73 KiB
Atomic Orbitals
The atomic basis set is defined as a list of shells. Each shell $s$ is centered on a nucleus $A$, possesses a given angular momentum $l$ and a radial function $R_s$. The radial function is a linear combination of \emph{primitive} functions that can be of type Slater ($p=1$) or Gaussian ($p=2$):
\[ R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks} \exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). \]
In the case of Gaussian functions, $n_s$ is always zero. The normalization factor $\mathcal{N}_s$ ensures that all the functions of the shell are normalized to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, $f_{ks}$, need also to be provided.
Atomic orbitals (AOs) are defined as
\[ \chi_i (\mathbf{r}) = \mathcal{M}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]
where $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen. Here, the parameter $\mathcal{M}_i$ is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example.
In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values, gradients and Laplacian of the atomic basis functions.
Context
The following arrays are stored in the context:
type |
Gaussian ('G' ) or Slater ('S' ) |
|
shell_num |
Number of shells | |
prim_num |
Total number of primitives | |
nucleus_index |
[nucl_num] |
Index of the first shell of each nucleus |
shell_ang_mom |
[shell_num] |
Angular momentum of each shell |
shell_prim_num |
[shell_num] |
Number of primitives in each shell |
shell_prim_index |
[shell_num] |
Address of the first primitive of each shell in the EXPONENT array |
shell_factor |
[shell_num] |
Normalization factor for each shell |
exponent |
[prim_num] |
Array of exponents |
coefficient |
[prim_num] |
Array of coefficients |
prim_factor |
[prim_num] |
Normalization factors of the primtives |
Computed data
nucleus_prim_index |
[nucl_num] |
Index of the first primitive for each nucleus |
---|---|---|
primitive_vgl |
[prim_num][5][walk_num][elec_num] |
Value, gradients, Laplacian of the primitives at electron positions |
primitive_vgl_date |
uint64_t |
Late modification date of Value, gradients, Laplacian of the primitives at electron positions |
nucl_shell_index |
[nucl_num] |
Index of the first shell for each nucleus |
exponent_sorted |
[prim_num] |
Array of exponents for sorted primitives |
coeff_norm_sorted |
[prim_num] |
Array of normalized coefficients for sorted primitives |
prim_factor_sorted |
[prim_num] |
Normalization factors of the sorted primtives |
nuclear_radius |
[nucl_num] |
Distance beyond which all the AOs are zero |
For H_2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 nucleus_index = [0 , 6] shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2] shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0] prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00 ]
Data structure
typedef struct qmckl_ao_basis_struct {
int32_t uninitialized;
int64_t shell_num;
int64_t prim_num;
int64_t * nucleus_index;
int64_t * nucleus_shell_num;
int32_t * shell_ang_mom;
int64_t * shell_prim_num;
int64_t * nucleus_prim_index;
int64_t * shell_prim_index;
double * shell_factor;
double * exponent ;
double * coefficient ;
double * prim_factor ;
double * primitive_vgl;
int64_t primitive_vgl_date;
bool provided;
char type;
} qmckl_ao_basis_struct;
The uninitialized
integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and provided == true
.
Some values are initialized by default, and are not concerned by
this mechanism.
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context);
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
ctx->ao_basis.uninitialized = (1 << 12) - 1;
/* Default values */
/* ctx->ao_basis.
,*/
return QMCKL_SUCCESS;
}
Access functions
When all the data for the AOs have been provided, the following
function returns true
.
bool qmckl_ao_basis_provided (const qmckl_context context);
#+NAME:post
Initialization functions
To set the basis set, all the following functions need to be called.
qmckl_exit_code qmckl_set_ao_basis_type (qmckl_context context, const char t);
qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num);
qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num);
qmckl_exit_code qmckl_set_ao_basis_nucleus_index (qmckl_context context, const int64_t * nucleus_index);
qmckl_exit_code qmckl_set_ao_basis_nucleus_shell_num(qmckl_context context, const int64_t * nucleus_shell_num);
qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const int32_t * shell_ang_mom);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t * shell_prim_num);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t * shell_prim_index);
qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double * shell_factor);
qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double * exponent);
qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double * coefficient);
qmckl_exit_code qmckl_set_ao_basis_prim_factor (qmckl_context context, const double * prim_factor);
#+NAME:pre2
#+NAME:post2
When the basis set is completely entered, other data structures are computed to accelerate the calculations. The primitives within each contraction are sorted in ascending order of their exponents, such that as soon as a primitive is zero all the following functions vanish. Also, it is possible to compute a nuclear radius beyond which all the primitives are zero up to the numerical accuracy defined in the context.
TODO Fortran interfaces
Radial part
General functions for Gaussian basis functions
qmckl_ao_gaussian_vgl
computes the values, gradients and
Laplacians at a given point of n
Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
context |
input | Global state |
X(3) |
input | Array containing the coordinates of the points |
R(3) |
input | Array containing the x,y,z coordinates of the center |
n |
input | Number of computed Gaussians |
A(n) |
input | Exponents of the Gaussians |
VGL(ldv,5) |
output | Value, gradients and Laplacian of the Gaussians |
ldv |
input | Leading dimension of array VGL |
Requirements
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least $3 \times 8$ bytesR
is allocated with at least $3 \times 8$ bytesA
is allocated with at least $n \times 8$ bytesVGL
is allocated with at least $n \times 5 \times 8$ bytes
qmckl_exit_code
qmckl_ao_gaussian_vgl(const qmckl_context context,
const double *X,
const double *R,
const int64_t *n,
const int64_t *A,
const double *VGL,
const int64_t ldv);
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer*8 , intent(in) :: n
real*8 , intent(in) :: A(n)
real*8 , intent(out) :: VGL(ldv,5)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
real*8 :: Y(3), r2, t, u, v
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldv < n) then
info = QMCKL_INVALID_ARG_7
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
do i=1,n
VGL(i,1) = dexp(-A(i) * r2)
end do
do i=1,n
VGL(i,5) = A(i) * VGL(i,1)
end do
t = -2.d0 * ( X(1) - R(1) )
u = -2.d0 * ( X(2) - R(2) )
v = -2.d0 * ( X(3) - R(3) )
do i=1,n
VGL(i,2) = t * VGL(i,5)
VGL(i,3) = u * VGL(i,5)
VGL(i,4) = v * VGL(i,5)
end do
t = 4.d0 * r2
do i=1,n
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
end do
end function qmckl_ao_gaussian_vgl_f
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
integer*8 :: n, ldv, j, i
double precision :: X(3), R(3), Y(3), r2
double precision, allocatable :: VGL(:,:), A(:)
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
n = 10;
ldv = 100;
allocate (A(n), VGL(ldv,5))
do i=1,n
A(i) = 0.0013 * dble(ishft(1,i))
end do
test_qmckl_ao_gaussian_vgl = &
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
if (test_qmckl_ao_gaussian_vgl /= 0) return
test_qmckl_ao_gaussian_vgl = -1
do i=1,n
test_qmckl_ao_gaussian_vgl = -11
if (dabs(1.d0 - VGL(i,1) / (&
dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -12
if (dabs(1.d0 - VGL(i,2) / (&
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -13
if (dabs(1.d0 - VGL(i,3) / (&
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -14
if (dabs(1.d0 - VGL(i,4) / (&
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -15
if (dabs(1.d0 - VGL(i,5) / (&
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) &
)) > epsilon ) return
end do
test_qmckl_ao_gaussian_vgl = 0
deallocate(VGL)
end function test_qmckl_ao_gaussian_vgl
TODO General functions for Slater basis functions
TODO General functions for Radial functions on a grid
Computation of primitives
Get
qmckl_exit_code qmckl_get_ao_basis_primitive_vgl(qmckl_context context, double* const primitive_vgl);
Provide
Compute
qmckl_context | context | in | Global state |
int64_t | prim_num | in | Number of primitives |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nuclei |
int64_t | walk_num | in | Number of walkers |
int64_t | nucleus_prim_index[nucl_num] | in | Index of the 1st primitive of each nucleus |
double | elec_coord[walk_num][3][elec_num] | in | Electron coordinates |
double | nucl_coord[3][elec_num] | in | Nuclear coordinates |
double | expo[prim_num] | in | Exponents of the primitives |
double | primitive_vgl[prim_num][5][walk_num][elec_num] | out | Value, gradients and Laplacian of the primitives |
integer function qmckl_compute_ao_basis_primitive_gaussian_vgl_f(context, &
prim_num, elec_num, nucl_num, walk_num, &
nucleus_prim_index, elec_coord, nucl_coord, expo, primitive_vgl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: prim_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: nucleus_prim_index(nucl_num+1)
double precision , intent(in) :: elec_coord(elec_num,3,walk_num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(in) :: expo(prim_num)
double precision , intent(out) :: primitive_vgl(elec_num,walk_num,5,prim_num)
integer*8 :: inucl, iprim, iwalk, ielec
double precision :: x, y, z, two_a, ar2, r2, v
double precision :: r2_cut(elec_num,walk_num)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (prim_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_6
return
endif
do inucl=1,nucl_num
! C is zero-based, so shift bounds by one
do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1)
do iwalk = 1, walk_num
do ielec = 1, elec_num
x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1)
y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2)
z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
ar2 = expo(iprim)*r2
v = dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
primitive_vgl(ielec, iwalk, 1, iprim) = v
primitive_vgl(ielec, iwalk, 2, iprim) = two_a * x
primitive_vgl(ielec, iwalk, 3, iprim) = two_a * y
primitive_vgl(ielec, iwalk, 4, iprim) = two_a * z
primitive_vgl(ielec, iwalk, 5, iprim) = two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end do
end function qmckl_compute_ao_basis_primitive_gaussian_vgl_f
Test
Ideas for improvement
// m : walkers
// j : electrons
// l : primitives
k=0;
for (m=0 ; m<walk_num ; ++m) {
for (j=0 ; j<elec_num ; ++j) {
for (i=0 ; i<nucl_num ; ++i) {
r2 = nucl_elec_dist[i][j];
if (r2 < nucl_radius2[i]) {
for (l=0 ; l<prim_num ; ++l) {
tmp[k].i = i;
tmp[k].j = j;
tmp[k].m = m;
tmp[k].ar2 = -expo[l] *r2;
++k;
}
}
}
}
}
// sort(tmp) in increasing ar2;
// Identify first ar2 above numerical accuracy threshold
// Compute vectorized exponentials on significant values
Polynomial part
General functions for Powers of $x-X_i$
The qmckl_ao_power
function computes all the powers of the n
input data up to the given maximum value given in input for each of
the $n$ points:
\[ P_{ik} = X_i^k \]
qmckl_context | context | in | Global state |
int64_t | n | in | Number of values |
double | X[n] | in | Array containing the input values |
int32_t | LMAX[n] | in | Array containing the maximum power for each value |
double | P[n][ldp] | out | Array containing all the powers of X |
int64_t | ldp | in | Leading dimension of array P |
Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0X
is allocated with at least $n \times 8$ bytesLMAX
is allocated with at least $n \times 4$ bytesP
is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytesLDP
>= $\max_i$LMAX[i]
C Header
qmckl_exit_code qmckl_ao_power (
const qmckl_context context,
const int64_t n,
const double* X,
const int32_t* LMAX,
double* const P,
const int64_t ldp );
Source
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
integer*8 , intent(in) :: n
real*8 , intent(in) :: X(n)
integer , intent(in) :: LMAX(n)
real*8 , intent(out) :: P(ldp,n)
integer*8 , intent(in) :: ldp
integer*8 :: i,k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= ldp) then
info = QMCKL_INVALID_ARG_2
return
endif
k = MAXVAL(LMAX)
if (LDP < k) then
info = QMCKL_INVALID_ARG_6
return
endif
if (k <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do i=1,n
P(1,i) = X(i)
do k=2,LMAX(i)
P(k,i) = P(k-1,i) * X(i)
end do
end do
end function qmckl_ao_power_f
C interface
Fortran interface
Test
integer(c_int32_t) function test_qmckl_ao_power(context) bind(C)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer*8 :: n, LDP
integer, allocatable :: LMAX(:)
double precision, allocatable :: X(:), P(:,:)
integer*8 :: i,j
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
n = 100;
LDP = 10;
allocate(X(n), P(LDP,n), LMAX(n))
do j=1,n
X(j) = -5.d0 + 0.1d0 * dble(j)
LMAX(j) = 1 + int(mod(j, 5),4)
end do
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
if (test_qmckl_ao_power /= QMCKL_SUCCESS) return
test_qmckl_ao_power = QMCKL_FAILURE
do j=1,n
do i=1,LMAX(j)
if ( X(j)**i == 0.d0 ) then
if ( P(i,j) /= 0.d0) return
else
if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return
end if
end do
end do
test_qmckl_ao_power = QMCKL_SUCCESS
deallocate(X,P,LMAX)
end function test_qmckl_ao_power
General functions for Value, Gradient and Laplacian of a polynomial
A polynomial is centered on a nucleus $\mathbf{R}_i$
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
The gradients with respect to electron coordinates are
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}and the Laplacian is
\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}. \end{eqnarray*}
qmckl_ao_polynomial_vgl
computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to lmax
.
qmckl_context | context | in | Global state |
double | X[3] | in | Array containing the coordinates of the points |
double | R[3] | in | Array containing the x,y,z coordinates of the center |
int32_t | lmax | in | Maximum angular momentum |
int64_t | n | inout | Number of computed polynomials |
int32_t | L[n][ldl] | out | Contains a,b,c for all n results |
int64_t | ldl | in | Leading dimension of L |
double | VGL[n][ldv] | out | Value, gradients and Laplacian of the polynomials |
int64_t | ldv | in | Leading dimension of array VGL |
Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least $3 \times 8$ bytesR
is allocated with at least $3 \times 8$ bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least $3 \times n \times 4$ bytesVGL
is allocated with at least $5 \times n \times 8$ bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
-
On output, the powers are given in the following order (l=a+b+c):
- Increasing values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increasing values of
C Header
qmckl_exit_code qmckl_ao_polynomial_vgl (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
Source
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer , intent(in) :: lmax
integer*8 , intent(out) :: n
integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldl
real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
integer :: a,b,c,d
real*8 :: Y(3)
integer :: lmax_array(3)
real*8 :: pows(-2:lmax,3)
integer, external :: qmckl_ao_power_f
double precision :: xy, yz, xz
double precision :: da, db, dc, dd
info = 0
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (lmax < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldl < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (ldv < 5) then
info = QMCKL_INVALID_ARG_9
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
lmax_array(1:3) = lmax
if (lmax == 0) then
VGL(1,1) = 1.d0
vgL(2:5,1) = 0.d0
l(1:3,1) = 0
n=1
else if (lmax > 0) then
pows(-2:0,1:3) = 1.d0
do i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
end do
VGL(1:5,1:4) = 0.d0
l (1:3,1:4) = 0
VGL(1 ,1 ) = 1.d0
vgl(1:5,2:4) = 0.d0
l (1,2) = 1
vgl(1,2) = pows(1,1)
vgL(2,2) = 1.d0
l (2,3) = 1
vgl(1,3) = pows(1,2)
vgL(3,3) = 1.d0
l (3,4) = 1
vgl(1,4) = pows(1,3)
vgL(4,4) = 1.d0
n=4
endif
! l>=2
dd = 2.d0
do d=2,lmax
da = dd
do a=d,0,-1
db = dd-da
do b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
vgl(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
vgl(2,n) = pows(a-1,1) * yz
vgl(3,n) = pows(b-1,2) * xz
vgl(4,n) = pows(c-1,3) * xy
vgl(5,n) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
end do
da = da - 1.d0
end do
dd = dd + 1.d0
end do
info = QMCKL_SUCCESS
end function qmckl_ao_polynomial_vgl_f
C interface
Fortran interface
Test
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C)
use qmckl
implicit none
integer(c_int64_t), intent(in), value :: context
integer :: lmax, d, i
integer, allocatable :: L(:,:)
integer*8 :: n, ldl, ldv, j
double precision :: X(3), R(3), Y(3)
double precision, allocatable :: VGL(:,:)
double precision :: w
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
lmax = 4;
ldl = 3;
ldv = 100;
d = (lmax+1)*(lmax+2)*(lmax+3)/6
allocate (L(ldl,d), VGL(ldv,d))
test_qmckl_ao_polynomial_vgl = &
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return
if (n /= d) return
do j=1,n
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
do i=1,3
if (L(i,j) < 0) return
end do
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (dabs(1.d0 - VGL(1,j) / (&
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(1,j) < 1) then
if (VGL(2,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(2,j) / (&
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(2,j) < 1) then
if (VGL(3,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(3,j) / (&
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(3,j) < 1) then
if (VGL(4,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(4,j) / (&
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
w = 0.d0
if (L(1,j) > 1) then
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
end if
if (L(2,j) > 1) then
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
end if
if (L(3,j) > 1) then
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
end if
if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return
end do
test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS
deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
int test_qmckl_ao_polynomial_vgl(qmckl_context context);
assert(0 == test_qmckl_ao_polynomial_vgl(context));