1
0
mirror of https://github.com/TREX-CoE/trexio.git synced 2024-07-22 18:57:39 +02:00
trexio/trex.org
2021-06-02 00:02:42 +02:00

22 KiB
Raw Blame History

TREX Configuration file

All the quantities are saved in atomic units. The dimensions of the arrays in the tables below are given in column-major order (as in Fortran), and the ordering of the dimensions is reversed in the produces JSON configuration file as the library is written in C.

{

Metadata

As we expect our files to be archived in open-data repositories, we need to give the possibility to the users to store some metadata inside the files. We propose to store the list of names of the codes which have participated to the creation of the file, a list of authors of the file, and a textual description.

code_num int Number of codes used to produce the file
code str (metadata.code_num) Names of the codes used
author_num int Number of authors of the file
author str (metadata.author_num) Names of the authors of the file
description str Text describing the content of file
    "metadata": {
           "code_num" : [ "int", []                        ]
      ,        "code" : [ "str", [ "metadata.code_num" ]   ]
      ,  "author_num" : [ "int", []                        ]
      ,      "author" : [ "str", [ "metadata.author_num" ] ]
      , "description" : [ "str", []                        ]
    } ,

Electron

We consider wave functions expressed in the spin-free formalism, where the number of ↑ and ↓ electrons is fixed.

#+NAME:electron

up_num int Number of ↑-spin electrons
dn_num int Number of ↓-spin electrons
    "electron": {
        "up_num" : [ "int", []  ]
      , "dn_num" : [ "int", []  ]
    } ,

Nucleus

The nuclei are considered as fixed point charges. Coordinates are given in Cartesian $(x,y,z)$ format.

num int Number of nuclei
charge float (nucleus.num) Charges of the nuclei
coord float (3,nucleus.num) Coordinates of the atoms
label str (nucleus.num) Atom labels
point_group str Symmetry point group
    "nucleus": {
                "num" : [ "int"  , []                     ]
      ,      "charge" : [ "float", [ "nucleus.num" ]      ]
      ,       "coord" : [ "float", [ "nucleus.num", "3" ] ]
      ,       "label" : [ "str"  , [ "nucleus.num" ]      ]
      , "point_group" : [ "str"  , []                     ]
    } ,

TODO Effective core potentials

An effective core potential (ECP) $V_A^{\text{pp}}$ replacing the core electrons of atom $A$ is the sum of a local component $V_A^{\text{l}}$ and a non-local component $V_A^{\text{nl}}$. The local component is given by

\[ \hat{V}_A^{\text{l}}(r) = -\frac{Z_A^{\text{eff}}}{r} + \frac{Z_A^{\text{eff}}}{r}\, \exp\left( -\alpha_A\, r^2\right) + Z_{\text{eff}}\, \alpha_A\, r\, \exp\left( -\beta_A\, r^2\right) + \gamma_A \exp\left( -\delta_A\, r^2\right), \]

and the component obtained after localizing the non-local operator is

\[ \hat{V}_A^{\text{nl}}(r) = \zeta_A\, \exp\left( -\eta_A\, r^2\right) |0\rangle \langle 0| + \mu_A \, \exp\left( -\nu_A \, r^2\right) |1\rangle \langle 1| \]

where $r=|\mathbf{r-R}_A|$ is the distance to the nucleus on which the potential is centered, $Z_A^{\text{eff}}$ is the effective charge due to the removed electrons, $|0\rangle \langle 0|$ and $|1\rangle \langle 1|$ are projections over zero and one principal angular momenta, respectively (generalization to higher angular momenta is straightforward), and all the parameters labeled by Greek letters are parameters.

  • $\hat{V}_\text{ecp,l} = \sum_A \hat{V}_A^{\text{l}}$ : local component
  • $\hat{V}_\text{ecp,nl} = \sum_A \hat{V}_A^{\text{nl}}$ : non-local component
lmax_plus_1 int (nucleus.num) $l_{\max} + 1$
z_core float (nucleus.num) Charges to remove
local_n int (nucleus.num) Number of local function
local_num_n_max int Maximum value of local_n
local_exponent float (ecp.local_num_n_max, nucleus.num)
local_coef float (ecp.local_num_n_max, nucleus.num)
local_power int (ecp.local_num_n_max, nucleus.num)
non_local_n int (nucleus.num)
non_local_num_n_max int
non_local_exponent float (ecp.non_local_num_n_max, nucleus.num)
non_local_coef float (ecp.non_local_num_n_max, nucleus.num)
non_local_power int (ecp.non_local_num_n_max, nucleus.num)
    "ecp": {
                "lmax_plus_1" : [ "int"  , [ "nucleus.num" ]                            ]
      ,              "z_core" : [ "float", [ "nucleus.num" ]                            ]
      ,             "local_n" : [ "int"  , [ "nucleus.num" ]                            ]
      ,     "local_num_n_max" : [ "int"  , []                                           ]
      ,      "local_exponent" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ]     ]
      ,          "local_coef" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ]     ]
      ,         "local_power" : [ "int"  , [ "nucleus.num", "ecp.local_num_n_max" ]     ]
      ,         "non_local_n" : [ "int"  , [ "nucleus.num" ]                            ]
      , "non_local_num_n_max" : [ "int"  , []                                           ]
      ,  "non_local_exponent" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
      ,      "non_local_coef" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
      ,     "non_local_power" : [ "int"  , [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
    } ,

Basis set

We consider here basis functions centered on nuclei. Hence, we enable the possibility to define \emph{dummy atoms} to place basis functions in random positions.

The atomic basis set is defined as a list of shells. Each shell $s$ is centered on a center $A$, possesses a given angular momentum $l$ and a radial function $R_s$. The radial function is a linear combination of $N_{\text{prim}}$ primitive functions that can be of type Slater ($p=1$) or Gaussian ($p=2$), parameterized by exponents $\gamma_{ks}$ and coefficients $a_{ks}$: \[ R_s(\mathbf{r}) = \mathcal{N}_s \vert\mathbf{r}-\mathbf{R}_A\vert^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks}(\gamma_{ks},p)\, \exp \left( - \gamma_{ks} \vert \mathbf{r}-\mathbf{R}_A \vert ^p \right). \]

In the case of Gaussian functions, $n_s$ is always zero.

Different codes normalize functions at different levels. Computing normalization factors requires the ability to compute overlap integrals, so the normalization factors should be written in the file to ensure that the file is self-contained and does not need the client program to have the ability to compute such integrals.

Some codes assume that the contraction coefficients are for a linear combination of normalized primitives. This implies that a normalization constant for the primitive $ks$ needs to be computed and stored. If this normalization factor is not required, set $f_{ks}$ to one.

Some codes assume that the basis function are normalized. This implies the computation of an extra normalization factor, $\mathcal{N}_s$. If the the basis function is not normalized, set $\mathcal{N}_s=1$.

type str Type of basis set: "Gaussian" or "Slater"
shell_num int Total Number of shells
shell_center int (basis.shell_num) Nucleus on which the shell is centered ($A$)
shell_ang_mom int (basis.shell_num) Angular momentum 0:S, 1:P, 2:D, ...
shell_prim_num int (basis.shell_num) Number of primitives in the shell ($N_{\text{prim}}$)
shell_factor float (basis.shell_num) Normalization factor of the shell ($\mathcal{N}_s$)
prim_index int (basis.shell_num) Index of the first primitive in the complete list
prim_num int Total number of primitives
exponent float (basis.prim_num) Exponents of the primitives ($γks)
coefficient float (basis.prim_num) Coefficients of the primitives ($a_{ks}$)
prim_factor float (basis.prim_num) Normalization coefficients for the primitives ($f_{ks}$)
    "basis": {
                  "type" : [ "str"  , []                    ]
      ,      "shell_num" : [ "int"  , []                    ]
      ,   "shell_center" : [ "int"  , [ "basis.shell_num" ] ]
      ,  "shell_ang_mom" : [ "int"  , [ "basis.shell_num" ] ]
      , "shell_prim_num" : [ "int"  , [ "basis.shell_num" ] ]
      ,   "shell_factor" : [ "float", [ "basis.shell_num" ] ]
      ,     "prim_index" : [ "int"  , [ "basis.shell_num" ] ]
      ,       "prim_num" : [ "int"  , []                    ]
      ,       "exponent" : [ "float", [ "basis.prim_num" ]  ]
      ,    "coefficient" : [ "float", [ "basis.prim_num" ]  ]
      ,    "prim_factor" : [ "float", [ "basis.prim_num" ]  ]
    } ,

Atomic orbitals

Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number ($-l \le m \le l$), and in the case of polynomials we impose the canonical ordering of the Libint2 library, i.e

\begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray}

AOs are defined as

\[ \chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]

where $i$ is the atomic orbital index, $P$ encodes for either the polynomials or the spherical harmonics, $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen. $\mathcal{N}_i$ is a normalization factor that enables the possibility to have different normalization coefficients within a shell, as in the GAMESS convention where $\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}$ because \[ \left[ \iiint \left(x-X_A \right)^2 R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne \left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]

In such a case, one should set the normalization of the shell (in the Basis set section) to $\mathcal{N}_{z^2}$, which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the $xy$ function which should be introduced here should be $\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}$.

cartesian int 1: true, 0: false
num int Total number of atomic orbitals
shell int (ao.num) basis set shell for each AO
normalization float (ao.num) Normalization factors
    "ao": {
            "cartesian" : [ "int"  , []           ]
      ,           "num" : [ "int"  , []           ]
      ,         "shell" : [ "int"  , [ "ao.num" ] ]
      , "normalization" : [ "float", [ "ao.num" ] ]
    } ,

One-electron integrals

  • \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}} \frac{-Z_A }{\vert \mathbf{R}_A - \mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
  • \[ \hat{T}_{\text{e}} = \sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
  • $\hat{h} = \hat{T}_\text{e} + \hat{V}_\text{ne} + \hat{V}_\text{ecp,l} + \hat{V}_\text{ecp,nl}$ : core electronic Hamiltonian

The one-electron integrals for a one-electron operator $\hat{O}$ are \[ \langle p \vert \hat{O} \vert q \rangle \], returned as a matrix over atomic orbitals.

overlap float (ao.num, ao.num) $\langle p \vert q \rangle$
kinetic float (ao.num, ao.num) $\langle p \vert \hat{T}_e \vert q \rangle$
potential_n_e float (ao.num, ao.num) $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$
ecp_local float (ao.num, ao.num) $\langle p \vert \hat{V}_{\text{ecp,l} \vert q \rangle$
ecp_non_local float (ao.num, ao.num) $\langle p \vert \hat{V}_{\text{ecp,nl} \vert q \rangle$
core_hamiltonian float (ao.num, ao.num) $\langle p \vert \hat{h} \vert q \rangle$
    "ao_1e_int": {
                 "overlap" : [ "float", [ "ao.num", "ao.num" ] ]
      ,          "kinetic" : [ "float", [ "ao.num", "ao.num" ] ]
      ,    "potential_n_e" : [ "float", [ "ao.num", "ao.num" ] ]
      ,        "ecp_local" : [ "float", [ "ao.num", "ao.num" ] ]
      ,    "ecp_non_local" : [ "float", [ "ao.num", "ao.num" ] ]
      , "core_hamiltonian" : [ "float", [ "ao.num", "ao.num" ] ]
    } ,

Two-electron integrals

The two-electron integrals for a two-electron operator $\hat{O}$ are \[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists notation, where $p,q,r,s$ are indices over atomic orbitals.

Functions are provided to get the indices in physicists or chemists notation.

  • \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
  • \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i - \mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential
eri float sparse (ao.num, ao.num, ao.num, ao.num) Electron repulsion integrals
eri_lr float sparse (ao.num, ao.num, ao.num, ao.num) Long-range Electron repulsion integrals
    "ao_2e_int": {
           "eri" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
      , "eri_lr" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
    } ,

Molecular orbitals

type str String identify the set of MOs
num int Number of MOs
coefficient float (ao.num, mo.num) MO coefficients
class str (mo.num) Core, Inactive, Active, Virtual, Deleted
symmetry str (mo.num) Symmetry in the point group
occupation float (mo.num) Occupation number
    "mo": {
               "type" : [ "str"  , []                     ]
      ,         "num" : [ "int"  , []                     ]
      , "coefficient" : [ "float", [ "mo.num", "ao.num" ] ]
      ,       "class" : [ "str"  , [ "mo.num" ]           ]
      ,    "symmetry" : [ "str"  , [ "mo.num" ]           ]
      ,  "occupation" : [ "float", [ "mo.num" ]           ]
    } ,

One-electron integrals

The operators as the same as those defined in the AO one-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.

overlap float (mo.num, mo.num) $\langle i \vert j \rangle$
kinetic float (mo.num, mo.num) $\langle i \vert \hat{T}_e \vert j \rangle$
potential_n_e float (mo.num, mo.num) $\langle i \vert \hat{V}_{\text{ne}} \vert j \rangle$
ecp_local float (mo.num, mo.num) $\langle i \vert \hat{V}_{\text{ecp,l} \vert j \rangle$
ecp_non_local float (mo.num, mo.num) $\langle i \vert \hat{V}_{\text{ecp,nl} \vert j \rangle$
core_hamiltonian float (mo.num, mo.num) $\langle i \vert \hat{h} \vert j \rangle$
    "mo_1e_int": {
                 "overlap" : [ "float", [ "mo.num", "mo.num" ] ]
      ,          "kinetic" : [ "float", [ "mo.num", "mo.num" ] ]
      ,    "potential_n_e" : [ "float", [ "mo.num", "mo.num" ] ]
      ,        "ecp_local" : [ "float", [ "mo.num", "mo.num" ] ]
      ,    "ecp_non_local" : [ "float", [ "mo.num", "mo.num" ] ]
      , "core_hamiltonian" : [ "float", [ "mo.num", "mo.num" ] ]
    } ,

Two-electron integrals

The operators as the same as those defined in the AO two-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.

eri float sparse (mo.num, mo.num, mo.num, mo.num) Electron repulsion integrals
eri_lr float sparse (mo.num, mo.num, mo.num, mo.num) Long-range Electron repulsion integrals
    "mo_2e_int": {
           "eri" : [ "float sparse", [ "mo.num", "mo.num", "mo.num", "mo.num" ] ]
      , "eri_lr" : [ "float sparse", [ "mo.num", "mo.num", "mo.num", "mo.num" ] ]
    } ,

TODO Slater determinants

TODO Reduced density matrices

one_e float (mo.num, mo.num)
one_e_up float (mo.num, mo.num)
one_e_dn float (mo.num, mo.num)
two_e float sparse (mo.num, mo.num, mo.num, mo.num)
    "rdm": {
           "one_e" : [ "float"       , [ "mo.num", "mo.num" ]                     ]
      , "one_e_up" : [ "float"       , [ "mo.num", "mo.num" ]                     ]
      , "one_e_dn" : [ "float"       , [ "mo.num", "mo.num" ]                     ]
      ,    "two_e" : [ "float sparse", [ "mo.num", "mo.num", "mo.num", "mo.num" ] ]
    }