\@writefile{lof}{\contentsline{figure}{\numberline{3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax}}{52}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{52}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax}{figure.caption.9}{}}
\@writefile{toc}{\contentsline{section}{\numberline{3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{53}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline{subsection}{\numberline{3.2.2}Results and Discussion}{55}{subsection.3.2.2}}
\@writefile{toc}{\contentsline{subsubsection}{\numberline{3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax}}{56}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax}{figure.caption.10}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax}}{57}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax}{figure.caption.11}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax}}{58}{figure.caption.12}}
\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax}{figure.caption.12}{}}
\@writefile{toc}{\contentsline{subsubsection}{\numberline{3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.5}{\ignorespaces Structure of 1-a and 1$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime$-a$^*$ isomers). Selected bond lengths are in \r A.\relax}}{59}{figure.caption.13}}
\newlabel{fig:nh3-nh4-1w}{{3.5}{59}{Structure of 1-a and 1$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime$-a$^*$ isomers). Selected bond lengths are in \AA .\relax}{figure.caption.13}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.6}{\ignorespaces Structure of 2-a and 2$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime$-a$^*$ isomers). Selected bond lengths are in \r A.\relax}}{60}{figure.caption.14}}
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{60}{Structure of 2-a and 2$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime$-a$^*$ isomers). Selected bond lengths are in \AA .\relax}{figure.caption.14}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime$-a$^*$ isomers). Selected bond lengths are in \r A.\relax}}{60}{figure.caption.15}}
\newlabel{fig:nh3-nh4-3w}{{3.7}{60}{Structure of 3-a, 3-b and 3$^\prime$-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime$-a$^*$ isomers). Selected bond lengths are in \AA .\relax}{figure.caption.15}{}}
\@writefile{lot}{\contentsline{table}{\numberline{3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax}}{61}{table.caption.16}}
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax}{table.caption.16}{}}
\@writefile{lot}{\contentsline{table}{\numberline{3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC{\textperiodcentered}mol\textsuperscript{-1}.\relax}}{62}{table.caption.18}}
\newlabel{reBindE}{{3.2}{62}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript{-1}.\relax}{table.caption.18}{}}
\citation{Douady2008,Morrell2010}
\citation{Jiang1999}
\@writefile{lof}{\contentsline{figure}{\numberline{3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC{\textperiodcentered}mol\textsuperscript{-1}.\relax}}{63}{figure.caption.17}}
\newlabel{fig:nh4-4-6w}{{3.8}{63}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript{-1}.\relax}{figure.caption.17}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC{\textperiodcentered}mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}}{66}{figure.caption.19}}
\newlabel{fig:nh4-7-10w}{{3.9}{66}{The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}{figure.caption.19}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC{\textperiodcentered}mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}}{69}{figure.caption.20}}
\newlabel{fig:nh3-4-7w}{{3.10}{69}{The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}{figure.caption.20}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC{\textperiodcentered}mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}}{72}{figure.caption.21}}
\newlabel{fig:nh3-8-10w}{{3.11}{72}{The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript{-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax}{figure.caption.21}{}}
\citation{Kazimirski2003,Douady2009,Bandow2006}
\citation{Douady2009}
\@writefile{toc}{\contentsline{subsubsection}{\numberline{3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Clusters}{73}{subsubsection.3.2.2.5}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax}}{74}{figure.caption.22}}
\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax}{figure.caption.22}{}}
\@writefile{toc}{\contentsline{subsection}{\numberline{3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}}
\newlabel{mass7w}{{3.13}{78}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite{Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit{et al.}\cite{Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}}
\newlabel{fragcrosssec}{{3.14}{80}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite{Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit{et al.}\cite{Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}}
\newlabel{Uloss}{{3.15}{81}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite{Magnera1991} and from the work of Cheng (blue squares).\cite{Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite{Kurinovich2002}}}{82}{figure.caption.26}}
\newlabel{protonAffinity}{{3.16}{82}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite{Magnera1991} and from the work of Cheng (blue squares).\cite{Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite{Kurinovich2002}}{figure.caption.26}{}}
\@writefile{lot}{\contentsline{table}{\numberline{3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax}}{83}{table.caption.27}}
\newlabel{tab:DNH}{{3.3}{83}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax}{table.caption.27}{}}
\@writefile{toc}{\contentsline{subsubsection}{\numberline{3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{83}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.17}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.28}}
\newlabel{1a-f}{{3.17}{85}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.28}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.29}}
\newlabel{1a-f-b3lyp}{{3.18}{86}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.29}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.30}}
\newlabel{2a-f}{{3.19}{87}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.30}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.20}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.31}}
\newlabel{3a-f}{{3.20}{88}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.31}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.21}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.32}}
\newlabel{4a-f}{{3.21}{89}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.32}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.33}}
\newlabel{5a-f}{{3.22}{90}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.33}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.34}}
\newlabel{6a-f}{{3.23}{91}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.34}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}}
\newlabel{7a-f}{{3.24}{93}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.35}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.36}}
\newlabel{11a-f}{{3.25}{94}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.36}{}}
\@writefile{lof}{\contentsline{figure}{\numberline{3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.37}}
\newlabel{12a-f}{{3.26}{95}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA}{figure.caption.37}{}}