmRPAx}[2]{\Omega_{#1}^{#2,\text{RPAx}}}
\newcommand{\OmBSE}[2]{\Omega_{#1}^{#2,\text{BSE}}}
2020-01-07 15:52:00 +01:00
\newcommand{\spinup}{\downarrow}
\newcommand{\spindw}{\uparrow}
\newcommand{\singlet}{\uparrow\downarrow}
\newcommand{\triplet}{\uparrow\uparrow}
% Matrices
2020-01-25 15:49:29 +01:00
\newcommand{\bO}{\mathbf{0}}
\newcommand{\bI}{\mathbf{1}}
2020-01-07 15:52:00 +01:00
\newcommand{\bvc}{\mathbf{v}}
\newcommand{\bSig}{\mathbf{\Sigma}}
\newcommand{\bSigX}{\mathbf{\Sigma}^\text{x}}
\newcommand{\bSigC}{\mathbf{\Sigma}^\text{c}}
\newcommand{\bSigGW}{\mathbf{\Sigma}^{GW}}
2020-01-07 15:52:00 +01:00
\newcommand{\be}{\mathbf{\epsilon}}
\newcommand{\beGW}{\mathbf{\epsilon}^{GW}}
2020-01-07 15:52:00 +01:00
\newcommand{\beGnWn}[1]{\mathbf{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bde}{\mathbf{\Delta\epsilon}}
\newcommand{\bdeHF}{\mathbf{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\mathbf{\Delta\epsilon}^{GW}}
2020-01-25 21:58:47 +01:00
\newcommand{\bOm}[1]{\mathbf{\Omega}^{#1}}
\newcommand{\bA}[1]{\mathbf{A}^{#1}}
\newcommand{\btA}[1]{\Tilde{\mathbf{A}}^{#1}}
\newcommand{\bB}[1]{\mathbf{B}^{#1}}
\newcommand{\bX}[1]{\mathbf{X}^{#1}}
\newcommand{\bY}[1]{\mathbf{Y}^{#1}}
\newcommand{\bZ}[1]{\mathbf{Z}^{#1}}
2020-01-25 15:49:29 +01:00
\newcommand{\bK}{\mathbf{K}}
2020-01-25 21:58:47 +01:00
\newcommand{\bP}[1]{\mathbf{P}^{#1}}
2020-01-07 15:52:00 +01:00
% units
\newcommand{\IneV}[1]{#1 eV}
\newcommand{\InAU}[1]{#1 a.u.}
\newcommand{\InAA}[1]{#1 \AA}
\newcommand{\kcal}{kcal/mol}
2020-01-27 17:41:38 +01:00
\newcommand{\NEEL}{Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
2020-01-07 15:52:00 +01:00
\newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
2020-01-27 17:41:38 +01:00
\newcommand{\CEA}{ Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France }
2020-01-07 15:52:00 +01:00
\begin{document}
2020-01-24 22:31:19 +01:00
\title{Ground-State Potential Energy Surfaces Within the Bethe-Salpeter Formalism: Pros and Cons}
2020-01-07 15:52:00 +01:00
\author{Xavier \surname{Blase}}
\email{xavier.blase@neel.cnrs.fr }
\affiliation{\NEEL}
2020-01-27 17:41:38 +01:00
\author{Ivan \surname{Duchemin}}
\email{ivan.duchemin@cea.fr}
\affiliation{\CEA}
2020-01-27 18:43:53 +01:00
\author{Anthony \surname{Scemama}}
\email{scemama@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
2020-01-07 15:52:00 +01:00
\author{Denis \surname{Jacquemin}}
\email{denis.jacquemin@univ-nantes.fr}
\affiliation{\CEISAM}
\author{Pierre-Fran\c{c}ois \surname{Loos}}
\email{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
%\begin{wrapfigure}[12]{o}[-1.25cm]{0.4\linewidth}
% \centering
% \includegraphics[width=\linewidth]{TOC}
%\end{wrapfigure}
2020-01-27 14:50:07 +01:00
The combined many-body Green's function $GW$ and Bethe-Salpeter equation (BSE) formalisms have shown to be a promising alternative to time-dependent density-functional theory (TD-DFT) in order to compute vertical transition energies of molecular systems.
2020-01-27 18:43:53 +01:00
The BSE formalism can also be employed to compute ground-state correlation energies thanks to the adiabatic-connection fluctuation-dissipation theorem (ACFDT).
Here, we study the topological features of the ground-state potential energy surfaces (PES) of several diatomic molecules near their equilibrium distance.
Thanks to comparisons with state-of-art computational approaches, we show that ACFDT@BSE is surprisingly accurate, and can even compete with coupled cluster methods in terms of total energies, equilibrium distances or \titou{harmonic vibrational frequencies}.
However, we sometimes observe unphysical irregularities on the ground-state PES, in relation with the appearance of satellite resonances with a weight similar to that of the $GW$ quasiparticle peak.
2020-01-07 15:52:00 +01:00
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\section{Introduction}
%\label{sec:intro}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-27 17:41:38 +01:00
With a similar computational cost to time-dependent density-functional theory (TD-DFT), \cite{Runge_1984,Casida} the many-body Green's function Bethe-Salpeter equation (BSE) formalism
2020-01-27 18:43:53 +01:00
\cite{Salpeter_1951,Strinati_1988,Albrecht_1998,Rohlfing_1998,Benedict_1998,vanderHorst_1999} is a valuable alternative that has gained momentum in the past few years for the study of molecular systems \cite{Ma_2009,Pushchnig_2002,Tiago_2003,Palumno_2009,Rocca_2010,Sharifzadeh_2012,Cudazzo_2012,Boulanger_2014,Ljungberg_2015,Hirose_2015,Cocchi_2015,Ziaei_2017,Abramson_2017}
2020-01-27 17:41:38 +01:00
It now stands as a computationally inexpensive method that can effectively model excited states \cite{Gonzales_2012,Loos_2020a} with a typical error of $0.1$--$0.3$ eV according to large and systematic benchmark calculations. \cite{Jacquemin_2015,Bruneval_2015,Blase_2016,Jacquemin_2016,Hung_2016,Hung_2017,Krause_2017,Jacquemin_2017,Blase_2018}
2020-01-26 20:53:36 +01:00
One of the main advantages of BSE compared to TD-DFT is that it allows a faithful description of charge-transfer states. \cite{Lastra_2011,Blase_2011b,Baumeier_2012,Duchemin_2012,Cudazzo_2013,Ziaei_2016}
2020-01-07 22:27:03 +01:00
Moreover, when performed on top of a (partially) self-consistently {\evGW} calculation, \cite{Hybertsen_1986, Shishkin_2007, Blase_2011, Faber_2011,Rangel_2016,Kaplan_2016,Gui_2018} BSE@{\evGW} has been shown to be weakly dependent on its starting point (\ie, on the xc functional selected for the underlying DFT calculation). \cite{Jacquemin_2016,Gui_2018}
2020-01-25 23:20:22 +01:00
However, similar to adiabatic TD-DFT, \cite{Levine_2006,Tozer_2000,Huix-Rotllant_2010,Elliott_2011} the static version of BSE cannot describe multiple excitations. \cite{Romaniello_2009a,Sangalli_2011}
2020-01-07 15:52:00 +01:00
2020-01-26 20:53:36 +01:00
A significant limitation of the BSE formalism, as compared to TD-DFT, lies in the lack of analytic nuclear gradients (\ie, the first derivatives of the energy with respect to the nuclear displacements) for both the ground and excited states, \cite{Furche_2002} preventing efficient applications to the study of chemoluminescence, fluorescence and other related processes \cite{Navizet_2011} associated with geometric relaxation of ground and excited states, and structural changes upon electronic excitation. \cite{Bernardi_1996,Olivucci_2010,Robb_2007}
While calculations of the $GW$ quasiparticle energies ionic gradients is becoming popular,
2020-01-26 20:53:36 +01:00
\cite{Lazzeri_2008,Faber_2011b,Yin_2013,Faber_2015,Montserrat_2016,Zhenglu_2019} only one pioneering study of the excited-state BSE gradients has been published so far. \cite{Beigi_2003} In this study devoted to small molecules (\ce{CO} and \ce{NH3}), only the BSE excitation energy gradients were calculated, while computing the KS-DFT (LDA) forces as its ground-state analog.
2020-01-07 15:52:00 +01:00
2020-01-26 20:53:36 +01:00
Contrary to TD-DFT which relies on Kohn-Sham density-functional theory (KS-DFT) \cite{Hohenberg_1964,Kohn_1965,ParrBook} as its ground-state counterpart, the BSE ground-state energy is not a well-defined quantity, and no clear consensus has been found regarding its formal definition.
It then remains in its infancy with very few available studies for atomic and molecular systems. \cite{Olsen_2014,Holzer_2018,Li_2019,Li_2020}
2020-01-27 18:43:53 +01:00
As a matter of fact, in the largest recent available benchmark study \cite{Holzer_2018} of the total energies of the atoms \ce{H}--\ce{Ne}, the atomization energies of the 26 small molecules forming the HEAT test set, \cite{Harding_2008} and the bond lengths and harmonic vibrational frequencies of $3d$ transition-metal monoxides, the BSE correlation energy, as evaluated within the adiabatic-connection fluctuation-dissipation (ACFDT) framework, \cite{Furche_2005} was mostly discarded from the set of tested techniques due to instabilities (negative frequency modes in the BSE polarization propagator) and replaced by an approximate (RPAsX) approach where the screened-Coulomb potential matrix elements was removed from the resonant electron-hole contribution. \cite{Maggio_2016,Holzer_2018}
2020-01-07 18:14:39 +01:00
Such a modified BSE polarization propagator was inspired by a previous study on the homogeneous electron gas. \cite{Maggio_2016}
With such an approximation, amounting to neglect excitonic effects in the electron-hole propagator, the question of using either KS-DFT or $GW$ eigenvalues in the construction of the propagator becomes further relevant, increasing accordingly the number of possible definitions for the ground-state correlation energy.
2020-01-26 20:53:36 +01:00
Finally, renormalizing or not the Coulomb interaction by the interaction strength $\IS$ in the Dyson equation for the interacting polarizability leads to two different versions of the BSE correlation energy. \cite{Holzer_2018}
2020-01-07 15:52:00 +01:00
2020-01-27 18:43:53 +01:00
Here, in analogy to the random-phase approximation (RPA)-type formalisms \cite{Furche_2008,Toulouse_2009,Toulouse_2010,Angyan_2011,Ren_2012} and similarly to Refs.~\onlinecite{Olsen_2014,Maggio_2016,Holzer_2018}, the ground-state BSE energy is calculated in the adiabatic connection framework.
2020-01-26 20:53:36 +01:00
Embracing this definition, the purpose of the present study is to investigate the quality of ground-state PES near equilibrium obtained within the BSE approach for several diatomic molecules.
2020-01-25 22:03:32 +01:00
The location of the minima on the ground-state PES is of particular interest.
This study is a first preliminary step towards the development of analytical nuclear gradients within the BSE@$GW$ formalism.
2020-01-27 18:43:53 +01:00
Thanks to comparison with both similar and state-of-art computational approaches, we show that the ACFDT@BSE@$GW$ approach is surprisingly accurate, and can even compete with high-order coupled cluster (CC) methods in terms of absolute energies, equilibrium distances or \titou{harmonic vibrational frequencies}.
However, we also observe, in some cases, unphysical irregularities on the ground-state PES, which are due to the appearance of a satellite resonance with a weight similar to that of the $GW$ quasiparticle peak. \cite{vanSetten_2015,Maggio_2017,Loos_2018,Veril_2018,Duchemin_2020}
2020-01-07 15:52:00 +01:00
2020-01-25 21:58:47 +01:00
%The paper is organized as follows.
%In Sec.~\ref{sec:theo}, we introduce the equations behind the BSE formalism.
%In particular, the general equations are reported in Subsec.~\ref{sec:BSE}, and the corresponding equations obtained in a finite basis in Subsec.~\ref{sec:BSE_basis}.
%Subsection \ref{sec:BSE_energy} defines the BSE total energy, and various other quantities of interest for this study.
%Computational details needed to reproduce the results of the present work are reported in Sec.~\ref{sec:comp_details}.
%Section \ref{sec:PES} reports ground-state PES for various diatomic molecules.
%Finally, we draw our conclusion in Sec.~\ref{sec:conclusion}.
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\section{Theory}
%\label{sec:theo}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\subsection{The Bethe-Salpeter equation}
%\label{sec:BSE}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016}
\begin{multline}
\label{eq:BSE}
\LBSE{}(1,2,1',2') = \LBSE{0}(1,2,1',2')
\\
+ \int d3 d4 d5 d6 \LBSE{0}(1,4,1',3) \XiBSE{}(3,5,4,6) \LBSE{}(6,2,5,2')
\end{multline}
as the linear response of the one-body Green's function $\G{}$ with respect to a general non-local external potential
\begin{equation}
\XiBSE{}(3,5,4,6) = i \fdv{[\vc{\Ha}(3) \delta(3,4) + \Sig{\xc}(3,4)]}{\G{}(6,5)},
\end{equation}
which takes into account the self-consistent variation of the Hartree potential
\begin{equation}
\vc{\Ha}(1) = - i \int d2 \vc{}(2) \G{}(2,2^+),
\end{equation}
(where $\vc{}$ is the bare Coulomb operator) and the exchange-correlation self-energy $\Sig{\xc}$.
In Eq.~\eqref{eq:BSE}, $\LBSE{0}(1,2,1',2') = - i \G{}(1,2')\G{}(2,1')$, and $(1)=(\br{1},\sigma_1,t_1)$ is a composite index gathering space, spin and time variables.
In the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Martin_2016,Reining_2017} we have
2020-01-07 15:52:00 +01:00
\begin{equation}
2020-01-25 21:58:47 +01:00
\SigGW{\xc}(1,2) = i \G{}(1,2) \W{}{}(1^+,2),
2020-01-07 15:52:00 +01:00
\end{equation}
2020-01-25 21:58:47 +01:00
where $\W{}{}$ is the screened Coulomb operator, and hence the BSE reduces to
2020-01-07 15:52:00 +01:00
\begin{equation}
2020-01-25 21:58:47 +01:00
\XiBSE{}(3,5,4,6) = \delta(3,4) \delta(5,6) \vc{}(3,6) - \delta(3,6) \delta(4,5) \W{}{}(3,4),
2020-01-07 15:52:00 +01:00
\end{equation}
2020-01-25 21:58:47 +01:00
where, as commonly done, we have neglected the term $\delta \W{}{}/\delta \G{}$ in the functional derivative of the self-energy. \cite{Hanke_1980,Strinati_1984,Strinati_1982}
Finally, the static approximation is enforced, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1}, \sigma_1, t_1\},\{\br{2}, \sigma_2, t_2\}) \delta(t_1-t_2)$, which corresponds to restricting $\W{}{}$ to its static limit, \ie, $\W{}{}(1,2) = \W{}{}(\{\br{1},\sigma_1\},\{\br{2},\sigma_2\}; \omega=0)$.
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\subsection{BSE in a finite basis}
%\label{sec:BSE_basis}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-26 13:34:58 +01:00
For a closed-shell system, to compute the singlet BSE excitation energies (within the static approximation) of the physical system (\ie, $\IS = 1$) in a finite basis, one must solve the following linear response problem \cite{Casida,Dreuw_2005,Martin_2016}
2020-01-07 15:52:00 +01:00
\begin{equation}
\label{eq:LR}
\begin{pmatrix}
2020-01-25 21:58:47 +01:00
\bA{\IS} & \bB{\IS} \\
-\bB{\IS} & -\bA{\IS} \\
2020-01-07 15:52:00 +01:00
\end{pmatrix}
\begin{pmatrix}
2020-01-25 21:58:47 +01:00
\bX{\IS}_m \\
\bY{\IS}_m \\
2020-01-07 15:52:00 +01:00
\end{pmatrix}
=
2020-01-25 21:58:47 +01:00
\Om{m}{\IS}
2020-01-07 15:52:00 +01:00
\begin{pmatrix}
2020-01-25 21:58:47 +01:00
\bX{\IS}_m \\
\bY{\IS}_m \\
2020-01-07 15:52:00 +01:00
\end{pmatrix},
\end{equation}
2020-01-26 20:53:36 +01:00
where $\Om{m}{\IS}$ is the $m$th excitation energy with eigenvector $\T{(\bX{\IS}_m \, \bY{\IS}_m)}$ at interaction strength $\IS$, $\T{}$ is the matrix transpose, and we assume real-valued spatial orbitals $\{\MO{p}(\br{})\}_{1 \le p \le \Norb}$.
2020-01-26 13:34:58 +01:00
The matrices $\bA{\IS}$, $\bB{\IS}$, $\bX{\IS}$, and $\bY{\IS}$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively.
2020-01-25 15:49:29 +01:00
In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
2020-01-07 15:52:00 +01:00
2020-01-25 21:58:47 +01:00
In the absence of instabilities (\ie, $\bA{\IS} - \bB{\IS}$ is positive-definite), \cite{Dreuw_2005} Eq.~\eqref{eq:LR} is usually transformed into an Hermitian eigenvalue problem of smaller dimension
2020-01-07 15:52:00 +01:00
\begin{equation}
\label{eq:small-LR}
2020-01-25 21:58:47 +01:00
(\bA{\IS} - \bB{\IS})^{1/2} (\bA{\IS} + \bB{\IS}) (\bA{\IS} - \bB{\IS})^{1/2} \bZ{\IS} = (\bOm{\IS})^2 \bZ{\IS},
2020-01-07 15:52:00 +01:00
\end{equation}
where the excitation amplitudes are
2020-01-25 15:49:29 +01:00
\begin{subequations}
\begin{align}
2020-01-25 21:58:47 +01:00
\bX{\IS} + \bY{\IS} = (\bOm{\IS})^{-1/2} (\bA{\IS} - \bB{\IS})^{1/2} \bZ{\IS},
2020-01-25 15:49:29 +01:00
\\
2020-01-25 21:58:47 +01:00
\bX{\IS} - \bY{\IS} = (\bOm{\IS})^{1/2} (\bA{\IS} - \bB{\IS})^{-1/2} \bZ{\IS}.
2020-01-25 15:49:29 +01:00
\end{align}
\end{subequations}
In the case of BSE, the specific expression of the matrix elements are
2020-01-07 15:52:00 +01:00
\begin{subequations}
\begin{align}
\label{eq:LR_BSE}
2020-01-25 21:58:47 +01:00
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \W{ia,bj}{\IS}(\omega = 0) - \lambda \ERI{ia}{jb},
2020-01-07 15:52:00 +01:00
\\
\BBSE{ia,jb}{\IS} & = \W{ia,jb}{\IS}(\omega = 0) - \lambda \ERI{ia}{bj} ,
2020-01-07 15:52:00 +01:00
\end{align}
\end{subequations}
where $\eGW{p}$ are the $GW$ quasiparticle energies,
2020-01-07 15:52:00 +01:00
\begin{multline}
\label{eq:W}
2020-01-25 21:58:47 +01:00
\W{ia,jb}{\IS}(\omega) = 2 \ERI{ia}{jb}
2020-01-07 15:52:00 +01:00
\\
2020-01-25 21:58:47 +01:00
+ \sum_m^{\Nocc \Nvir} \sERI{ia}{m} \sERI{jb}{m} \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} + \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta})
2020-01-07 15:52:00 +01:00
\end{multline}
2020-01-25 21:58:47 +01:00
are the elements of the screened Coulomb operator $\W{}{\IS}$,
2020-01-07 15:52:00 +01:00
\begin{equation}
2020-01-25 21:58:47 +01:00
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}
2020-01-07 15:52:00 +01:00
\end{equation}
are the screened two-electron integrals,
\begin{equation}
2020-01-25 21:58:47 +01:00
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
2020-01-07 15:52:00 +01:00
\end{equation}
2020-01-25 21:58:47 +01:00
are the bare two-electron integrals, and $\delta_{pq}$ is the Kronecker delta. \cite{NISTbook}
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
2020-01-25 15:49:29 +01:00
\begin{subequations}
\begin{align}
2020-01-26 11:19:45 +01:00
\label{eq:LR_RPA}
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{bj},
2020-01-25 15:49:29 +01:00
\\
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{jb},
2020-01-25 15:49:29 +01:00
\end{align}
\end{subequations}
2020-01-25 21:58:47 +01:00
where $\eHF{p}$ are the HF orbital energies.
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\subsection{Ground-state BSE energy}
%\label{sec:BSE_energy}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
The key quantity to define in the present context is the total ground-state BSE energy $\EBSE$.
2020-01-26 13:34:58 +01:00
Although this choice is not unique, \cite{Holzer_2018} we propose here to define it as
2020-01-07 15:52:00 +01:00
\begin{equation}
\label{eq:EtotBSE}
2020-01-26 13:34:58 +01:00
\EBSE = \Enuc + \EHF + \EcBSE,
2020-01-07 15:52:00 +01:00
\end{equation}
2020-01-25 15:49:29 +01:00
where $\Enuc$ and $\EHF$ are the nuclear repulsion energy and ground-state HF energy (respectively), and
2020-01-07 15:52:00 +01:00
\begin{equation}
\label{eq:EcBSE}
2020-01-25 21:58:47 +01:00
\EcBSE = \frac{1}{2} \int_0^1 \Tr(\bK \bP{\IS}) d\IS
2020-01-25 15:49:29 +01:00
\end{equation}
is the ground-state BSE correlation energy computed in the adiabatic connection framework, where
\begin{equation}
2020-01-26 20:53:36 +01:00
\label{eq:K}
2020-01-25 15:49:29 +01:00
\bK =
\begin{pmatrix}
2020-01-25 21:58:47 +01:00
\btA{\IS=1} & \bB{\IS=1} \\
\bB{\IS=1} & \btA{\IS=1} \\
2020-01-25 15:49:29 +01:00
\end{pmatrix}
2020-01-07 15:52:00 +01:00
\end{equation}
2020-01-25 21:58:47 +01:00
is the interaction kernel \cite{Angyan_2011, Holzer_2018} [with $\tA{ia,jb}{\IS} = \IS \ERI{ia}{bj}$],
2020-01-25 15:49:29 +01:00
\begin{equation}
2020-01-25 23:20:22 +01:00
\label{eq:2DM}
2020-01-25 21:58:47 +01:00
\bP{\IS} =
2020-01-25 15:49:29 +01:00
\begin{pmatrix}
2020-01-25 21:58:47 +01:00
\bY{\IS} \T{(\bY{\IS})} & \bY{\IS} \T{(\bX{\IS})} \\
\bX{\IS} \T{(\bY{\IS})} & \bX{\IS} \T{(\bX{\IS})} \\
2020-01-25 15:49:29 +01:00
\end{pmatrix}
-
\begin{pmatrix}
\bO & \bO \\
\bO & \bI \\
\end{pmatrix}
\end{equation}
2020-01-26 20:53:36 +01:00
is the correlation part of the two-electron density matrix at interaction strength $\IS$, and $\Tr$ denotes the matrix trace.
Note that the present definition of the BSE correlation energy [see Eq.~\eqref{eq:EcBSE}], which we refer to as BSE@$GW$@HF here, has be labeled ``XBS'' for ``extended Bethe Salpeter'' by Holzer et al. \cite{Holzer_2018}
2020-01-26 13:34:58 +01:00
Contrary to DFT where the electron density is fixed along the adiabatic path, in the present formalism, the density is not maintain with respect to $\IS$.
2020-01-26 20:53:36 +01:00
Therefore, an additional contribution to Eq.~\eqref{eq:EcBSE} originating from the variation of the Green's function along the adiabatic connection should be added.
2020-01-26 13:34:58 +01:00
However, as commonly done within RPA and RPAx (\ie, RPA with exchange), \cite{Toulouse_2009, Toulouse_2010, Holzer_2018} we shall neglect it in the present study.
2020-01-25 21:58:47 +01:00
Equation \eqref{eq:EcBSE} can also be straightforwardly applied to RPA and RPAx, the only difference being the expressions of $\bA{\IS}$ and $\bB{\IS}$ used to obtain the eigenvectors $\bX{\IS}$ and $\bY{\IS}$ entering the definition of $\bP{\IS}$ [see Eq.~\eqref{eq:2DM}].
For RPA, these expressions have been provided in Eq.~\eqref{eq:LR_RPA}, and their RPAx analogs read
\begin{subequations}
\begin{align}
\label{eq:LR_RPAx}
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{bj} - \IS \ERI{ia}{jb},
\\
\BRPAx{ia,jb}{\IS} & = 2 \IS \ERI{ia}{jb} - \IS \ERI{ia}{bj}.
\end{align}
\end{subequations}
These two types of calculations will be refer to as RPA@HF and RPAx@HF respectively in the following.
Finally, we will also consider the RPA@$GW$@HF scheme which consists in replacing the HF orbital energies in Eq.~\eqref{eq:LR_RPA} by the $GW$ quasiparticles energies.
2020-01-25 21:58:47 +01:00
Several important comments are in order here.
2020-01-27 18:46:41 +01:00
For spin-restricted closed-shell molecular systems around their equilibrium geometry (such as the ones studied here), it is rare to encounter singlet instabilities as these systems can be classified as weakly correlated.
2020-01-27 18:43:53 +01:00
However, singlet instabilities may appear in the presence of strong correlation, \eg, when the bond is stretched, hampering in particular the calculation of atomization energies. \cite{Holzer_2018}
Even for weakly correlated systems, triplet instabilities are much more common, but triplet excitations do not contribute to the correlation energy in the ACFDT formulation. \cite{Toulouse_2009, Toulouse_2010, Angyan_2011}
2020-01-27 12:48:18 +01:00
2020-01-27 18:43:53 +01:00
%\xavier{ IS THIS NEEDED NOW ? However, contrary to the plasmon formulation (an alternative expression of the BSE correlation energy), \cite{Schuck_Book, Sawada_1957b, Rowe_1968} the triplet excitations do not contribute in the ACFDT formulation, which is an indisputable advantage of this approach.
%Indeed, although the plasmon and adiabatic connection formulations are equivalent for RPA, \cite{Sawada_1957b, Gell-Mann_1957, Fukuta_1964, Furche_2008} this is not the case at the BSE and RPAx levels. \cite{Toulouse_2009, Toulouse_2010, Angyan_2011, Li_2020}
%For RPAx, an alternative plasmon expression (equivalent to its ACFDT analog) can be found if exchange is also added to the interaction kernel [see Eq.~\eqref{eq:K}]. \cite{Angyan_2011}
%However, to the best of our knowledge, such alternative plasmon expression does not exist for BSE. }
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\section{Computational details}
%\label{sec:comp_details}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
All the $GW$ calculations performed to obtain the screened Coulomb operator and the quasiparticle energies have been done using a (restricted) Hartree-Fock (HF) starting point, which is a very adequate choice in the case of the (small) systems that we have considered here.
Perturbative $GW$ (or {\GOWO}) \cite{Hybertsen_1985a, Hybertsen_1986} calculations are employed as starting point to compute the BSE neutral excitations.
2020-01-07 15:52:00 +01:00
In the case of {\GOWO}, the quasiparticle energies have been obtained by linearizing the non-linear, frequency-dependent quasiparticle equation.
2020-01-25 23:20:22 +01:00
Further details about our implementation of {\GOWO} can be found in Refs.~\onlinecite{Loos_2018, Veril_2018}.
2020-01-20 23:37:18 +01:00
Finally, the infinitesimal $\eta$ has been set to zero for all calculations.
2020-01-27 18:43:53 +01:00
The numerical integration required to compute the correlation energy along the adiabatic path [see Eq.~\eqref{eq:EcBSE}] has been performed with a 21-point Gauss-Legendre quadrature.
2020-01-27 18:46:41 +01:00
Comparison with the so-called plasmon (or trace) formula \cite{Furche_2008} at the RPA level has confirmed the excellent accuracy of this quadrature scheme over $\IS$.
2020-01-27 12:48:18 +01:00
2020-01-26 21:50:42 +01:00
For comparison purposes, we have also computed the PES at the MP2, CC2 \cite{Christiansen_1995}, CCSD, \cite{Purvis_1982} and CC3 \cite{Christiansen_1995b} levels of theory using DALTON. \cite{dalton}
All the other calculations have been performed with our locally developed $GW$ software. \cite{Loos_2018,Veril_2018}
2020-01-25 15:49:29 +01:00
As one-electron basis sets, we employ the Dunning family (cc-pVXZ) defined with cartesian gaussian functions.
2020-01-27 12:48:18 +01:00
Unless, otherwise stated, the frozen-core approximation has not been enforced in our calculations in order to provide a fair comparison between methods.
2020-01-25 15:49:29 +01:00
However, we have found that the conclusions drawn in the present study hold within the frozen-core approximation (see {\SI}).
2020-01-07 15:52:00 +01:00
2020-01-25 23:20:22 +01:00
Because Eq.~\eqref{eq:EcBSE} requires the entire BSE singlet excitation spectrum for each quadrature point, we perform several complete diagonalization of the $\Nocc \Nvir \times \Nocc \Nvir$ BSE linear response matrix [see Eq.~\eqref{eq:small-LR}], which corresponds to a $\order{\Nocc^3 \Nvir^3} = \order{\Norb^6}$ computational cost.
2020-01-07 15:52:00 +01:00
This step is, by far, the computational bottleneck in our current implementation.
2020-01-26 13:34:58 +01:00
However, we are currently pursuing different avenues to lower this cost by computing the two-electron density matrix of Eq.~\eqref{eq:2DM} via a quadrature in frequency space. \cite{Duchemin_2019,Duchemin_2020}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\section{Potential energy surfaces}
%\label{sec:PES}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-26 21:50:42 +01:00
In order to illustrate the performance of the BSE-based adiabatic connection formulation, we have computed the ground-state PES of several closed-shell diatomic molecules around their equilibrium geometry: \ce{H2}, \ce{LiH}, \ce{LiF}, \ce{N2}, \ce{CO}, \ce{BF}, \ce{F2}, and \ce{HCl}.
The PES of these molecules for various methods and Dunning's triple-$\zeta$ basis cc-pVTZ are represented in Figs.~\ref{fig:PES-H2-LiH}, \ref{fig:PES-LiF-HCl}, \ref{fig:PES-N2-CO-BF}, and \ref{fig:PES-F2}, while the computed equilibrium distances are gathered in Table \ref{tab:Req}.
2020-01-25 23:20:22 +01:00
Additional graphs for other basis sets can be found in the {\SI}.
2020-01-11 21:35:59 +01:00
%%% TABLE I %%%
\begin{table*}
\caption{
2020-01-27 18:43:53 +01:00
Equilibrium distances (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets.
The reference CC3 and corresponding BSE@$G_0W_0$@HF data are highlighted in bold for visual convenience.}
2020-01-11 21:35:59 +01:00
\label{tab:Req}
\begin{ruledtabular}
\begin{tabular}{llcccccccc}
2020-01-20 23:37:18 +01:00
& & \mc{8}{c}{Molecules} \\
\cline{3-10}
2020-01-21 21:31:16 +01:00
Method & Basis & \ce{H2} & \ce{LiH}& \ce{LiF}& \ce{N2} & \ce{CO} & \ce{BF} & \ce{F2} & \ce{HCl}\\
2020-01-11 21:35:59 +01:00
\hline
2020-01-21 21:31:16 +01:00
CC3 & cc-pVDZ & 1.438 & 3.043 & 3.012 & 2.114 & 2.166 & 2.444 & 2.740 & 2.435 \\
2020-01-27 17:41:38 +01:00
& cc-pVTZ & 1.403 & \bb{3.011}& 2.961 & 2.079 & 2.143 & 2.392 & 2.669 & 2.413 \\
& cc-pVQZ & \bb{1.402}& 3.019 & 2.963 & 2.075 & 2.136 & 2.390 & 2.663 & 2.403 \\
2020-01-21 21:31:16 +01:00
CCSD & cc-pVDZ & 1.438 & 3.044 & 3.006 & 2.101 & 2.149 & 2.435 & 2.695 & 2.433 \\
& cc-pVTZ & 1.403 & 3.012 & 2.954 & 2.064 & 2.126 & 2.382 & 2.629 & 2.409 \\
& cc-pVQZ & 1.402 & 3.020 & 2.953 & 2.059 & 2.118 & 2.118 & 2.621 & 2.398 \\
CC2 & cc-pVDZ & 1.426 & 3.046 & 3.026 & 2.146 & 2.187 & 2.444 & 2.710 & 2.427 \\
& cc-pVTZ & 1.393 & 3.008 & 2.995 & 2.109 & 2.163 & 2.394 & 2.664 & 2.406 \\
& cc-pVQZ & 1.391 & 2.989 & 2.982 & 2.106 & 2.156 & 2.393 & 2.665 & 2.396 \\
MP2 & cc-pVDZ & 1.426 & 3.041 & 3.010 & 2.133 & 2.166 & 2.431 & 2.681 & 2.426 \\
& cc-pVTZ & 1.393 & 3.004 & 2.968 & 2.095 & 2.144 & 2.383 & 2.636 & 2.405 \\
& cc-pVQZ & 1.391 & 3.008 & 2.970 & 2.091 & 2.137 & 2.382 & 2.634 & 2.395 \\
BSE@{\GOWO}@HF & cc-pVDZ & 1.437 & 3.042 & 3.000 & 2.107 & 2.153 & 2.407 & 2.700 & >2.440 \\
2020-01-27 17:41:38 +01:00
& cc-pVTZ & 1.404 & \bb{3.023}& glitch & & & <2.420 & & <2.410 \\
& cc-pVQZ & \bb{1.399}& & & & & & & \\
RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & 3.019 & 2.994 & 2.083 & 2.144 & 2.403 & 2.691 & 2.436 \\
& cc-pVTZ & 1.388 & 3.013 & glitch & & & <2.420 & & <2.410 \\
2020-01-22 23:18:55 +01:00
& cc-pVQZ & 1.382 & & & & & & & \\
RPAx@HF & cc-pVDZ & 1.428 & 3.040 & 2.998 & 2.077 & 2.130 & 2.417 & NaN & 2.424 \\
& cc-pVTZ & 1.395 & 3.003 & <2.990 & & & <2.420 & & <2.410 \\
2020-01-22 23:18:55 +01:00
& cc-pVQZ & 1.394 & & & & & & & \\
RPA@HF & cc-pVDZ & 1.431 & 3.021 & 2.999 & 2.083 & 2.134 & & 2.623 & 2.424 \\
& cc-pVTZ & 1.388 & 2.978 & <2.990 & & & 2.416 & & <2.410 \\
2020-01-22 23:18:55 +01:00
& cc-pVQZ & 1.386 & & & & & <2.420 & & \\
2020-01-21 21:31:16 +01:00
% FROZEN CORE VERSION
% Method & Basis & \ce{H2} & \ce{LiH}& \ce{LiF}& \ce{N2} & \ce{CO} & \ce{BF} & \ce{F2} & \ce{HCl}\\
% \hline
% CC3 & cc-pVDZ & 1.438 & 3.052 & 3.014 & 2.115 & 2.167 & 2.447 & 2.741 & 2.438 \\
% & cc-pVTZ & 1.403 & 3.036 & 2.985 & 2.087 & 2.150 & 2.405 & 2.672 & 2.414 \\
% & cc-pVQZ & 1.402 & 3.037 & 2.985 & 2.080 & 2.142 & 2.398 & 2.667 & 2.413 \\
% CCSD & cc-pVDZ & 1.438 & 3.044 & 3.006 & 2.101 & 2.149 & 2.435 & 2.695 & 2.433 \\
% & cc-pVTZ & 1.403 & 3.012 & 2.954 & 2.064 & 2.126 & 2.382 & 2.629 & 2.409 \\
% & cc-pVQZ & 1.402 & 3.020 & 2.953 & 2.059 & 2.118 & 2.380 & 2.621 & 2.398 \\
2020-01-22 17:28:49 +01:00
% CC2 & cc-pVDZ & 1.426 & & & & & & & \\
% & cc-pVTZ & 1.393 & & & & & & & \\
% & cc-pVQZ & 1.391 & & & & & & & \\
2020-01-21 21:31:16 +01:00
% MP2 & cc-pVDZ & 1.426 & 3.049 & 3.012 & 2.134 & 2.167 & 2.433 & 2.681 & 2.429 \\
% & cc-pVTZ & 1.393 & 3.026 & 2.990 & 2.104 & 2.151 & 2.395 & 2.640 & 2.407 \\
% & cc-pVQZ & 1.391 & 3.026 & 2.990 & 2.098 & 2.144 & 2.389 & 2.638 & 2.405 \\
2020-01-22 17:28:49 +01:00
% BSE@{\GOWO}@HF & cc-pVDZ & 1.437 & & & & & & & \\
% & cc-pVTZ & 1.404 & & & & & & & \\
% & cc-pVQZ & 1.399 & & & & & & & \\
% RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & & & & & & & \\
% & cc-pVTZ & 1.388 & & & & & & & \\
% & cc-pVQZ & 1.382 & & & & & & & \\
% RPAx@HF & cc-pVDZ & 1.428 & & & & & & & \\
% & cc-pVTZ & 1.395 & & & & & & & \\
% & cc-pVQZ & 1.394 & & & & & & & \\
% RPA@HF & cc-pVDZ & 1.431 & & & & & & & \\
% & cc-pVTZ & 1.388 & & & & & & & \\
% & cc-pVQZ & 1.386 & & & & & & & \\
2020-01-21 21:31:16 +01:00
2020-01-11 21:35:59 +01:00
\end{tabular}
\end{ruledtabular}
\end{table*}
Let us first start with the two smallest molecules, \ce{H2} and \ce{LiH} which are both linked by covalent bonds (see Fig.~\ref{fig:PES-H2-LiH}).
For \ce{H2}, we take as reference the full configuration interaction (FCI) energies and we also report the MP2 curve and its third-order variant (MP3), which improves upon MP2 towards FCI.
RPA@HF and RPA@{\GOWO}@HF yield almost identical results, and significantly overestimate (in absolute value) the FCI energy, while RPAx@HF and BSE@{\GOWO}@HF slightly underestimate and overestimate the FCI energy, respectively, RPAx@HF being the best match in the case of \ce{H2}.
Interestingly though, the BSE@{\GOWO}@HF scheme yields a more accurate equilibrium bond length than any other method irrespectively of the basis set.
For example, with the cc-pVQZ basis set, BSE@{\GOWO}@HF is only off by $0.003$ bohr compared to FCI, while RPAx@HF, MP2, and CC2 underestimate the bond length by $0.008$, $0.011$, and $0.011$ bohr, respectively.
The RPA-based schemes are much less accurate, with even shorter equilibrium bond lengths.
2020-01-07 15:52:00 +01:00
The scenario is almost identical for \ce{LiH} for which we report the CC2, CCSD and CC3 energies in addition to MP2.
In this case, RPAx@HF and BSE@{\GOWO}@HF nestle the CCSD and CC3 energy curves, and they are almost perfectly parallel.
%%% FIG 1 %%%
\begin{figure*}
\includegraphics[width=0.49\linewidth]{H2_GS_VTZ}
\includegraphics[width=0.49\linewidth]{LiH_GS_VTZ}
\caption{
Ground-state PES of \ce{H2} (left) and \ce{LiH} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVTZ basis set.
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-H2-LiH}
}
\end{figure*}
%%% %%% %%%
The cases of \ce{LiF} and \ce{HCl} (see Fig.~\ref{fig:PES-LiF-HCl}) are interesting as they corresponds to a strongly polarized bond towards the halogen atoms which are much more electronegative than the first row elements.
For these ionic bond, the performance of BSE@{\GOWO}@HF are terrific with an almost perfect match to the CC3 curve.
For \ce{LiF}, the two curves starting to deviate a few tenths of bohr after the equilibrium geometry, but they remain tightly ... for much longer in the case of \ce{HCl}.
Maybe surprisingly, BSE@{\GOWO}@HF outperforms both CC2 and CCSD, as well as RPAx@HF by a big margin for these two molecules exhibiting charge transfer.
However, in the case of \ce{LiF}, the attentive reader would have observed a small glitch in the $GW$-based curves very close to their minimum.
%%% FIG 2 %%%
\begin{figure*}
\includegraphics[width=0.49\linewidth]{LiF_GS_VTZ}
\includegraphics[width=0.49\linewidth]{HCl_GS_VTZ}
\caption{
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVTZ basis set.
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-LiF-HCl}
}
\end{figure*}
%%% %%% %%%
Let us now look at the isoelectronic series \ce{N2}, \ce{CO}, and \ce{BF}, which have a decreasing bond order (from triple bond to single bond).
In that case again, the performance of BSE@{\GOWO}@HF are outstanding as shown in Fig.~\ref{fig:PES-N2-CO-BF}.
%%% FIG 3 %%%
\begin{figure*}
\includegraphics[width=0.33\linewidth]{N2_GS_VTZ}
\includegraphics[width=0.33\linewidth]{CO_GS_VTZ}
\includegraphics[width=0.33\linewidth]{BF_GS_VTZ}
\caption{
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVTZ basis set.
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-N2-CO-BF}
}
\end{figure*}
%%% %%% %%%
The \ce{F2} molecule is a notoriously difficult case to treat due to the relative weakness of its covalent bond (see Fig.~\ref{fig:PES-F2}).
%%% FIG 4 %%%
\begin{figure}
\includegraphics[width=\linewidth]{F2_GS_VTZ}
\caption{
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVTZ basis set.
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
\label{fig:PES-F2}
}
\end{figure}
%%% %%% %%%
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 21:58:47 +01:00
%\section{Conclusion}
%\label{sec:conclusion}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-26 21:50:42 +01:00
In this Letter, we have shown that calculating the BSE correlation energy in the ACFDT framework yield extremely accurate PES around equilibrium.
We have illustrated this for 8 diatomic molecules for which we have also computed reference ground-state energies using coupled cluster methods (CC2, CCSD, and CC3).
However, we have also observed that, in some cases, unphysical irregularities on the ground-state PES due to the appearance of a satellite resonance with a weight similar to that of the $GW$ quasiparticle peak.
This shortcoming, which is entirely due to the quasiparticle nature of the underlying $GW$ calculation, has been thoroughly described in several previous studies.\cite{vanSetten_2015,Maggio_2017,Loos_2018,Veril_2018,Duchemin_2020}
2020-01-26 21:50:42 +01:00
We believe that this central issue must be resolved if one wants to expand the applicability of the present methods.
In the perspective of developing analytical nuclear gradients within the BSE@$GW$ formalism, we are currently investigating the accuracy of the ACFDT@BSE scheme for excited-state PES.
2020-01-26 21:50:42 +01:00
We hope to be able to report on this in the near future.
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-22 17:28:49 +01:00
\section*{Supporting Information}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-25 23:20:22 +01:00
See {\SI} for additional potential energy curves with other basis sets and within the frozen-core approximation.
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
2020-01-22 17:28:49 +01:00
\begin{acknowledgements}
2020-01-27 18:43:53 +01:00
PFL would like to thank Julien Toulouse for enlightening discussions about RPA.
XB is indebted to Valerio Olevano for numerous discussions.
2020-01-22 17:28:49 +01:00
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A0040801738) and CALMIP (Toulouse) under allocation 2019-18005.
Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged.
2020-01-27 12:48:18 +01:00
This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''. }
2020-01-22 17:28:49 +01:00
\end{acknowledgements}
2020-01-07 15:52:00 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{BSE-PES,BSE-PES-control}
\end{document}