These_linjie_JC/thesis/3/structure_stability.aux
2021-06-14 04:15:31 +02:00

432 lines
41 KiB
TeX

\relax
\providecommand\hyper@newdestlabel[2]{}
\citation{deMonNano2009}
\citation{Elstner1998}
\citation{Gaus2013para}
\citation{Li1998,Thompson2003,Rapacioli2009corr}
\citation{Rapacioli2009corr,Elstner2001,Zhechkov2005}
\citation{Simon2012,Odutola1980}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:structure}{{3}{49}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
\citation{Sugita1999,Sugita2000,Earl2005}
\citation{Elstner1998}
\citation{Nose1984M,Hoover1985}
\citation{Douady2009}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}}
\newlabel{sec:structure-methods}{{3.1}{50}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}}
\@writefile{brf}{\backcite{deMonNano2009}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Li1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner2001}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Zhechkov2005}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}}
\@writefile{brf}{\backcite{Earl2005}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.2}{subsection.3.1.2}}}
\citation{Nose1984M,Hoover1985}
\citation{Wolken2000,Pedersen2014}
\citation{Weigend2005,Weigend2006}
\citation{GaussianCode}
\citation{Boys2002}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Douady2009}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}}
\@writefile{brf}{\backcite{Weigend2005}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{52}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{52}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{52}{3.1.3}{subsection.3.1.3}}}
\citation{Keesee1989,Gilligan2000,Sennikov2005,Cabellos2016,Orabi2013,Bommer2016,Rodgers2003,Van2004,Gibb2004,Tielens2005,Parise2005,Boogert2015,Dulieu2010,Michoulier2018}
\citation{Kulmala2004}
\citation{Ziereis1986}
\citation{Perkins1984,Arnold1997}
\citation{Dunne2016}
\citation{Kirkby2011}
\citation{Perkins1984,Herbine1985,Stockman1992,Hulthe1997,Wang1998,Chang1998,Jiang1999,Hvelplund2010,Douady2009,Douady2008,Morrell2010,Bacelo2002,Galashev2013}
\citation{Perkins1984}
\citation{Hulthe1997}
\citation{Hvelplund2010}
\citation{Lee1996,Chang1998,Skurski1998,Jiang1999,Donaldson1999,Sadlej1999,Hvelplund2010,Bacelo2002,Galashev2013}
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Douady2008,Kozack1992polar}
\citation{Morrell2010}
\citation{Pei2015}
\citation{Walters2018}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{53}{subsection.3.1.4}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{53}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}}
\@writefile{brf}{\backcite{Tielens2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sennikov2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Cabellos2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Orabi2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bommer2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rodgers2003}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Van2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gibb2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Parise2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Boogert2015}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dulieu2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Michoulier2018}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kulmala2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Ziereis1986}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Arnold1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dunne2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kirkby2011}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2009}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Herbine1985}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Stockman1992}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Wang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\citation{Choi2010,Choi2013,Korchagina2017,Simon2019}
\citation{Simon2012,Simon2013water}
\citation{Korchagina2016}
\citation{Simon2017formation}
\citation{Winget2003}
\citation{Gaus2013para}
\@writefile{brf}{\backcite{Hulthe1997}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Skurski1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Donaldson1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sadlej1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kozack1992polar}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Pei2015}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Walters2018}{{54}{3.2.1}{subsection.3.2.1}}}
\citation{Thompson2003,Rapacioli2009}
\citation{Simon2019}
\@writefile{brf}{\backcite{Korchagina2017}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2012}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2013water}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Korchagina2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2017formation}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Winget2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\citation{Winget2003,Gaus2013para}
\@writefile{brf}{\backcite{Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}}
\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}}
\citation{Wang1998,Jiang1999}
\citation{Wang1998,Jiang1999}
\citation{Douady2008}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.13}}
\newlabel{fig:nh3-nh4-1w}{{3.5}{59}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.14}}
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{60}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.15}}
\newlabel{fig:nh3-nh4-3w}{{3.7}{60}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Pickard2005}
\citation{Chang1998,Wang1998}
\citation{Jiang1999}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}}
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}}
\@writefile{brf}{\backcite{Douady2009}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Morrell2010}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Chang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{62}{table.caption.18}}
\newlabel{reBindE}{{3.2}{62}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript {-1}.\relax }{table.caption.18}{}}
\citation{Douady2008,Morrell2010}
\citation{Jiang1999}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{63}{figure.caption.17}}
\newlabel{fig:nh4-4-6w}{{3.8}{63}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript {-1}.\relax }{figure.caption.17}{}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{63}{3.2.2.3}{table.caption.18}}}
\citation{Douady2008}
\citation{Morrell2010}
\citation{Wang1998}
\citation{Douady2008}
\@writefile{brf}{\backcite{Jiang1999}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Wang1998}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{64}{3.2.2.3}{table.caption.18}}}
\citation{Douady2008}
\citation{Douady2008}
\citation{Morrell2010}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{66}{figure.caption.19}}
\newlabel{fig:nh4-7-10w}{{3.9}{66}{The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.19}{}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Bacelo2002}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}}
\@writefile{brf}{\backcite{Lee1996}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{69}{figure.caption.20}}
\newlabel{fig:nh3-4-7w}{{3.10}{69}{The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{72}{figure.caption.21}}
\newlabel{fig:nh3-8-10w}{{3.11}{72}{The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}}
\citation{Kazimirski2003,Douady2009,Bandow2006}
\citation{Douady2009}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Clusters}{73}{subsubsection.3.2.2.5}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{74}{figure.caption.22}}
\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}}
\citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017}
\citation{Wincel2009}
\citation{Boudaiffa2000}
\citation{Smyth2011,Siefermann2011,Alizadeh2013}
\citation{Rasmussen2010}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}}
\newlabel{structureUH}{{3.3}{75}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}}
\@writefile{brf}{\backcite{Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Markush2016}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Wincel2009}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Boudaiffa2000}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Smyth2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Siefermann2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Alizadeh2013}{{75}{3.3.1}{subsection.3.3.1}}}
\citation{Coates2018}
\citation{Nelson1994,Sadr2014,Molina2016}
\citation{Bakker2008}
\citation{Shishkin2000,Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015}
\citation{Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015}
\citation{Gaigeot2001}
\citation{Shishkin2000}
\citation{Bacchus2015}
\citation{Danilov2006}
\citation{Bacchus2015}
\citation{Gadre2000}
\citation{Danilov2006,Bacchus2015}
\citation{Braud2019}
\@writefile{brf}{\backcite{Rasmussen2010}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Coates2018}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Sadr2014}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Molina2016}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Braud2019}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}}
\newlabel{exp_ur}{{3.3.2.1}{77}{Experimental Results}{subsubsection.3.3.2.1}{}}
\citation{Dalleska1993}
\citation{Zamith2012}
\citation{Myers2007}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}}
\newlabel{mass7w}{{3.13}{78}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}}}
\@writefile{brf}{\backcite{Zamith2012}{{78}{3.3.2.1}{figure.caption.23}}}
\newlabel{cross-section-geo}{{3.3}{78}{Experimental Results}{equation.3.3.3}{}}
\citation{Zamith2012}
\citation{Dalleska1993}
\citation{Dalleska1993,Hansen2009}
\citation{Wincel2009}
\citation{Bakker2008}
\citation{Dalleska1993,Hansen2009}
\citation{Wincel2009}
\citation{Dalleska1993}
\citation{Zamith2012}
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Myers2007}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Zamith2012}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Bakker2008}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}}
\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.14}{figure.caption.24}}}
\@writefile{brf}{\backcite{Zamith2012}{{80}{3.14}{figure.caption.24}}}
\newlabel{fragcrosssec}{{3.14}{80}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Cheng1998}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Bakker2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}}
\newlabel{Uloss}{{3.15}{81}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Magnera1991}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{82}{figure.caption.26}}
\@writefile{brf}{\backcite{Magnera1991}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Cheng1998}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{82}{3.16}{figure.caption.26}}}
\newlabel{protonAffinity}{{3.16}{82}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}}
\@writefile{brf}{\backcite{Bakker2008}{{82}{3.3.2.1}{figure.caption.26}}}
\citation{Wolken2000}
\citation{Pedersen2014}
\citation{Pedersen2014}
\citation{Bakker2008}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{83}{table.caption.27}}
\newlabel{tab:DNH}{{3.3}{83}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.27}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{83}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{brf}{\backcite{Wolken2000}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Bakker2008}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.28}}
\newlabel{1a-f}{{3.17}{85}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.29}}
\newlabel{1a-f-b3lyp}{{3.18}{86}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}}
\citation{Zundel1968}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.30}}
\newlabel{2a-f}{{3.19}{87}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}}
\@writefile{brf}{\backcite{Zundel1968}{{87}{3.3.2.2}{figure.caption.33}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.31}}
\newlabel{3a-f}{{3.20}{88}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.32}}
\newlabel{4a-f}{{3.21}{89}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.33}}
\newlabel{5a-f}{{3.22}{90}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}}
\citation{Molina2015,Molina2016}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.34}}
\newlabel{6a-f}{{3.23}{91}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}}
\@writefile{brf}{\backcite{Molina2015}{{92}{3.3.2.2}{figure.caption.37}}}
\@writefile{brf}{\backcite{Molina2016}{{92}{3.3.2.2}{figure.caption.37}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}}
\FN@pp@footnotehinttrue
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}}
\newlabel{7a-f}{{3.24}{93}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.36}}
\newlabel{11a-f}{{3.25}{94}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.37}}
\newlabel{12a-f}{{3.26}{95}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}}
\@setckpt{3/structure_stability}{
\setcounter{page}{96}
\setcounter{equation}{3}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{3}
\setcounter{section}{3}
\setcounter{subsection}{3}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{26}
\setcounter{table}{3}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}
\setcounter{NAT@ctr}{0}
\setcounter{Item}{5}
\setcounter{Hfootnote}{0}
\setcounter{bookmark@seq@number}{36}
\setcounter{parentequation}{0}
\setcounter{section@level}{2}
}