1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-12-22 20:36:01 +01:00
qmckl/org/qmckl_jastrow_champ.org

12662 lines
477 KiB
Org Mode

#+TITLE: CHAMP Jastrow Factor
#+SETUPFILE: ../tools/theme.setup
#+INCLUDE: ../tools/lib.org
* Introduction
The Jastrow factor depends on the electronic ($\mathbf{r}$) and
nuclear ($\mathbf{R}$) coordinates. Its defined as $\exp(J(\mathbf{r},\mathbf{R}))$, where
\[
J(\mathbf{r},\mathbf{R}) = J_{\text{eN}}(\mathbf{r},\mathbf{R}) + J_{\text{ee}}(\mathbf{r}) + J_{\text{eeN}}(\mathbf{r},\mathbf{R})
\]
In the following, we use the notations $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and
$R_{i\alpha} = |\mathbf{r}_i - \mathbf{R}_\alpha|$.
$J_{\text{eN}}$ contains electron-nucleus terms:
\[
J_{\text{eN}}(\mathbf{r},\mathbf{R}) =
\sum_{\alpha=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}}
\frac{a_{1\,\alpha}\, f_\alpha(R_{i\alpha})}{1+a_{2\,\alpha}\, f_\alpha(R_{i\alpha})} +
\sum_{p=2}^{N_\text{ord}^a} a_{p+1\,\alpha}\, [f_\alpha(R_{i\alpha})]^p - J_{\text{eN}}^{\infty \alpha}
\]
$J_{\text{ee}}$ contains electron-electron terms:
\[
J_{\text{ee}}(\mathbf{r}) =
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1}
\frac{\frac{1}{2}(1+\delta^{\uparrow\downarrow}_{ij}) b_1\, f_{\text{ee}}(r_{ij})}{1+b_2\, f_{\text{ee}}(r_{ij})} +
\sum_{p=2}^{N_\text{ord}^b} b_{p+1}\, [f_{\text{ee}}(r_{ij})]^p - J_{ee}^\infty
\]
and $J_{\text{eeN}}$ contains electron-electron-Nucleus terms:
\[
J_{\text{eeN}}(\mathbf{r},\mathbf{R}) =
\sum_{\alpha=1}^{N_{\text{nucl}}}
\sum_{i=1}^{N_{\text{elec}}}
\sum_{j=1}^{i-1}
\sum_{p=2}^{N_{\text{ord}}}
\sum_{k=0}^{p-1}
\sum_{l=0}^{p-k-2\delta_{k,0}}
c_{lkp\alpha} \left[ g_\text{e}({r}_{ij}) \right]^k
\left[ \left[ g_\alpha({R}_{i\alpha}) \right]^l + \left[ g_\alpha({R}_{j\alpha}) \right]^l \right]
\left[ g_\alpha({R}_{i\,\alpha}) \, g_\alpha({R}_{j\alpha}) \right]^{(p-k-l)/2}
\]
$c_{lkp\alpha}$ are non-zero only when $p-k-l$ is even.
$f$ and $g$ are scaling function defined as
\[
f_\alpha(r) = \frac{1-e^{-\kappa_\alpha\, r}}{\kappa_\alpha} \text{ and }
g_\alpha(r) = e^{-\kappa_\alpha\, r} = 1-\kappa_\alpha f_\alpha(r).
\]
The terms $J_{\text{ee}}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that
$J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero.
The eN and eeN parameters are the same of all identical nuclei.
Warning: The types of nuclei use zero-based indexing.
The derivatives are computed with respect to the electron $i$ for
\[ r_{ij} = |r_i - r_j| \]
* Headers :noexport:
#+begin_src elisp :noexport :results none
(org-babel-lob-ingest "../tools/lib.org")
#+end_src
#+begin_src c :tangle (eval h_private_func)
#ifndef QMCKL_JASTROW_CHAMP_HPF
#define QMCKL_JASTROW_CHAMP_HPF
#+end_src
#+begin_src c :tangle (eval h_private_type)
#ifndef QMCKL_JASTROW_CHAMP_HPT
#define QMCKL_JASTROW_CHAMP_HPT
#include <stdbool.h>
#+end_src
#+begin_src c :tangle (eval c_test) :noweb yes
#include "qmckl.h"
#include <string.h>
#include <assert.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdbool.h>
#include <stdio.h>
#include "n2.h"
#include "qmckl_context_private_type.h"
#include "qmckl_jastrow_champ_private_func.h"
int main() {
qmckl_context context;
context = qmckl_context_create();
#+end_src
#+begin_src c :tangle (eval c)
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#elif HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "qmckl.h"
#include "qmckl_context_private_type.h"
#include "qmckl_memory_private_type.h"
#include "qmckl_memory_private_func.h"
#include "qmckl_jastrow_champ_private_type.h"
#include "qmckl_jastrow_champ_private_func.h"
#+end_src
* Context
:PROPERTIES:
:Name: qmckl_jastrow_champ
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
The following data stored in the context:
#+NAME: qmckl_jastrow_args
| Variable | Type | Description |
|---------------------+---------------------------------------+-------------------------------------------------------------------|
| ~uninitialized~ | ~int32_t~ | Keeps bits set for uninitialized data |
| ~rescale_factor_ee~ | ~double~ | The distance scaling factor |
| ~rescale_factor_en~ | ~double[type_nucl_num]~ | The distance scaling factor |
| ~aord_num~ | ~int64_t~ | The number of a coeffecients |
| ~bord_num~ | ~int64_t~ | The number of b coeffecients |
| ~cord_num~ | ~int64_t~ | The number of c coeffecients |
| ~type_nucl_num~ | ~int64_t~ | Number of Nuclei types |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | IDs of types of Nuclei. These use 0-based indexing as in C. |
| ~a_vector~ | ~double[aord_num + 1][type_nucl_num]~ | a polynomial coefficients |
| ~b_vector~ | ~double[bord_num + 1]~ | b polynomial coefficients |
| ~c_vector~ | ~double[dim_c_vector][type_nucl_num]~ | c polynomial coefficients |
| ~c_vector~ | ~double[dim_c_vector][type_nucl_num]~ | c polynomial coefficients |
| ~spin_independent~ | ~int32_t~ | If 1, use same parameters for parallel and anti-parallel spins. Otherwise, 0. |
Computed data:
| Variable | Type | In/Out |
|--------------------------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------|
| ~dim_c_vector~ | ~int64_t~ | Number of unique C coefficients |
| ~dim_c_vector_date~ | ~uint64_t~ | Number of unique C coefficients |
| ~asymp_jasa~ | ~double[type_nucl_num]~ | Asymptotic component |
| ~asymp_jasa_date~ | ~uint64_t~ | Ladt modification of the asymptotic component |
| ~asymp_jasb~ | ~double[2]~ | Asymptotic component (up- or down-spin) |
| ~asymp_jasb_date~ | ~uint64_t~ | Ladt modification of the asymptotic component |
| ~c_vector_full~ | ~double[dim_c_vector][nucl_num]~ | vector of non-zero coefficients |
| ~c_vector_full_date~ | ~uint64_t~ | Keep track of changes here |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | Transform l,k,p, and m into consecutive indices |
| ~lkpm_combined_index_date~ | ~uint64_t~ | Transform l,k,p, and m into consecutive indices |
| ~tmp_c~ | ~double[walk_num][cord_num][cord_num+1][nucl_num][elec_num]~ | vector of non-zero coefficients |
| ~dtmp_c~ | ~double[walk_num][elec_num][4][nucl_num][cord_num+1][cord_num]~ | vector of non-zero coefficients |
| ~ee_distance_rescaled~ | ~double[walk_num][num][num]~ | Electron-electron rescaled distances |
| ~ee_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~ee_distance_rescaled_gl~ | ~double[walk_num][num][num][4]~ | Electron-electron rescaled distances derivatives |
| ~ee_distance_rescaled_gl_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][num]~ | Electron-nucleus distances |
| ~en_distance_rescaled_date~ | ~uint64_t~ | Last modification date of the electron-electron distances |
| ~en_distance_rescaled_gl~ | ~double[walk_num][nucl_num][num][4]~ | Electron-electron rescaled distances derivatives |
| ~en_distance_rescaled_gl_date~ | ~uint64_t~ | Last modification date of the electron-electron distance derivatives |
| ~een_rescaled_n~ | ~double[walk_num][cord_num+1][nucl_num][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord |
| ~een_rescaled_n_date~ | ~uint64_t~ | Keep track of the date of creation |
| ~een_rescaled_e_gl~ | ~double[walk_num][cord_num+1][elec_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
| ~een_rescaled_e_gl_date~ | ~uint64_t~ | Keep track of the date of creation |
| ~een_rescaled_n_gl~ | ~double[walk_num][cord_num+1][nucl_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
| ~een_rescaled_n_gl_date~ | ~uint64_t~ | Keep track of the date of creation |
| ~factor_ee~ | ~double[walk_num]~ | Jastrow factor: electron-electron part |
| ~factor_ee_date~ | ~uint64_t~ | Jastrow factor: electron-electron part |
| ~factor_en~ | ~double[walk_num]~ | Jastrow factor: electron-nucleus part |
| ~factor_en_date~ | ~uint64_t~ | Jastrow factor: electron-nucleus part |
| ~factor_een~ | ~double[walk_num]~ | Jastrow factor: electron-electron-nucleus part |
| ~factor_een_date~ | ~uint64_t~ | Jastrow factor: electron-electron-nucleus part |
| ~factor_ee_gl~ | ~double[walk_num][4][elec_num]~ | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_ee_gl_date~ | ~uint64_t~ | Keep track of the date for the derivative |
| ~factor_en_gl~ | ~double[walk_num][4][elec_num]~ | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_en_gl_date~ | ~uint64_t~ | Keep track of the date for the en derivative |
| ~factor_een_gl~ | ~double[walk_num][4][elec_num]~ | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_een_gl_date~ | ~uint64_t~ | Keep track of the date for the een derivative |
| ~value~ | ~double[walk_num]~ | Value of the Jastrow factor |
| ~value_date~ | ~uint64_t~ | Keep track of the date |
| ~gl~ | ~double[walk_num][4][elec_num]~ | Gradient and Laplacian of the Jastrow factor |
| ~value_date~ | ~uint64_t~ | Keep track of the date |
#+NAME: jastrow_data
#+BEGIN_SRC python :results none :exports none
import numpy as np
kappa = 0.6
kappa_inv = 1./kappa
# For H2O we have the following data:
elec_num = 10
nucl_num = 2
up_num = 5
down_num = 5
nucl_coord = np.array([ [0.000000, 0.000000 ],
[0.000000, 0.000000 ],
[0.000000, 2.059801 ] ])
elec_coord = np.array( [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303],
[-0.587812193472177 , -0.128751981129274 , 0.187773606533075],
[ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ],
[-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ],
[ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ],
[-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002],
[-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867],
[ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002],
[-0.108090166832043 , 0.189161729653261 , 2.15398313919894],
[ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]])
ee_distance_rescaled = np.array(\
[ [(1.-np.exp(-kappa*np.linalg.norm(elec_coord[0,j,:]-elec_coord[0,i,:])))/kappa \
for i in range(elec_num) ]
for j in range(elec_num) ])
en_distance_rescaled = \
np.array([ [(1.-np.exp(-kappa*np.linalg.norm(elec_coord[0,j,:]-nucl_coord[:,i])))/kappa \
for j in range(elec_num) ]
for i in range(nucl_num) ])
# symmetrize it
#for i in range(elec_num):
# for j in range(elec_num):
# ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i]
# For N2, we have the following data:
type_nucl_num = 1
aord_num = 5
bord_num = 5
cord_num = 5
dim_c_vector= 23
type_nucl_vector = [ 0, 0]
a_vector = np.array([
[0.000000000000000E+000],
[0.000000000000000E+000],
[-0.380512000000000E+000],
[-0.157996000000000E+000],
[-3.155800000000000E-002],
[2.151200000000000E-002]])
b_vector =np.array( [ 0.500000000000000E-000, 0.153660000000000E-000, 6.722620000000000E-002,
2.157000000000000E-002, 7.309600000000000E-003, 2.866000000000000E-003])
c_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ]
c_vector_full = [
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
]
lkpm_combined_index = [[1 , 1 , 2 , 0],
[0 , 0 , 2 , 1],
[1 , 2 , 3 , 0],
[2 , 1 , 3 , 0],
[0 , 1 , 3 , 1],
[1 , 0 , 3 , 1],
[1 , 3 , 4 , 0],
[2 , 2 , 4 , 0],
[0 , 2 , 4 , 1],
[3 , 1 , 4 , 0],
[1 , 1 , 4 , 1],
[2 , 0 , 4 , 1],
[0 , 0 , 4 , 2],
[1 , 4 , 5 , 0],
[2 , 3 , 5 , 0],
[0 , 3 , 5 , 1],
[3 , 2 , 5 , 0],
[1 , 2 , 5 , 1],
[4 , 1 , 5 , 0],
[2 , 1 , 5 , 1],
[0 , 1 , 5 , 2],
[3 , 0 , 5 , 1],
[1 , 0 , 5 , 2]]
#+END_SRC
** Data structure
#+begin_src c :comments org :tangle (eval h_private_type)
typedef struct qmckl_jastrow_champ_struct{
int64_t * restrict lkpm_combined_index;
int64_t * restrict type_nucl_vector;
double * restrict asymp_jasa;
double asymp_jasb[2];
double * restrict a_vector;
double * restrict b_vector;
double * restrict c_vector;
double * restrict c_vector_full;
double * restrict dtmp_c;
double * restrict ee_distance_rescaled;
double * restrict ee_distance_rescaled_gl;
double * restrict een_rescaled_e;
double * restrict een_rescaled_e_gl;
double * restrict een_rescaled_n;
double * restrict een_rescaled_n_gl;
double * restrict en_distance_rescaled;
double * restrict en_distance_rescaled_gl;
double * restrict factor_ee;
double * restrict factor_ee_gl;
double * restrict factor_een;
double * restrict factor_een_gl;
double * restrict factor_en;
double * restrict factor_en_gl;
double * restrict rescale_factor_en;
double * restrict tmp_c;
double * restrict value;
double * restrict gl;
int64_t aord_num;
int64_t bord_num;
int64_t cord_num;
int64_t dim_c_vector;
int64_t type_nucl_num;
uint64_t asymp_jasa_date;
uint64_t asymp_jasb_date;
uint64_t c_vector_full_date;
uint64_t dim_c_vector_date;
uint64_t dtmp_c_date;
uint64_t ee_distance_rescaled_date;
uint64_t ee_distance_rescaled_gl_date;
uint64_t een_rescaled_e_date;
uint64_t een_rescaled_e_gl_date;
uint64_t een_rescaled_n_date;
uint64_t een_rescaled_n_gl_date;
uint64_t en_distance_rescaled_date;
uint64_t en_distance_rescaled_gl_date;
uint64_t factor_ee_date;
uint64_t factor_ee_gl_date;
uint64_t factor_een_date;
uint64_t factor_een_gl_date;
uint64_t factor_en_date;
uint64_t factor_en_gl_date;
uint64_t lkpm_combined_index_date;
uint64_t tmp_c_date;
uint64_t value_date;
uint64_t gl_date;
double rescale_factor_ee;
int32_t uninitialized;
int32_t spin_independent;
bool provided;
} qmckl_jastrow_champ_struct;
#+end_src
The ~uninitialized~ integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and ~provided == true~.
Some values are initialized by default, and are not concerned by
this mechanism.
#+begin_src c :comments org :tangle (eval h_private_func)
qmckl_exit_code qmckl_init_jastrow_champ(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c)
qmckl_exit_code qmckl_init_jastrow_champ(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
ctx->jastrow_champ.uninitialized = (1 << 11) - 1;
/* Default values */
ctx->jastrow_champ.aord_num = -1;
ctx->jastrow_champ.bord_num = -1;
ctx->jastrow_champ.cord_num = -1;
ctx->jastrow_champ.dim_c_vector = -1;
ctx->jastrow_champ.type_nucl_num = -1;
ctx->jastrow_champ.spin_independent = -1;
return QMCKL_SUCCESS;
}
#+end_src
** Initialization functions
To prepare for the Jastrow and its derivative, all the following functions need to be
called.
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code qmckl_set_jastrow_champ_rescale_factor_ee (qmckl_context context, const double kappa_ee);
qmckl_exit_code qmckl_set_jastrow_champ_rescale_factor_en (qmckl_context context, const double* kappa_en, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_champ_aord_num (qmckl_context context, const int64_t aord_num);
qmckl_exit_code qmckl_set_jastrow_champ_bord_num (qmckl_context context, const int64_t bord_num);
qmckl_exit_code qmckl_set_jastrow_champ_cord_num (qmckl_context context, const int64_t cord_num);
qmckl_exit_code qmckl_set_jastrow_champ_type_nucl_num (qmckl_context context, const int64_t type_nucl_num);
qmckl_exit_code qmckl_set_jastrow_champ_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_champ_a_vector (qmckl_context context, const double * a_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_champ_b_vector (qmckl_context context, const double * b_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_champ_c_vector (qmckl_context context, const double * c_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_champ_spin_independent (qmckl_context context, const int32_t spin_independent);
#+end_src
#+NAME:pre2
#+begin_src c :exports none
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
if (mask != 0 && !(ctx->jastrow_champ.uninitialized & mask)) {
return qmckl_failwith( context,
QMCKL_ALREADY_SET,
"qmckl_set_jastrow_champ_*",
NULL);
}
#+end_src
#+NAME:post2
#+begin_src c :exports none
ctx->jastrow_champ.uninitialized &= ~mask;
ctx->jastrow_champ.provided = (ctx->jastrow_champ.uninitialized == 0);
if (ctx->jastrow_champ.provided) {
qmckl_exit_code rc_ = qmckl_finalize_jastrow_champ(context);
if (rc_ != QMCKL_SUCCESS) return rc_;
}
return QMCKL_SUCCESS;
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_jastrow_champ_aord_num(qmckl_context context, const int64_t aord_num)
{
int32_t mask = 1 << 0;
<<pre2>>
if (aord_num < 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_aord_num",
"aord_num < 0");
}
ctx->jastrow_champ.aord_num = aord_num;
ctx->jastrow_champ.uninitialized |= (1 << 5);
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_bord_num(qmckl_context context, const int64_t bord_num)
{
int32_t mask = 1 << 1;
<<pre2>>
if (bord_num < 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_bord_num",
"bord_num < 0");
}
ctx->jastrow_champ.bord_num = bord_num;
ctx->jastrow_champ.uninitialized |= (1 << 6);
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_cord_num(qmckl_context context, const int64_t cord_num)
{
int32_t mask = 1 << 2;
<<pre2>>
if (cord_num < 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_cord_num",
"cord_num < 0");
}
int64_t dim_c_vector = -1;
qmckl_exit_code rc = qmckl_compute_dim_c_vector(context, cord_num, &dim_c_vector);
assert (rc == QMCKL_SUCCESS);
ctx->jastrow_champ.cord_num = cord_num;
ctx->jastrow_champ.dim_c_vector = dim_c_vector;
// If cord_num == 0, a_vector can't be set
if (cord_num > 0) {
ctx->jastrow_champ.uninitialized |= (1 << 7);
} else {
ctx->jastrow_champ.uninitialized &= ~(1 << 7);
}
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_type_nucl_num(qmckl_context context, const int64_t type_nucl_num)
{
int32_t mask = 1 << 3;
<<pre2>>
if (type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_type_nucl_num",
"type_nucl_num < 0");
}
ctx->jastrow_champ.type_nucl_num = type_nucl_num;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_type_nucl_vector(qmckl_context context,
int64_t const * type_nucl_vector,
const int64_t nucl_num)
{
int32_t mask = 1 << 4;
<<pre2>>
int64_t type_nucl_num = ctx->jastrow_champ.type_nucl_num;
if (type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_type_nucl_vector",
"type_nucl_num not initialized");
}
if (type_nucl_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_type_nucl_vector",
"type_nucl_vector = NULL");
}
for (int i=0 ; i<nucl_num ; ++i) {
if (type_nucl_vector[i] < 0) {
return qmckl_failwith( context, QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_type_nucl_vector",
"Inconsistent values of type_nucl_vector (<0)" );
}
if (type_nucl_vector[i] >= type_nucl_num) {
return qmckl_failwith( context, QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_type_nucl_vector",
"Inconsistent values of type_nucl_vector (>=nucl_num). Values should use 0-based indexing as in C." );
}
}
if (ctx->jastrow_champ.type_nucl_vector != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.type_nucl_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_jastrow_champ_type_nucl_vector",
"Unable to free ctx->jastrow_champ.type_nucl_vector");
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = nucl_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_champ_type_nucl_vector",
NULL);
}
memcpy(new_array, type_nucl_vector, mem_info.size);
ctx->jastrow_champ.type_nucl_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_a_vector(qmckl_context context,
double const * a_vector,
const int64_t size_max)
{
int32_t mask = 1 << 5;
<<pre2>>
int64_t aord_num = ctx->jastrow_champ.aord_num;
if (aord_num < 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_a_vector",
"aord_num not initialized");
}
int64_t type_nucl_num = ctx->jastrow_champ.type_nucl_num;
if (type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_a_vector",
"type_nucl_num not initialized");
}
if (a_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_a_vector",
"a_vector = NULL");
}
if (ctx->jastrow_champ.a_vector != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.a_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_jastrow_champ_a_vector",
"Unable to free ctx->jastrow_champ.a_vector");
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (aord_num + 1) * type_nucl_num * sizeof(double);
if (size_max < (aord_num+1)*type_nucl_num ) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_champ_a_vector",
"Array too small. Expected (aord_num+1)*type_nucl_num");
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_champ_a_vector",
NULL);
}
memcpy(new_array, a_vector, mem_info.size);
ctx->jastrow_champ.a_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_b_vector(qmckl_context context,
double const * b_vector,
const int64_t size_max)
{
int32_t mask = 1 << 6;
<<pre2>>
int64_t bord_num = ctx->jastrow_champ.bord_num;
if (bord_num < 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_b_vector",
"bord_num not initialized");
}
if (b_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_b_vector",
"b_vector = NULL");
}
if (ctx->jastrow_champ.b_vector != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.b_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_jastrow_champ_b_vector",
"Unable to free ctx->jastrow_champ.b_vector");
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (bord_num + 1) * sizeof(double);
if (size_max < (bord_num+1)) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_champ_b_vector",
"Array too small. Expected (bord_num+1)");
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_champ_b_vector",
NULL);
}
memcpy(new_array, b_vector, mem_info.size);
ctx->jastrow_champ.b_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_c_vector(qmckl_context context,
double const * c_vector,
const int64_t size_max)
{
int32_t mask = 1 << 7;
<<pre2>>
int64_t type_nucl_num = ctx->jastrow_champ.type_nucl_num;
if (type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_c_vector",
"type_nucl_num not initialized");
}
int64_t dim_c_vector = ctx->jastrow_champ.dim_c_vector;
if (dim_c_vector < 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_c_vector",
"cord_num not initialized");
}
if (c_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_c_vector",
"c_vector = NULL");
}
if (ctx->jastrow_champ.c_vector != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.c_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_jastrow_champ_c_vector",
"Unable to free ctx->jastrow_champ.c_vector");
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = dim_c_vector*type_nucl_num * sizeof(double);
if (size_max < dim_c_vector*type_nucl_num) {
char msg[256];
sprintf(msg, "Array too small. Expected dim_c_vector*type_nucl_num = %ld", (long)
(dim_c_vector*type_nucl_num) );
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_champ_c_vector",
msg);
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_champ_c_vector",
NULL);
}
memcpy(new_array, c_vector, mem_info.size);
ctx->jastrow_champ.c_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_rescale_factor_ee(qmckl_context context,
const double rescale_factor_ee) {
int32_t mask = 1 << 8;
<<pre2>>
if (rescale_factor_ee <= 0.0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_rescale_factor_ee",
"rescale_factor_ee <= 0.0");
}
ctx->jastrow_champ.rescale_factor_ee = rescale_factor_ee;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_rescale_factor_en(qmckl_context context,
const double* rescale_factor_en,
const int64_t size_max) {
int32_t mask = 1 << 9;
<<pre2>>
if (ctx->jastrow_champ.type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_set_jastrow_champ_rescale_factor_en",
"type_nucl_num not set");
}
if (rescale_factor_en == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_rescale_factor_en",
"Null pointer");
}
if (size_max < ctx->jastrow_champ.type_nucl_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_champ_rescale_factor_en",
"Array too small. Expected type_nucl_num.");
}
if (ctx->jastrow_champ.rescale_factor_en != NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_champ_rescale_factor_en",
"Already set");
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->jastrow_champ.type_nucl_num * sizeof(double);
ctx->jastrow_champ.rescale_factor_en = (double*) qmckl_malloc(context, mem_info);
for (int64_t i=0 ; i<ctx->jastrow_champ.type_nucl_num ; ++i) {
if (rescale_factor_en[i] <= 0.0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_champ_rescale_factor_en",
"rescale_factor_en <= 0.0");
}
ctx->jastrow_champ.rescale_factor_en[i] = rescale_factor_en[i];
}
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_champ_spin_independent(qmckl_context context, const int32_t spin_independent)
{
int32_t mask = 1 << 10;
<<pre2>>
ctx->jastrow_champ.spin_independent = spin_independent;
<<post2>>
}
#+end_src
When the required information is completely entered, other data structures are
computed to accelerate the calculations. The intermediates factors
are precontracted using BLAS LEVEL 3 operations.
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_jastrow_champ(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_jastrow_champ(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_finalize_jastrow_champ",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* ----------------------------------- */
/* Check for the necessary information */
/* ----------------------------------- */
if (!(ctx->electron.provided)) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_electron",
NULL);
}
if (!(ctx->nucleus.provided)) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_nucleus",
NULL);
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_asymp_jasa(context);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_provide_jastrow_champ_asymp_jasb(context);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_context_touch(context);
return rc;
}
#+end_src
**** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_rescale_factor_ee (context, &
kappa_ee) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
real(c_double), intent(in), value :: kappa_ee
end function qmckl_set_jastrow_champ_rescale_factor_ee
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_rescale_factor_en (context, &
kappa_en, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(in) :: kappa_en(size_max)
end function qmckl_set_jastrow_champ_rescale_factor_en
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_aord_num (context, &
aord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: aord_num
end function qmckl_set_jastrow_champ_aord_num
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_bord_num (context, &
bord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: bord_num
end function qmckl_set_jastrow_champ_bord_num
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_cord_num (context, &
cord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: cord_num
end function qmckl_set_jastrow_champ_cord_num
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_type_nucl_num (context, &
type_nucl_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: type_nucl_num
end function qmckl_set_jastrow_champ_type_nucl_num
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_type_nucl_vector (context, &
type_nucl_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
integer(c_int64_t), intent(in) :: type_nucl_vector(size_max)
end function qmckl_set_jastrow_champ_type_nucl_vector
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_a_vector(context, &
a_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(in) :: a_vector(size_max)
end function qmckl_set_jastrow_champ_a_vector
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_b_vector(context, &
b_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(in) :: b_vector(size_max)
end function qmckl_set_jastrow_champ_b_vector
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_c_vector(context, &
c_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(in) :: c_vector(size_max)
end function qmckl_set_jastrow_champ_c_vector
integer(qmckl_exit_code) function qmckl_set_jastrow_champ_spin_independent(context, &
spin_independent) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer(qmckl_context) , intent(in) , value :: context
integer(c_int32_t), intent(in), value :: spin_independent
end function qmckl_set_jastrow_champ_spin_independent
end interface
#+end_src
** Access functions
#+begin_src c :comments org :tangle (eval h_func) :exports none
qmckl_exit_code qmckl_get_jastrow_champ_aord_num (qmckl_context context, int64_t* const aord_num);
qmckl_exit_code qmckl_get_jastrow_champ_bord_num (qmckl_context context, int64_t* const bord_num);
qmckl_exit_code qmckl_get_jastrow_champ_cord_num (qmckl_context context, int64_t* const bord_num);
qmckl_exit_code qmckl_get_jastrow_champ_type_nucl_num (qmckl_context context, int64_t* const type_nucl_num);
qmckl_exit_code qmckl_get_jastrow_champ_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_champ_a_vector (qmckl_context context, double * const a_vector, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_champ_b_vector (qmckl_context context, double * const b_vector, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_champ_c_vector (qmckl_context context, double * const c_vector, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_champ_rescale_factor_ee (const qmckl_context context, double* const rescale_factor_ee);
qmckl_exit_code qmckl_get_jastrow_champ_rescale_factor_en (const qmckl_context context, double* const rescale_factor_en, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_champ_dim_c_vector (qmckl_context context, int64_t* const dim_c_vector);
qmckl_exit_code qmckl_get_jastrow_champ_spin_independent (qmckl_context context, int32_t* const spin_independent);
#+end_src
Along with these core functions, calculation of the jastrow factor
requires the following additional information to be set:
When all the data for the AOs have been provided, the following
function returns ~true~.
#+begin_src c :comments org :tangle (eval h_func)
bool qmckl_jastrow_champ_provided (const qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
bool qmckl_jastrow_champ_provided(const qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
return ctx->jastrow_champ.provided;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_champ_aord_num (const qmckl_context context, int64_t* const aord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_aord_num",
NULL);
}
if (aord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_aord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 0;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.aord_num > 0);
,*aord_num = ctx->jastrow_champ.aord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_champ_bord_num (const qmckl_context context, int64_t* const bord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_bord_num",
NULL);
}
if (bord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_bord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 1;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.bord_num > 0);
,*bord_num = ctx->jastrow_champ.bord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_champ_cord_num (const qmckl_context context, int64_t* const cord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_cord_num",
NULL);
}
if (cord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_cord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 2;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.cord_num > 0);
,*cord_num = ctx->jastrow_champ.cord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_champ_type_nucl_num (const qmckl_context context, int64_t* const type_nucl_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_type_nucl_num",
NULL);
}
if (type_nucl_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_type_nucl_num",
"type_nucl_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 3;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.type_nucl_num > 0);
,*type_nucl_num = ctx->jastrow_champ.type_nucl_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_type_nucl_vector (const qmckl_context context,
int64_t* const type_nucl_vector,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_type_nucl_vector",
NULL);
}
if (type_nucl_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_type_nucl_vector",
"type_nucl_vector is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 4;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.type_nucl_vector != NULL);
if (size_max < ctx->jastrow_champ.type_nucl_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_type_nucl_vector",
"Array too small. Expected jastrow_champ.type_nucl_num");
}
memcpy(type_nucl_vector, ctx->jastrow_champ.type_nucl_vector, ctx->jastrow_champ.type_nucl_num*sizeof(int64_t));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_a_vector (const qmckl_context context,
double * const a_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_a_vector",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 5;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
if (a_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_a_vector",
"Null pointer");
}
assert (ctx->jastrow_champ.a_vector != NULL);
const int64_t sze = (ctx->jastrow_champ.aord_num + 1)*ctx->jastrow_champ.type_nucl_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_a_vector",
"Array too small. Expected (aord_num + 1)*type_nucl_num");
}
memcpy(a_vector, ctx->jastrow_champ.a_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_b_vector (const qmckl_context context,
double * const b_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_b_vector",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 6;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.b_vector != NULL);
if (b_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_b_vector",
"Null pointer");
}
const int64_t sze=ctx->jastrow_champ.bord_num +1;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_b_vector",
"Array too small. Expected bord_num + 1");
}
memcpy(b_vector, ctx->jastrow_champ.b_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_c_vector (const qmckl_context context,
double * const c_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_c_vector",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 7;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.c_vector != NULL);
int64_t dim_c_vector;
qmckl_exit_code rc = qmckl_get_jastrow_champ_dim_c_vector(context, &dim_c_vector);
if (rc != QMCKL_SUCCESS) return rc;
if (c_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_c_vector",
"c_vector is a null pointer");
}
const int64_t sze=dim_c_vector * ctx->jastrow_champ.type_nucl_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_c_vector",
"Array too small. Expected dim_c_vector*type_nucl_num");
}
memcpy(c_vector, ctx->jastrow_champ.c_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_rescale_factor_ee (const qmckl_context context,
double* const rescale_factor_ee) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_rescale_factor_ee",
NULL);
}
if (rescale_factor_ee == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_rescale_factor_ee",
"rescale_factor_ee is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 8;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow_champ.rescale_factor_ee > 0.0);
,*rescale_factor_ee = ctx->jastrow_champ.rescale_factor_ee;
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_rescale_factor_en (const qmckl_context context,
double* const rescale_factor_en,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_rescale_factor_en",
NULL);
}
if (rescale_factor_en == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_rescale_factor_en",
"rescale_factor_en is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 9;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
if (size_max < ctx->jastrow_champ.type_nucl_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_rescale_factor_en",
"Array to small. Expected type_nucl_num.");
}
assert(ctx->jastrow_champ.rescale_factor_en != NULL);
for (int64_t i=0 ; i<ctx->jastrow_champ.type_nucl_num ; ++i) {
rescale_factor_en[i] = ctx->jastrow_champ.rescale_factor_en[i];
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_champ_dim_c_vector(qmckl_context context, int64_t* const dim_c_vector)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_dim_c_vector",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
,*dim_c_vector = ctx->jastrow_champ.dim_c_vector;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_champ_spin_independent(const qmckl_context context, int32_t* const spin_independent) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_spin_independent",
NULL);
}
if (spin_independent == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_spin_independent",
"spin_independent is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 10;
if ( (ctx->jastrow_champ.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
,*spin_independent = ctx->jastrow_champ.spin_independent ;
return QMCKL_SUCCESS;
}
#+end_src
**** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_rescale_factor_ee (context, &
kappa_ee) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
real(c_double), intent(out) :: kappa_ee
end function qmckl_get_jastrow_champ_rescale_factor_ee
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_rescale_factor_en (context, &
kappa_en, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: kappa_en(size_max)
end function qmckl_get_jastrow_champ_rescale_factor_en
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_aord_num (context, &
aord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(out) :: aord_num
end function qmckl_get_jastrow_champ_aord_num
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_bord_num (context, &
bord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(out) :: bord_num
end function qmckl_get_jastrow_champ_bord_num
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_cord_num (context, &
cord_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(out) :: cord_num
end function qmckl_get_jastrow_champ_cord_num
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_type_nucl_num (context, &
type_nucl_num) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(out) :: type_nucl_num
end function qmckl_get_jastrow_champ_type_nucl_num
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_type_nucl_vector (context, &
type_nucl_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context), intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
integer(c_int64_t), intent(out) :: type_nucl_vector(size_max)
end function qmckl_get_jastrow_champ_type_nucl_vector
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_a_vector(context, &
a_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: a_vector(size_max)
end function qmckl_get_jastrow_champ_a_vector
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_b_vector(context, &
b_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: b_vector(size_max)
end function qmckl_get_jastrow_champ_b_vector
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_c_vector(context, &
c_vector, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: c_vector(size_max)
end function qmckl_get_jastrow_champ_c_vector
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_spin_independent(context, &
spin_independent) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer(qmckl_context) , intent(in) , value :: context
integer(c_int32_t), intent(out) :: spin_independent
end function qmckl_get_jastrow_champ_spin_independent
end interface
#+end_src
** Test :noexport:
#+begin_src c :tangle (eval c_test)
/* Reference input data */
int64_t walk_num = n2_walk_num;
int64_t elec_num = n2_elec_num;
int64_t elec_up_num = n2_elec_up_num;
int64_t elec_dn_num = n2_elec_dn_num;
int64_t nucl_num = n2_nucl_num;
double rescale_factor_ee = 0.6;
double rescale_factor_en[2] = { 0.6, 0.6 };
double* elec_coord = &(n2_elec_coord[0][0][0]);
const double* nucl_charge = n2_charge;
double* nucl_coord = &(n2_nucl_coord[0][0]);
int64_t size_max;
/* Provide Electron data */
qmckl_exit_code rc;
assert(!qmckl_electron_provided(context));
rc = qmckl_check(context,
qmckl_set_electron_num (context, elec_up_num, elec_dn_num)
);
assert(rc == QMCKL_SUCCESS);
assert(qmckl_electron_provided(context));
rc = qmckl_check(context,
qmckl_set_electron_coord (context, 'N', walk_num, elec_coord, walk_num*3*elec_num)
);
assert(rc == QMCKL_SUCCESS);
double elec_coord2[walk_num*3*elec_num];
rc = qmckl_check(context,
qmckl_get_electron_coord (context, 'N', elec_coord2, walk_num*3*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*elec_num ; ++i) {
assert( elec_coord[i] == elec_coord2[i] );
}
/* Provide Nucleus data */
assert(!qmckl_nucleus_provided(context));
rc = qmckl_check(context,
qmckl_set_nucleus_num (context, nucl_num)
);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
double nucl_coord2[3*nucl_num];
rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2, 3*nucl_num);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_check(context,
qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]), 3*nucl_num)
);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
rc = qmckl_check(context,
qmckl_get_nucleus_coord (context, 'N', nucl_coord2, nucl_num*3)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t k=0 ; k<3 ; ++k) {
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_coord[nucl_num*k+i] == nucl_coord2[3*i+k] );
}
}
rc = qmckl_check(context,
qmckl_get_nucleus_coord (context, 'T', nucl_coord2, nucl_num*3)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*nucl_num ; ++i) {
assert( nucl_coord[i] == nucl_coord2[i] );
}
double nucl_charge2[nucl_num];
rc = qmckl_get_nucleus_charge(context, nucl_charge2, nucl_num);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_check(context,
qmckl_set_nucleus_charge(context, nucl_charge, nucl_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_get_nucleus_charge(context, nucl_charge2, nucl_num)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_charge[i] == nucl_charge2[i] );
}
assert(qmckl_nucleus_provided(context));
#+end_src
* Computation
The computed data is stored in the context so that it can be reused
by different kernels. To ensure that the data is valid, for each
computed data the date of the context is stored when it is computed.
To know if some data needs to be recomputed, we check if the date of
the dependencies are more recent than the date of the data to
compute. If it is the case, then the data is recomputed and the
current date is stored.
** Electron-electron component
*** Asymptotic component
Calculate the asymptotic component ~asymp_jasb~ to be subtracted from the
electron-electron jastrow factor \(J_{\text{ee}}\). Two values are
computed. The first one is for parallel spin pairs, and the
second one for antiparallel spin pairs.
If the ~spin_independent~ variable is set to ~1~, then
$\delta^{\uparrow \downarrow}$ is always equal to one.
\[
J_{\text{ee}}^{\infty} = \frac{\frac{1}{2}(1+\delta^{\uparrow \downarrow})\,b_1 \kappa_\text{ee}^{-1}}{1 + b_2\,
\kappa_\text{ee}^{-1}} + \sum_{p=2}^{N_\text{ord}^b} b_{p+1}\, \kappa_\text{ee}^{-p}
\]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_asymp_jasb(qmckl_context context,
double* const asymp_jasb,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_asymp_jasb(qmckl_context context,
double* const asymp_jasb,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_asymp_jasb",
NULL);
}
/* Provided in finalize_jastrow */
/*
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_asymp_jasb(context);
if(rc != QMCKL_SUCCESS) return rc;
*/
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
const int64_t sze = 2;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_asymp_jasb",
"Array too small. Expected 2");
}
memcpy(asymp_jasb, ctx->jastrow_champ.asymp_jasb, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_asymp_jasb(context, &
asymp_jasb, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: asymp_jasb(size_max)
end function qmckl_get_jastrow_champ_asymp_jasb
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_asymp_jasb(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_asymp_jasb(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_asymp_jasb",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_asymp_jasb",
NULL);
}
// /* Compute if necessary */
// if (ctx->date > ctx->jastrow_champ.asymp_jasb_date) {
rc = qmckl_compute_jastrow_champ_asymp_jasb(context,
ctx->jastrow_champ.bord_num,
ctx->jastrow_champ.b_vector,
ctx->jastrow_champ.rescale_factor_ee,
ctx->jastrow_champ.spin_independent,
ctx->jastrow_champ.asymp_jasb);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.asymp_jasb_date = ctx->date;
// }
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_asymp_jasb
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_asymp_jasb_args
| Variable | Type | In/Out | Description |
|---------------------+----------------------+--------+---------------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~bord_num~ | ~int64_t~ | in | Order of the polynomial |
| ~b_vector~ | ~double[bord_num+1]~ | in | Values of b |
| ~rescale_factor_ee~ | ~double~ | in | Electron coordinates |
| ~spin_independent~ | ~int32_t~ | in | If 1, same parameters for parallel and anti-parallel pairs |
| ~asymp_jasb~ | ~double[2]~ | out | Asymptotic value |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_jastrow_champ_asymp_jasb_doc(context, &
bord_num, b_vector, rescale_factor_ee, spin_independent, asymp_jasb) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: b_vector(bord_num+1)
real (c_double ) , intent(in) , value :: rescale_factor_ee
integer (c_int32_t) , intent(in) , value :: spin_independent
real (c_double ) , intent(out) :: asymp_jasb(2)
integer(qmckl_exit_code) :: info
integer*8 :: i, p
double precision :: kappa_inv, x, asym_one
kappa_inv = 1.0d0 / rescale_factor_ee
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (bord_num < 0) then
info = QMCKL_INVALID_ARG_2
return
endif
asym_one = b_vector(1) * kappa_inv / (1.0d0 + b_vector(2) * kappa_inv)
if (spin_independent == 1) then
asymp_jasb(:) = (/asym_one, asym_one/)
else
asymp_jasb(:) = (/0.5d0*asym_one, asym_one/)
end if
x = kappa_inv
do p = 2, bord_num
x = x * kappa_inv
do i = 1, 2
asymp_jasb(i) = asymp_jasb(i) + b_vector(p + 1) * x
end do
end do
end function qmckl_compute_jastrow_champ_asymp_jasb_doc
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_asymp_jasb_doc (const qmckl_context context,
const int64_t bord_num,
const double* b_vector,
const double rescale_factor_ee,
const int32_t spin_independent,
double* const asymp_jasb);
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_asymp_jasb_hpc (const qmckl_context context,
const int64_t bord_num,
const double* b_vector,
const double rescale_factor_ee,
const int32_t spin_independent,
double* const asymp_jasb );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_asymp_jasb_hpc (const qmckl_context context,
const int64_t bord_num,
const double* b_vector,
const double rescale_factor_ee,
const int32_t spin_independent,
double* const asymp_jasb )
{
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (bord_num < 0) {
return QMCKL_INVALID_ARG_2;
}
const double kappa_inv = 1.0 / rescale_factor_ee;
const double asym_one = b_vector[0] * kappa_inv / (1.0 + b_vector[1] * kappa_inv);
double f = 0.;
double x = kappa_inv;
for (int k = 2; k <= bord_num; ++k) {
x *= kappa_inv;
f = f + b_vector[k]*x;
}
asymp_jasb[0] = spin_independent == 1 ? asym_one + f : 0.5 * asym_one + f;
asymp_jasb[1] = asym_one + f;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_asymp_jasb (const qmckl_context context,
const int64_t bord_num,
const double* b_vector,
const double rescale_factor_ee,
const int32_t spin_independent,
double* const asymp_jasb );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_jastrow_champ_asymp_jasb (const qmckl_context context,
const int64_t bord_num,
const double* b_vector,
const double rescale_factor_ee,
const int32_t spin_independent,
double* const asymp_jasb )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_asymp_jasb_hpc
#else
return qmckl_compute_jastrow_champ_asymp_jasb_doc
#endif
(context, bord_num, b_vector, rescale_factor_ee, spin_independent, asymp_jasb);
}
#+end_src
**** Test :noexport:
#+name: asymp_jasb
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
asym_one = b_vector[0] * kappa_inv / (1.0 + b_vector[1]*kappa_inv)
asymp_jasb = np.array([0.5*asym_one, asym_one])
for i in range(2):
x = kappa_inv
for p in range(1,bord_num):
x = x * kappa_inv
asymp_jasb[i] += b_vector[p + 1] * x
print("asym_one : ", asym_one)
print("asymp_jasb[0] : ", asymp_jasb[0])
print("asymp_jasb[1] : ", asymp_jasb[1])
#+end_src
#+RESULTS: asymp_jasb
: asym_one : 0.6634291325000664
: asymp_jasb[0] : 0.7115733522582638
: asymp_jasb[1] : 1.043287918508297
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
int64_t type_nucl_num = n2_type_nucl_num;
int64_t* type_nucl_vector = &(n2_type_nucl_vector[0]);
int64_t aord_num = n2_aord_num;
int64_t bord_num = n2_bord_num;
int64_t cord_num = n2_cord_num;
double* a_vector = &(n2_a_vector[0][0]);
double* b_vector = &(n2_b_vector[0]);
double* c_vector = &(n2_c_vector[0][0]);
int64_t dim_c_vector=0;
assert(!qmckl_jastrow_champ_provided(context));
/* Set the data */
rc = qmckl_check(context,
qmckl_set_jastrow_champ_spin_independent(context, 0)
);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_aord_num(context, aord_num)
);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_bord_num(context, bord_num)
);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_cord_num(context, cord_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_type_nucl_num(context, type_nucl_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_type_nucl_vector(context, type_nucl_vector, nucl_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_a_vector(context, a_vector,(aord_num+1)*type_nucl_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_b_vector(context, b_vector,(bord_num+1))
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_get_jastrow_champ_dim_c_vector(context, &dim_c_vector)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_c_vector(context, c_vector, dim_c_vector*type_nucl_num)
);
assert(rc == QMCKL_SUCCESS);
double k_ee = 0.;
double k_en[2] = { 0., 0. };
rc = qmckl_check(context,
qmckl_set_jastrow_champ_rescale_factor_en(context, rescale_factor_en, type_nucl_num)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_set_jastrow_champ_rescale_factor_ee(context, rescale_factor_ee)
);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_check(context,
qmckl_get_jastrow_champ_rescale_factor_ee (context, &k_ee)
);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == rescale_factor_ee);
rc = qmckl_check(context,
qmckl_get_jastrow_champ_rescale_factor_en (context, &(k_en[0]), type_nucl_num)
);
assert(rc == QMCKL_SUCCESS);
for (int i=0 ; i<type_nucl_num ; ++i) {
assert(k_en[i] == rescale_factor_en[i]);
}
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
printf("asymp_jasb\n");
double asymp_jasb[2];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_asymp_jasb(context, &(asymp_jasb[0]),2)
);
// calculate asymp_jasb
assert(fabs(asymp_jasb[0]-0.7115733522582638) < 1.e-12);
assert(fabs(asymp_jasb[1]-1.043287918508297 ) < 1.e-12);
printf("asymp_jasb_hpc\n");
double asymp_jasb_doc[2];
double asymp_jasb_hpc[2];
// calculate asymp_jasb
rc = qmckl_check(context,
qmckl_compute_jastrow_champ_asymp_jasb_doc (context,
bord_num,
b_vector,
rescale_factor_ee,
0,
&(asymp_jasb_doc[0]) )
);
rc = qmckl_check(context,
qmckl_compute_jastrow_champ_asymp_jasb_hpc (context,
bord_num,
b_vector,
rescale_factor_ee,
0,
&(asymp_jasb_hpc[0]) )
);
assert(fabs(asymp_jasb_doc[0]-asymp_jasb_hpc[0]) < 1.e-8);
assert(fabs(asymp_jasb_doc[1]-asymp_jasb_hpc[1]) < 1.e-8);
#+end_src
*** Electron-electron rescaled distances ~ee_distance_rescaled~ stores the matrix of the rescaled distances between all
pairs of electrons:
\[
C_{ij} = \frac{ 1 - e^{-\kappa r_{ij}}}{\kappa}
\]
where \(r_{ij}\) is the matrix of electron-electron distances.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_champ_ee_distance_rescaled(qmckl_context context,
double* const distance_rescaled,
int64_t const max_size);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_champ_ee_distance_rescaled(qmckl_context context,
double* const distance_rescaled,
int64_t const size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_ee_distance_rescaled(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (distance_rescaled == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_provide_jastrow_champ_factor_ee_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_provide_jastrow_champ_factor_ee_gl",
"Array too small. Expected elec_num*elec_num*walk_num.");
}
memcpy(distance_rescaled, ctx->jastrow_champ.ee_distance_rescaled, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Compute if necessary */
if (ctx->electron.walker.point.date > ctx->jastrow_champ.ee_distance_rescaled_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.ee_distance_rescaled != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.ee_distance_rescaled);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_ee_distance_rescaled",
"Unable to free ctx->jastrow_champ.ee_distance_rescaled");
}
ctx->jastrow_champ.ee_distance_rescaled = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.ee_distance_rescaled == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->electron.num *
ctx->electron.walker.num * sizeof(double);
double* ee_distance_rescaled = (double*) qmckl_malloc(context, mem_info);
if (ee_distance_rescaled == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_ee_distance_rescaled",
NULL);
}
ctx->jastrow_champ.ee_distance_rescaled = ee_distance_rescaled;
}
qmckl_exit_code rc =
qmckl_compute_ee_distance_rescaled(context,
ctx->electron.num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.walker.num,
ctx->electron.walker.point.coord.data,
ctx->jastrow_champ.ee_distance_rescaled);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.ee_distance_rescaled_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_ee_distance_rescaled
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ee_distance_rescaled_args
| Variable | Type | In/Out | Description |
|---------------------+----------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~rescale_factor_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates |
| ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ee_distance_rescaled_doc(context, &
elec_num, rescale_factor_ee, walk_num, &
coord, ee_distance_rescaled) &
bind(C) result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: coord(elec_num,walk_num,3)
real (c_double ) , intent(out) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do k=1,walk_num
info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, elec_num, &
coord(1,k,1), elec_num * walk_num, &
coord(1,k,1), elec_num * walk_num, &
ee_distance_rescaled(1,1,k), elec_num, rescale_factor_ee)
if (info /= QMCKL_SUCCESS) then
exit
endif
end do
end function qmckl_compute_ee_distance_rescaled_doc
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_doc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled );
qmckl_exit_code qmckl_compute_ee_distance_rescaled_hpc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled );
qmckl_exit_code qmckl_compute_ee_distance_rescaled (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled );
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_hpc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (coord == NULL) {
return QMCKL_INVALID_ARG_5;
}
if (ee_distance_rescaled == NULL) {
return QMCKL_INVALID_ARG_6;
}
const int64_t sze = elec_num*walk_num;
const int64_t elec_num2= elec_num*elec_num;
qmckl_exit_code result = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp parallel
{
#endif
qmckl_exit_code rc = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t k=0 ; k<walk_num ; ++k)
{
rc |= qmckl_distance_rescaled(context, 'T', 'T', elec_num, elec_num,
&(coord[k*elec_num]), sze, &(coord[k*elec_num]), sze,
&(ee_distance_rescaled[k*elec_num2]), elec_num, rescale_factor_ee);
}
#ifdef HAVE_OPENMP
#pragma omp critical
#endif
result |= rc;
#ifdef HAVE_OPENMP
}
#endif
return result;
}
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled )
{
#ifdef HAVE_HPC
return qmckl_compute_ee_distance_rescaled_hpc
#else
return qmckl_compute_ee_distance_rescaled_doc
#endif
(context, elec_num, rescale_factor_ee, walk_num, coord, ee_distance_rescaled);
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none
import numpy as np
kappa = 0.6
elec_1_w1 = np.array( [-0.250655104764153, 0.503070975550133 , -0.166554344502303])
elec_2_w1 = np.array( [-0.587812193472177, -0.128751981129274 , 0.187773606533075])
elec_5_w1 = np.array( [-0.127732483187947, -0.138975497694196 , -8.669850480215846E-002])
elec_6_w1 = np.array( [-0.232271834949124, -1.059321673434182E-002 , -0.504862241464867])
print ( "[0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_1_w1)) )/kappa )
print ( "[0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-elec_2_w1)) )/kappa )
print ( "[1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-elec_1_w1)) )/kappa )
print ( "[5][5] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_5_w1-elec_5_w1)) )/kappa )
print ( "[5][6] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_5_w1-elec_6_w1)) )/kappa )
print ( "[6][5] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_6_w1-elec_5_w1)) )/kappa )
#+end_src
#+RESULTS:
: [0][0] : 0.0
: [0][1] :
: [1][0] : 0.6347507420688708
: [5][5] : 0.0
: [5][6] : 0.3941735387855409
: [6][5] :
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
{
printf("ee_distance_rescaled\n");
double ee_distance_rescaled[walk_num * elec_num * elec_num];
rc = qmckl_get_jastrow_champ_ee_distance_rescaled(context,
ee_distance_rescaled,
walk_num*elec_num*elec_num);
// (e1,e2,w)
// (0,0,0) == 0.
assert(ee_distance_rescaled[0] == 0.);
// (1,0,0) == (0,1,0)
assert(ee_distance_rescaled[1] == ee_distance_rescaled[elec_num]);
// value of (1,0,0)
assert(fabs(ee_distance_rescaled[1]-0.6347507420688708) < 1.e-12);
// (0,0,1) == 0.
assert(ee_distance_rescaled[5*elec_num + 5] == 0.);
// (1,0,1) == (0,1,1)
assert(ee_distance_rescaled[5*elec_num+6] == ee_distance_rescaled[6*elec_num+5]);
// value of (1,0,1)
assert(fabs(ee_distance_rescaled[5*elec_num+6]-0.3941735387855409) < 1.e-12);
printf("ee_distance_rescaled_hpc\n");
double ee_distance[walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance(context, &(ee_distance[0]), walk_num*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double ee_distance_rescaled_doc[walk_num * elec_num * elec_num * (cord_num+1)];
memset(ee_distance_rescaled_doc, 0, sizeof(ee_distance_rescaled_doc));
rc = qmckl_compute_een_rescaled_e_doc (context, walk_num,
elec_num, cord_num,
rescale_factor_ee,
&(ee_distance[0]),
&(ee_distance_rescaled_doc[0]));
assert(rc == QMCKL_SUCCESS);
double ee_distance_rescaled_hpc[walk_num * elec_num * elec_num * (cord_num+1)];
memset(ee_distance_rescaled_hpc, 0, sizeof(ee_distance_rescaled_hpc));
rc = qmckl_compute_een_rescaled_e_hpc (context, walk_num,
elec_num, cord_num,
rescale_factor_ee,
&(ee_distance[0]),
&(ee_distance_rescaled_hpc[0]));
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<walk_num*elec_num*elec_num*(cord_num+1) ; i++) {
if (fabs(ee_distance_rescaled_hpc[i] - ee_distance_rescaled_doc[i]) > 1.e-10) {
printf("i = %ld\n", i);
printf("ee_distance_rescaled_hpc = %f\n", ee_distance_rescaled_hpc[i]);
printf("ee_distance_rescaled_doc = %f\n", ee_distance_rescaled_doc[i]);
fflush(stdout);
}
assert(fabs(ee_distance_rescaled_hpc[i] - ee_distance_rescaled_doc[i]) < 1.e-10);
}
}
#+end_src
*** Electron-electron rescaled distance gradients and Laplacian with respect to electron coordinates
The rescaled distances, represented by $C_{ij} = (1 - e^{-\kappa_\text{e} r_{ij}})/\kappa_\text{e}$
are differentiated with respect to the electron coordinates.
This information is stored in the tensor ~ee_distance_rescaled_gl~. The initial three sequential
elements of this three-dimensional tensor provide the $x$, $y$, and $z$
direction derivatives, while the fourth index corresponds to the Laplacian.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_champ_ee_distance_rescaled_gl(qmckl_context context,
double* const distance_rescaled_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_champ_ee_distance_rescaled_gl(qmckl_context context,
double* const distance_rescaled_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_ee_distance_rescaled_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (distance_rescaled_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_ee_distance_rescaled_gl",
"Null pointer.");
}
const int64_t sze = 4 * ctx->electron.num * ctx->electron.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_ee_distance_rescaled_gl",
"Array too small. Expected 4*elec_num*elec_num*walk_num");
}
memcpy(distance_rescaled_gl, ctx->jastrow_champ.ee_distance_rescaled_gl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_ee_distance_rescaled_gl(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Compute if necessary */
if (ctx->electron.walker.point.date > ctx->jastrow_champ.ee_distance_rescaled_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.ee_distance_rescaled_gl != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.ee_distance_rescaled_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_ee_distance_rescaled_gl",
"Unable to free ctx->jastrow_champ.ee_distance_rescaled_gl");
}
ctx->jastrow_champ.ee_distance_rescaled_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.ee_distance_rescaled_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->electron.num *
ctx->electron.walker.num * sizeof(double);
double* ee_distance_rescaled_gl = (double*) qmckl_malloc(context, mem_info);
if (ee_distance_rescaled_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_ee_distance_rescaled_gl",
NULL);
}
ctx->jastrow_champ.ee_distance_rescaled_gl = ee_distance_rescaled_gl;
}
qmckl_exit_code rc =
qmckl_compute_ee_distance_rescaled_gl(context,
ctx->electron.num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.walker.num,
ctx->electron.walker.point.coord.data,
ctx->jastrow_champ.ee_distance_rescaled_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.ee_distance_rescaled_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_ee_distance_rescaled_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ee_distance_rescaled_gl_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------+--------+-------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~rescale_factor_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates |
| ~ee_distance_rescaled_gl~ | ~double[walk_num][elec_num][elec_num][4]~ | out | Electron-electron rescaled distance derivatives |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ee_distance_rescaled_gl_doc(context, &
elec_num, rescale_factor_ee, walk_num, coord, ee_distance_rescaled_gl) &
bind(C) result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: coord(elec_num,walk_num,3)
real (c_double ) , intent(out) :: ee_distance_rescaled_gl(4,elec_num,elec_num,walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do k=1,walk_num
info = qmckl_distance_rescaled_gl(context, 'T', 'T', elec_num, elec_num, &
coord(1,k,1), elec_num*walk_num, &
coord(1,k,1), elec_num*walk_num, &
ee_distance_rescaled_gl(1,1,1,k), elec_num, rescale_factor_ee)
if (info /= QMCKL_SUCCESS) then
exit
endif
end do
end function qmckl_compute_ee_distance_rescaled_gl_doc
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_gl_doc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_gl );
qmckl_exit_code qmckl_compute_ee_distance_rescaled_gl_hpc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_gl );
qmckl_exit_code qmckl_compute_ee_distance_rescaled_gl (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_gl );
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_gl_hpc (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_gl )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (elec_num <= 0) return QMCKL_INVALID_ARG_2;
if (walk_num <= 0) return QMCKL_INVALID_ARG_4;
if (coord == NULL) return QMCKL_INVALID_ARG_5;
if (ee_distance_rescaled_gl == NULL) return QMCKL_INVALID_ARG_6;
const int64_t sze = elec_num*walk_num;
const int64_t elec_num2= elec_num*elec_num*4;
qmckl_exit_code result = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
qmckl_exit_code rc = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t k=0 ; k<walk_num ; ++k)
{
rc |= qmckl_distance_rescaled_gl(context, 'T', 'T', elec_num, elec_num,
&(coord[k*elec_num]), sze,
&(coord[k*elec_num]), sze,
&(ee_distance_rescaled_gl[k*elec_num2]), elec_num,
rescale_factor_ee);
}
#ifdef HAVE_OPENMP
#pragma omp critical
#endif
result |= rc;
}
return result;
}
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_ee_distance_rescaled_gl (
const qmckl_context context,
const int64_t elec_num,
const double rescale_factor_ee,
const int64_t walk_num,
const double* coord,
double* const ee_distance_rescaled_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_ee_distance_rescaled_gl_hpc
#else
return qmckl_compute_ee_distance_rescaled_gl_doc
#endif
(context, elec_num, rescale_factor_ee, walk_num, coord,
ee_distance_rescaled_gl);
}
#+end_src
**** Test :noexport:
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
{
printf("ee_distance_rescaled_gl\n");
double fd[walk_num][elec_num][elec_num][4];
double delta_x = 0.001;
// Finite difference coefficients for gradients
double coef[9] = { 1.0/280.0, -4.0/105.0, 1.0/5.0, -4.0/5.0, 0.0, 4.0/5.0, -1.0/5.0, 4.0/105.0, -1.0/280.0 };
// Finite difference coefficients for Laplacian
double coef2[9]= {-1.0/560.0, 8.0/315.0, -1.0/5.0, 8.0/5.0, -205.0/72.0, 8.0/5.0, -1.0/5.0, 8.0/315.0, -1.0/560.0 };
qmckl_exit_code rc;
int64_t elec_num;
rc = qmckl_get_electron_num(context, &elec_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
double elec_coord[walk_num][elec_num][3];
rc = qmckl_get_electron_coord (context, 'N', &(elec_coord[0][0][0]), 3*walk_num*elec_num);
double temp_coord[walk_num][elec_num][3];
memcpy(&(temp_coord[0][0][0]), &(elec_coord[0][0][0]), sizeof(temp_coord));
double function_values[walk_num][elec_num][elec_num];
memset(&(fd[0][0][0][0]), 0, sizeof(fd));
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 3; k++) {
for (int64_t m = -4; m <= 4; m++) { // Apply finite difference displacement
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k] + (double) m * delta_x;
}
// Update coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num,
&(temp_coord[0][0][0]),
walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Call the provided function
rc = qmckl_get_jastrow_champ_ee_distance_rescaled(context,
&(function_values[0][0][0]),
elec_num*elec_num*walk_num);
assert(rc == QMCKL_SUCCESS);
// Accumulate derivative using finite-difference coefficients
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][j][i][k] += coef [m + 4] * function_values[nw][j][i];
fd[nw][j][i][3] += coef2[m + 4] * function_values[nw][j][i];
}
}
}
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k];
}
}
}
// Reset coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num,
&(elec_coord[0][0][0]),
walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Normalize by the step size
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 4; k++) {
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][i][j][k] /= delta_x;
}
}
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][i][j][3] /= delta_x;
}
}
}
double ee_distance_rescaled_gl[walk_num][elec_num][elec_num][4];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_ee_distance_rescaled_gl(context,
&(ee_distance_rescaled_gl[0][0][0][0]),
walk_num*elec_num*4*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int nw = 0; nw < walk_num; nw++){
for (int i = 0; i < elec_num; i++) {
for (int j = 0; j < elec_num; j++) {
for (int k = 0; k < 3; k++){
if (fabs(fd[nw][i][j][k] - ee_distance_rescaled_gl[nw][i][j][k]) > 1.e-12) {
printf("nw=%d i=%d j=%d k=%d\n", nw, i, j, k);
printf("fd =%f\n", fd[nw][i][j][k]);
printf("ee_distance_rescaled_gl=%f\n", ee_distance_rescaled_gl[nw][i][j][k]);
fflush(stdout);
}
assert(fabs(fd[nw][i][j][k] - ee_distance_rescaled_gl[nw][i][j][k]) < 1.e-8);
}
int k=3;
if (i != j) {
if (fabs(fd[nw][i][j][k] - ee_distance_rescaled_gl[nw][i][j][k]) > 1.e-12) {
printf("nw=%d i=%d j=%d k=%d\n", nw, i, j, k);
printf("fd =%f\n", fd[nw][i][j][k]);
printf("ee_distance_rescaled_gl=%f\n", ee_distance_rescaled_gl[nw][i][j][k]);
fflush(stdout);
}
assert(fabs(fd[nw][i][j][k] - ee_distance_rescaled_gl[nw][i][j][k]) < 1.e-6);
}
}
}
}
printf("OK\n");
printf("ee_distance_rescaled_gl_hpc\n");
double ee_distance_rescaled_gl_doc[walk_num*elec_num*elec_num*4];
rc = qmckl_compute_ee_distance_rescaled_gl_doc (context,
elec_num,
rescale_factor_ee,
walk_num,
&(elec_coord[0][0][0]),
&(ee_distance_rescaled_gl_doc[0]));
assert(rc == QMCKL_SUCCESS);
double ee_distance_rescaled_gl_hpc[walk_num*elec_num*elec_num*4];
rc = qmckl_compute_ee_distance_rescaled_gl_hpc (context,
elec_num,
rescale_factor_ee,
walk_num,
&(elec_coord[0][0][0]),
&(ee_distance_rescaled_gl_hpc[0]));
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num*nucl_num*elec_num*4; i++) {
if (fabs(ee_distance_rescaled_gl_hpc[i] - ee_distance_rescaled_gl_doc[i]) > 1.e-12) {
printf("i=%ld\n", i);
printf("ee_distance_rescaled_gl_doc=%f\n", ee_distance_rescaled_gl_doc[i]);
printf("ee_distance_rescaled_gl_hpc=%f\n", ee_distance_rescaled_gl_hpc[i]);
fflush(stdout);
}
assert(fabs(ee_distance_rescaled_gl_doc[i] - ee_distance_rescaled_gl_hpc[i]) < 1.e-8);
}
}
#+end_src
*** Electron-electron component
Calculate the electron-electron jastrow component ~factor_ee~ using the ~asymp_jasb~
component and the electron-electron rescaled distances ~ee_distance_rescaled~.
If the ~spin_independent~ variable is set to ~1~, then
$\delta^{\uparrow \downarrow}$ is always equal to one.
\[
f_\text{ee} = \sum_{i,j<i} \left[
\frac{\delta_{ij}^{\uparrow\downarrow} B_0\, C_{ij}}{1 + B_1\,
C_{ij}} + \sum_{k=2}^{n_\text{ord}} B_k\, C_{ij}^k - {J_{\text{ee}}^{\infty}}_{ij} \right]
\]
$\delta$ is the spin factor, $B$ is the vector of $b$ parameters,
$C$ is the array of rescaled distances.
$f_{\text{ee}}$ can be rewritten as:
\[
f_\text{ee} = \frac{1}{2} \left[ \sum_{i,j} \frac{\delta_{ij}^{\uparrow\downarrow} B_0\, C_{ij}}{1 + B_1\, C_{ij}} + \sum_{i,j} \sum_{k=2}^{n_\text{ord}} B_k\, C_{ij}^k \right] - \left[ \frac{n_\uparrow (n_\uparrow-1) + n_\downarrow (n_\downarrow-1)}{2}\, J_{\text{ee}}^{\infty}}_{\uparrow \uparrow} + n_\uparrow\,n_\downarrow\, J_{\text{ee}}^{\infty}}_{\uparrow \downarrow} \right]
\]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_ee(qmckl_context context,
double* const factor_ee,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_ee(qmckl_context context,
double* const factor_ee,
const int64_t size_max)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_factor_ee",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
rc = qmckl_provide_jastrow_champ_factor_ee(context);
if (rc != QMCKL_SUCCESS) return rc;
if (factor_ee == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_ee",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_ee",
"Array too small. Expected walk_num");
}
memcpy(factor_ee, ctx->jastrow_champ.factor_ee, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_ee (context, &
factor_ee, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_ee(size_max)
end function qmckl_get_jastrow_champ_factor_ee
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_factor_ee",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_factor_ee",
NULL);
}
rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Provided in finalize_jastrow */
/*
rc = qmckl_provide_jastrow_champ_asymp_jasb(context);
if(rc != QMCKL_SUCCESS) return rc;
*/
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_ee_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_ee != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_ee);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_ee",
"Unable to free ctx->jastrow_champ.factor_ee");
}
ctx->jastrow_champ.factor_ee = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_ee == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * sizeof(double);
double* factor_ee = (double*) qmckl_malloc(context, mem_info);
if (factor_ee == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_ee",
NULL);
}
ctx->jastrow_champ.factor_ee = factor_ee;
}
rc = qmckl_compute_jastrow_champ_factor_ee(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->electron.up_num,
ctx->jastrow_champ.bord_num,
ctx->jastrow_champ.b_vector,
ctx->jastrow_champ.ee_distance_rescaled,
ctx->jastrow_champ.asymp_jasb,
ctx->jastrow_champ.spin_independent,
ctx->jastrow_champ.factor_ee);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_ee_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_ee
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_ee_args
| Variable | Type | In/Out | Description |
|------------------------+----------------------------------------+--------+---------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~up_num~ | ~int64_t~ | in | Number of alpha electrons |
| ~bord_num~ | ~int64_t~ | in | Number of coefficients |
| ~b_vector~ | ~double[bord_num+1]~ | in | List of coefficients |
| ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~asymp_jasb~ | ~double[2]~ | in | Asymptotic value of the Jastrow |
| ~factor_ee~ | ~double[walk_num]~ | out | $f_{ee}$ |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_jastrow_champ_factor_ee_doc(context, &
walk_num, elec_num, up_num, bord_num, b_vector, &
ee_distance_rescaled, asymp_jasb, spin_independent, factor_ee) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in), value :: walk_num
integer (c_int64_t) , intent(in), value :: elec_num
integer (c_int64_t) , intent(in), value :: up_num
integer (c_int64_t) , intent(in), value :: bord_num
real (c_double ) , intent(in) :: b_vector(bord_num+1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: asymp_jasb(2)
integer (c_int32_t) , intent(in), value :: spin_independent
real (c_double ) , intent(out) :: factor_ee(walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: i, j, k, nw
double precision :: x, xk
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do nw =1, walk_num
factor_ee(nw) = 0.0d0
do j=1,elec_num
do i=1,j-1
x = ee_distance_rescaled(i,j,nw)
if (spin_independent == 1) then
factor_ee(nw) = factor_ee(nw) + b_vector(1) * x / (1.d0 + b_vector(2) * x) - asymp_jasb(2)
else
if ( (j <= up_num).or.(i > up_num) ) then
factor_ee(nw) = factor_ee(nw) + 0.5d0 * b_vector(1) * x / (1.d0 + b_vector(2) * x) - asymp_jasb(1)
else
factor_ee(nw) = factor_ee(nw) + b_vector(1) * x / (1.d0 + b_vector(2) * x) - asymp_jasb(2)
endif
endif
xk = x
do k=2,bord_num
xk = xk * x
factor_ee(nw) = factor_ee(nw) + b_vector(k+1)* xk
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_ee_doc
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_doc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
const int32_t spin_independent,
double* const factor_ee );
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_hpc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
const int32_t spin_independent,
double* const factor_ee );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_hpc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
const int32_t spin_independent,
double* const factor_ee )
{
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (bord_num < 0) {
return QMCKL_INVALID_ARG_4;
}
const int64_t dn_num = elec_num - up_num;
const double fshift = 0.5 * (double) ((dn_num-1)*dn_num + (up_num-1)*up_num) * asymp_jasb[0] +
(float) (up_num*dn_num) * asymp_jasb[1];
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
for (int nw = 0; nw < walk_num; ++nw) {
double result = 0.;
size_t ishift = nw * elec_num * elec_num;
if (spin_independent == 1) {
for (int j = 0; j < elec_num; ++j ) {
const double* xj = &(ee_distance_rescaled[j * elec_num + ishift]);
for (int i = 0; i < j ; ++i) {
result = result + b_vector[0]*xj[i] / (1. + b_vector[1]*xj[i]);
}
}
} else {
for (int j = 0; j < up_num; ++j ) {
const double* xj = &(ee_distance_rescaled[j * elec_num + ishift]);
for (int i = 0; i < j ; ++i) {
result = result + 0.5 * b_vector[0]*xj[i] / (1. + b_vector[1]*xj[i]);
}
}
for (int j = up_num ; j < elec_num; ++j ) {
const double* xj = &(ee_distance_rescaled[j * elec_num + ishift]);
for (int i = 0; i < up_num; ++i) {
result = result + b_vector[0]*xj[i] / (1. + b_vector[1]*xj[i]);
}
for (int i = up_num ; i < j ; ++i) {
result = result + 0.5 * b_vector[0]*xj[i] / (1. + b_vector[1]*xj[i]);
}
}
}
result = result - fshift;
for (int j=0; j < elec_num; ++j ) {
const double* xj = &(ee_distance_rescaled[j * elec_num + ishift]);
for (int i=0; i < j ; ++i) {
const double x = xj[i];
double xk = x;
for (int k = 2; k <= bord_num; ++k) {
xk *= x;
result = result + b_vector[k] * xk;
}
}
}
factor_ee[nw] = result;
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_ee_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
const int32_t spin_independent,
double* const factor_ee );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
const int32_t spin_independent,
double* const factor_ee )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_ee_hpc
#else
return qmckl_compute_jastrow_champ_factor_ee_doc
#endif
(context, walk_num, elec_num, up_num, bord_num, b_vector,
ee_distance_rescaled, asymp_jasb, spin_independent, factor_ee);
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasb>>
factor_ee = 0.0
for i in range(0,elec_num):
for j in range(0,i):
x = ee_distance_rescaled[i][j]
pow_ser = 0.0
for p in range(1,bord_num):
x = x * ee_distance_rescaled[i][j]
pow_ser += b_vector[p+1] * x
if(i < up_num or j >= up_num):
spin_fact = 0.5
ipar = 0
else:
ipar = 1
spin_fact = 1.0
factor_ee += spin_fact * b_vector[0] * ee_distance_rescaled[i][j] \
/ (1.0 + b_vector[1] * ee_distance_rescaled[i][j]) \
- asymp_jasb[ipar] + pow_ser
print("factor_ee :",factor_ee)
print("ee_distance_rescaled :",ee_distance_rescaled)
#+end_src
#+RESULTS:
#+begin_example
asym_one : 0.6634291325000664
asymp_jasb[0] : 0.7115733522582638
asymp_jasb[1] : 1.043287918508297
factor_ee : -16.83886184243964
ee_distance_rescaled : [[0. 0.63475074 1.29816415 1.23147027 1.51933127 0.54402406
0.51452479 0.96538731 1.25878564 1.3722995 ]
[0.63475074 0. 1.35148664 1.13524156 1.48940503 0.4582292
0.62758076 1.06560856 1.179133 1.30763703]
[1.29816415 1.35148664 0. 1.50021375 1.59200788 1.23488312
1.20844259 1.0355537 1.52064535 1.53049239]
[1.23147027 1.13524156 1.50021375 0. 1.12016142 1.19158954
1.29762585 1.24824277 0.25292267 0.58609336]
[1.51933127 1.48940503 1.59200788 1.12016142 0. 1.50217017
1.54012828 1.48753895 1.10441805 0.84504381]
[0.54402406 0.4582292 1.23488312 1.19158954 1.50217017 0.
0.39417354 0.87009603 1.23838502 1.33419121]
[0.51452479 0.62758076 1.20844259 1.29762585 1.54012828 0.39417354
0. 0.95118809 1.33068934 1.41097406]
[0.96538731 1.06560856 1.0355537 1.24824277 1.48753895 0.87009603
0.95118809 0. 1.29422213 1.33222493]
[1.25878564 1.179133 1.52064535 0.25292267 1.10441805 1.23838502
1.33068934 1.29422213 0. 0.62196802]
[1.3722995 1.30763703 1.53049239 0.58609336 0.84504381 1.33419121
1.41097406 1.33222493 0.62196802 0. ]]
#+end_example
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
{
printf("factor_ee\n");
double factor_ee[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_ee(context, &(factor_ee[0]), walk_num)
);
// calculate factor_ee
printf("%20.15f\n%20.15f\n",factor_ee[0],-16.83886184243964);
fflush(stdout);
assert(fabs(factor_ee[0]+16.83886184243964) < 1.e-12);
printf("factor_ee_hpc\n");
double ee_distance_rescaled[walk_num*elec_num*elec_num];
rc = qmckl_get_jastrow_champ_ee_distance_rescaled(context,
&(ee_distance_rescaled[0]),
walk_num*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
int64_t up_num;
rc = qmckl_get_electron_up_num(context, &up_num);
assert(rc == QMCKL_SUCCESS);
double factor_ee_doc[walk_num];
rc = qmckl_compute_jastrow_champ_factor_ee_doc(context,
walk_num,
elec_num,
up_num,
bord_num,
b_vector,
&(ee_distance_rescaled[0]),
&(asymp_jasb[0]),
0,
&(factor_ee_doc[0]));
assert (rc == QMCKL_SUCCESS);
double factor_ee_hpc[walk_num];
rc = qmckl_compute_jastrow_champ_factor_ee_hpc(context,
walk_num,
elec_num,
up_num,
bord_num,
b_vector,
&(ee_distance_rescaled[0]),
&(asymp_jasb[0]),
0,
&(factor_ee_hpc[0]));
assert (rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num; i++) {
if (fabs(factor_ee_doc[i] - factor_ee_hpc[i]) > 1.e-12) {
printf("i=%ld\n", i);
printf("factor_ee_doc=%f\n", factor_ee_doc[i]);
printf("factor_ee_hpc=%f\n", factor_ee_hpc[i]);
fflush(stdout);
}
assert(fabs(factor_ee_doc[i] - factor_ee_hpc[i]) < 1.e-8);
}
}
#+end_src
*** Derivative
The derivative of ~factor_ee~ is computed using the ~ee_distance_rescaled~ and
the electron-electron rescaled distances derivatives ~ee_distance_rescaled_gl~.
There are four components, the gradient which has 3 components in the \(x, y, z\)
directions and the laplacian as the last component.
\[ \nabla_i f_\text{ee} = \sum_{j\ne i}
\left[\frac{\delta_{ij}^{\uparrow\downarrow} B_0\, \nabla_i
C_{ij}}{(1 + B_1\, C_{ij})^2} + \sum^{n_\text{ord}}_{k=2}
B_k\, k\, C_{ij}^{k-1} \nabla C_{ij} \right] \]
\[ \Delta_i f_\text{ee} = \sum_{j \ne i}
\left[ \delta_{ij}^{\uparrow\downarrow} B_0
\left(\frac{ \Delta_i C_{ij}}{(1 + B_1\, C_{ij})^2} -\frac{2\,B_1
\left(\nabla_i C_{ij}\right)^2 }{(1 + B_1\, C_{ij})^3} \right) + \sum^{n_\text{ord}}_{k=2}
B_k\, k\, \left((k-1)\, C_{ij}^{k-2} \left(\nabla_i C_{ij}\right)^2 + C_{ij}^{k-1} \Delta_i C_{ij} \right) \right] \]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_ee_gl(qmckl_context context,
double* const factor_ee_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_ee_gl(qmckl_context context,
double* const factor_ee_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_factor_ee_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (factor_ee_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_ee_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_ee_gl",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_ee_gl, ctx->jastrow_champ.factor_ee_gl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_ee_gl (context, &
factor_ee_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_ee_gl(size_max)
end function qmckl_get_jastrow_champ_factor_ee_gl
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_ee_gl(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_factor_ee_gl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_factor_ee_gl",
NULL);
}
/* Check if ee rescaled distance is provided */
rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if ee rescaled distance deriv e is provided */
rc = qmckl_provide_ee_distance_rescaled_gl(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_ee_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_ee_gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_ee_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_ee_gl",
"Unable to free ctx->jastrow_champ.factor_ee_gl");
}
ctx->jastrow_champ.factor_ee_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_ee_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * 4 * ctx->electron.num * sizeof(double);
double* factor_ee_gl = (double*) qmckl_malloc(context, mem_info);
if (factor_ee_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_ee_gl",
NULL);
}
ctx->jastrow_champ.factor_ee_gl = factor_ee_gl;
}
rc = qmckl_compute_jastrow_champ_factor_ee_gl(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->electron.up_num,
ctx->jastrow_champ.bord_num,
ctx->jastrow_champ.b_vector,
ctx->jastrow_champ.ee_distance_rescaled,
ctx->jastrow_champ.ee_distance_rescaled_gl,
ctx->jastrow_champ.spin_independent,
ctx->jastrow_champ.factor_ee_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_ee_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_ee_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_ee_gl_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------+--------+-----------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~up_num~ | ~int64_t~ | in | Number of alpha electrons |
| ~bord_num~ | ~int64_t~ | in | Number of coefficients |
| ~b_vector~ | ~double[bord_num+1]~ | in | List of coefficients |
| ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~ee_distance_rescaled_gl~ | ~double[walk_num][elec_num][elec_num][4]~ | in | Electron-electron distances |
| ~spin_independent~ | ~int32_t~ | in | If 1, same parameters for parallel and antiparallel spins |
| ~factor_ee_gl~ | ~double[walk_num][4][elec_num]~ | out | Electron-electron distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_jastrow_champ_factor_ee_gl_doc( &
context, walk_num, elec_num, up_num, bord_num, &
b_vector, ee_distance_rescaled, ee_distance_rescaled_gl, &
spin_independent, factor_ee_gl) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: up_num
integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: b_vector(bord_num+1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_distance_rescaled_gl(4,elec_num,elec_num,walk_num)
integer (c_int32_t) , intent(in) , value :: spin_independent
real (c_double ) , intent(out) :: factor_ee_gl(elec_num,4,walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: i, j, k, nw, ii
double precision :: x, x1, kf
double precision :: denom, invdenom, invdenom2, f
double precision :: grad_c2
double precision :: dx(4)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if ((spin_independent < 0).or.(spin_independent > 1)) then
info = QMCKL_INVALID_ARG_8
return
endif
do nw =1, walk_num
factor_ee_gl(:,:,nw) = 0.0d0
do j = 1, elec_num
do i = 1, elec_num
if (i == j) cycle
x = ee_distance_rescaled(i,j,nw)
denom = 1.0d0 + b_vector(2) * x
invdenom = 1.0d0 / denom
invdenom2 = invdenom * invdenom
dx(1) = ee_distance_rescaled_gl(1, i, j, nw)
dx(2) = ee_distance_rescaled_gl(2, i, j, nw)
dx(3) = ee_distance_rescaled_gl(3, i, j, nw)
dx(4) = ee_distance_rescaled_gl(4, i, j, nw)
grad_c2 = dx(1)*dx(1) + dx(2)*dx(2) + dx(3)*dx(3)
if (spin_independent == 1) then
f = b_vector(1) * invdenom2
else
if((i <= up_num .and. j <= up_num ) .or. (i > up_num .and. j > up_num)) then
f = 0.5d0 * b_vector(1) * invdenom2
else
f = b_vector(1) * invdenom2
end if
end if
factor_ee_gl(i,1,nw) = factor_ee_gl(i,1,nw) + f * dx(1)
factor_ee_gl(i,2,nw) = factor_ee_gl(i,2,nw) + f * dx(2)
factor_ee_gl(i,3,nw) = factor_ee_gl(i,3,nw) + f * dx(3)
factor_ee_gl(i,4,nw) = factor_ee_gl(i,4,nw) &
+ f * (dx(4) - 2.d0 * b_vector(2) * grad_c2 * invdenom)
kf = 2.d0
x1 = x
x = 1.d0
do k=2, bord_num
f = b_vector(k+1) * kf * x
factor_ee_gl(i,1,nw) = factor_ee_gl(i,1,nw) + f * x1 * dx(1)
factor_ee_gl(i,2,nw) = factor_ee_gl(i,2,nw) + f * x1 * dx(2)
factor_ee_gl(i,3,nw) = factor_ee_gl(i,3,nw) + f * x1 * dx(3)
factor_ee_gl(i,4,nw) = factor_ee_gl(i,4,nw) &
+ f * (x1 * dx(4) + (kf-1.d0) * grad_c2)
x = x*x1
kf = kf + 1.d0
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_ee_gl_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_gl_hpc(const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const int32_t spin_independent,
double* const factor_ee_gl )
{
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (walk_num <= 0) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (up_num <= 0) return QMCKL_INVALID_ARG_4;
if (bord_num < 0) return QMCKL_INVALID_ARG_5;
if (b_vector == NULL) return QMCKL_INVALID_ARG_6;
if (ee_distance_rescaled == NULL) return QMCKL_INVALID_ARG_7;
if (ee_distance_rescaled_gl == NULL) return QMCKL_INVALID_ARG_8;
if (spin_independent & (int32_t) (-2)) return QMCKL_INVALID_ARG_8;
if (factor_ee_gl == NULL) return QMCKL_INVALID_ARG_9;
double kf[bord_num+1];
for (int k=0 ; k<=bord_num ; ++k) {
kf[k] = (double) k;
}
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (int nw = 0; nw < walk_num; ++nw) {
double xk[bord_num+1];
bool touched = false;
for (int j = 0; j < elec_num; ++j) {
const double* dxj = &ee_distance_rescaled_gl[4*elec_num*(j+nw*elec_num)];
const double* xj = &ee_distance_rescaled [ elec_num*(j+nw*elec_num)];
double * restrict factor_ee_gl_0 = &(factor_ee_gl[nw*elec_num*4]);
double * restrict factor_ee_gl_1 = factor_ee_gl_0 + elec_num;
double * restrict factor_ee_gl_2 = factor_ee_gl_1 + elec_num;
double * restrict factor_ee_gl_3 = factor_ee_gl_2 + elec_num;
for (int i = 0; i < elec_num; ++i) {
if (j == i) continue;
double x = xj[i];
const double denom = 1.0 + b_vector[1]*x;
const double invdenom = 1.0 / denom;
const double invdenom2 = invdenom * invdenom;
const double* restrict dx = dxj + 4*i;
const double grad_c2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
double f = b_vector[0] * invdenom2;
if ((spin_independent == 0) && (
((i < up_num) && (j < up_num)) ||
((i >= up_num) && (j >= up_num))) ) {
f *= 0.5;
}
if (touched) {
factor_ee_gl_0[i] = factor_ee_gl_0[i] + f*dx[0];
factor_ee_gl_1[i] = factor_ee_gl_1[i] + f*dx[1];
factor_ee_gl_2[i] = factor_ee_gl_2[i] + f*dx[2];
factor_ee_gl_3[i] = factor_ee_gl_3[i] + f*dx[3];
} else {
factor_ee_gl_0[i] = f*dx[0];
factor_ee_gl_1[i] = f*dx[1];
factor_ee_gl_2[i] = f*dx[2];
factor_ee_gl_3[i] = f*dx[3];
}
factor_ee_gl_3[i] = factor_ee_gl_3[i] - f*grad_c2*invdenom*2.0 * b_vector[1];
xk[0] = 1.0;
for (int k=1 ; k<= bord_num ; ++k) {
xk[k] = xk[k-1]*x;
}
for (int k=2 ; k<= bord_num ; ++k) {
const double f1 = b_vector[k] * kf[k] * xk[k-2];
const double f2 = f1*xk[1];
factor_ee_gl_0[i] = factor_ee_gl_0[i] + f2*dx[0];
factor_ee_gl_1[i] = factor_ee_gl_1[i] + f2*dx[1];
factor_ee_gl_2[i] = factor_ee_gl_2[i] + f2*dx[2];
factor_ee_gl_3[i] = factor_ee_gl_3[i] + f2*dx[3];
factor_ee_gl_3[i] = factor_ee_gl_3[i] + f1*kf[k-1]*grad_c2;
}
}
touched = true;
}
if (!touched) {
memset(&(factor_ee_gl[nw*4*elec_num]), 0, elec_num*4*sizeof(double));
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_ee_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_gl (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const int32_t spin_independent,
double* const factor_ee_gl );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_gl_hpc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const int32_t spin_independent,
double* const factor_ee_gl );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_gl_doc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const int32_t spin_independent,
double* const factor_ee_gl );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_ee_gl (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const int32_t spin_independent,
double* const factor_ee_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_ee_gl_hpc
#else
return qmckl_compute_jastrow_champ_factor_ee_gl_doc
#endif
(context, walk_num, elec_num, up_num, bord_num, b_vector,
ee_distance_rescaled, ee_distance_rescaled_gl, spin_independent, factor_ee_gl );
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasb>>
kappa = 0.6
dx = 1.e-3
elec_coord = np.array(elec_coord)[0]
def make_dist(elec_coord):
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
return elec_dist
def make_dist_deriv(elec_coord):
elec_dist_d = np.zeros(shape=(4, elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
rij = np.linalg.norm(elec_coord[i] - elec_coord[j])
rijm = np.linalg.norm(elec_coord[i]+np.array((dx,0.,0.)) - elec_coord[j])
rijp = np.linalg.norm(elec_coord[i]-np.array((dx,0.,0.)) - elec_coord[j])
elec_dist_d[0, i, j] = (rijp-rijm)/(2.*dx)
elec_dist_d[3, i, j] = (rijp+rijm-2.*rij)/(dx**2)
rijm = np.linalg.norm(elec_coord[i]+np.array((0.,dx,0.)) - elec_coord[j])
rijp = np.linalg.norm(elec_coord[i]-np.array((0.,dx,0.)) - elec_coord[j])
elec_dist_d[1, i, j] = (rijp-rijm)/(2.*dx)
elec_dist_d[3, i, j] += (rijp+rijm-2.*rij)/(dx**2)
rijm = np.linalg.norm(elec_coord[i]+np.array((0.,0.,dx)) - elec_coord[j])
rijp = np.linalg.norm(elec_coord[i]-np.array((0.,0.,dx)) - elec_coord[j])
elec_dist_d[2, i, j] = (rijp-rijm)/(2.*dx)
elec_dist_d[3, i, j] += (rijp+rijm-2.*rij)/(dx**2)
return elec_dist_d
def func(elec_coord):
elec_dist = make_dist(elec_coord)
elec_dist_gl = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_gl[ii, i, j] = (elec_coord[i][ii] - elec_coord[j][ii]) * rij_inv
elec_dist_gl[3, i, j] = 2.0 * rij_inv
elec_dist_gl[:, j, j] = 6.0
ee_distance_rescaled_gl = np.zeros(shape=(4,elec_num,elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
f = 1.0 - kappa * ee_distance_rescaled[i][j]
for ii in range(4):
ee_distance_rescaled_gl[ii][i][j] = elec_dist_gl[ii][i][j]
ee_distance_rescaled_gl[3][i][j] = ee_distance_rescaled_gl[3][i][j] + \
(-kappa * ee_distance_rescaled_gl[0][i][j] * ee_distance_rescaled_gl[0][i][j]) + \
(-kappa * ee_distance_rescaled_gl[1][i][j] * ee_distance_rescaled_gl[1][i][j]) + \
(-kappa * ee_distance_rescaled_gl[2][i][j] * ee_distance_rescaled_gl[2][i][j])
for ii in range(4):
ee_distance_rescaled_gl[ii][i][j] = ee_distance_rescaled_gl[ii][i][j] * f
return ee_distance_rescaled_gl, elec_dist_gl
ee_distance_rescaled_gl, elec_dist_gl = func(elec_coord)
#print(elec_dist_gl[3,:,:])
#print(make_dist_deriv(elec_coord)[3,:,:])
factor_ee_gl = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(4),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
if i == j: continue
x = ee_distance_rescaled[j,i]
den = 1.0 + b_vector[1] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / x
dx[:] = ee_distance_rescaled_gl[:,j,i]
if((i < up_num and j < up_num) or (i >= up_num and j >= up_num) ):
spin_fact = 0.5
else:
spin_fact = 1.0
factor_ee_gl[:,j] += spin_fact * b_vector[0] * dx[:] * invden2
for k in range(2,bord_num+1):
factor_ee_gl[:,j] += b_vector[k]*k*x**(k-1)*dx[:]
grad_c2 = np.dot(ee_distance_rescaled_gl[:3,j,i], ee_distance_rescaled_gl[:3,j,i])
factor_ee_gl[3,j] -= spin_fact * b_vector[0] * 2. * b_vector[1] * grad_c2 * invden3
for k in range(2,bord_num+1):
factor_ee_gl[3,j] += b_vector[k]*k*(k-1)*x**(k-2)*grad_c2
print("factor_ee_gl[0][0]:",factor_ee_gl[0][0])
print("factor_ee_gl[1][0]:",factor_ee_gl[1][0])
print("factor_ee_gl[2][0]:",factor_ee_gl[2][0])
print("factor_ee_gl[3][0]:",factor_ee_gl[3][0])
#+end_src
#+RESULTS:
: asym_one : 0.6634291325000664
: asymp_jasb[0] : 0.7115733522582638
: asymp_jasb[1] : 1.043287918508297
: factor_ee_gl[0][0]:
: factor_ee_gl[1][0]:
: factor_ee_gl[2][0]:
: factor_ee_gl[3][0]:
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
//----
{
printf("factor_ee_gl\n");
double fd[walk_num][4][elec_num];
double delta_x = 0.001;
// Finite difference coefficients for gradients
double coef[9] = { 1.0/280.0, -4.0/105.0, 1.0/5.0, -4.0/5.0, 0.0, 4.0/5.0, -1.0/5.0, 4.0/105.0, -1.0/280.0 };
// Finite difference coefficients for Laplacian
double coef2[9]= {-1.0/560.0, 8.0/315.0, -1.0/5.0, 8.0/5.0, -205.0/72.0, 8.0/5.0, -1.0/5.0, 8.0/315.0, -1.0/560.0 };
qmckl_exit_code rc;
int64_t walk_num;
rc = qmckl_get_electron_walk_num(context, &walk_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
int64_t elec_num;
rc = qmckl_get_electron_num(context, &elec_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
double elec_coord[walk_num][elec_num][3];
rc = qmckl_get_electron_coord (context, 'N', &(elec_coord[0][0][0]), 3*walk_num*elec_num);
double temp_coord[walk_num][elec_num][3];
memcpy(&(temp_coord[0][0][0]), &(elec_coord[0][0][0]), sizeof(temp_coord));
double function_values[walk_num];
memset(&(fd[0][0][0]), 0, sizeof(fd));
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 3; k++) {
for (int64_t m = -4; m <= 4; m++) { // Apply finite difference displacement
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k] + (double) m * delta_x;
}
// Update coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(temp_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Call the provided function
rc = qmckl_get_jastrow_champ_factor_ee(context, &(function_values[0]), walk_num);
assert(rc == QMCKL_SUCCESS);
// Accumulate derivative using finite-difference coefficients
for (int64_t nw=0 ; nw<walk_num ; nw++) {
fd[nw][k][i] += coef [m + 4] * function_values[nw];
fd[nw][3][i] += coef2[m + 4] * function_values[nw];
}
}
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k];
}
}
}
// Reset coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(elec_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Normalize by the step size
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t k = 0; k < 4; k++) {
for (int64_t i = 0; i < elec_num; i++) {
fd[nw][k][i] /= delta_x;
}
}
for (int64_t i = 0; i < elec_num; i++) {
fd[nw][3][i] /= delta_x;
}
}
double factor_ee_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_ee_gl(context,
&(factor_ee_gl[0][0][0]),
walk_num*4*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int nw = 0; nw < walk_num; nw++){
for (int i = 0; i < elec_num; i++) {
for (int k = 0; k < 3; k++){
if (fabs(fd[nw][k][i] - factor_ee_gl[nw][k][i]) > 1.e-12) {
printf("nw=%d i=%d k=%d\n", nw, i, k);
printf("fd=%f factor_ee_gl=%f\n", fd[nw][k][i], factor_ee_gl[nw][k][i]);
fflush(stdout);
}
assert(fabs(fd[nw][k][i] - factor_ee_gl[nw][k][i]) < 1.e-8);
}
int k=3;
if (fabs(fd[nw][k][i] - factor_ee_gl[nw][k][i]) > 1.e-12) {
printf("nw=%d i=%d k=%d\n", nw, i, k);
printf("fd=%f factor_ee_gl=%f\n", fd[nw][k][i], factor_ee_gl[nw][k][i]);
fflush(stdout);
}
assert(fabs(fd[nw][k][i] - factor_ee_gl[nw][k][i]) < 1.e-5);
}
}
printf("OK\n");
}
{
printf("factor_ee_gl_hpc\n");
int64_t up_num;
rc = qmckl_get_electron_up_num(context, &up_num);
assert(rc == QMCKL_SUCCESS);
double ee_distance_rescaled[walk_num*elec_num*elec_num];
rc = qmckl_get_jastrow_champ_ee_distance_rescaled(context,
&(ee_distance_rescaled[0]),
walk_num*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double ee_distance_rescaled_gl[4*walk_num*elec_num*elec_num];
rc = qmckl_get_jastrow_champ_ee_distance_rescaled_gl(context,
&(ee_distance_rescaled_gl[0]),
4*walk_num*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double factor_ee_gl_doc[walk_num*4*elec_num];
memset(&(factor_ee_gl_doc[0]), 0, sizeof(factor_ee_gl_doc));
rc = qmckl_compute_jastrow_champ_factor_ee_gl_doc(context,
walk_num,
elec_num,
up_num,
bord_num,
b_vector,
&(ee_distance_rescaled[0]),
&(ee_distance_rescaled_gl[0]),
0,
&(factor_ee_gl_doc[0]));
assert(rc == QMCKL_SUCCESS);
double factor_ee_gl_hpc[walk_num*4*elec_num];
memset(&(factor_ee_gl_hpc[0]), 0, sizeof(factor_ee_gl_hpc));
rc = qmckl_compute_jastrow_champ_factor_ee_gl_hpc(context,
walk_num,
elec_num,
up_num,
bord_num,
b_vector,
&(ee_distance_rescaled[0]),
&(ee_distance_rescaled_gl[0]),
0,
&(factor_ee_gl_hpc[0]));
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0 ; i < walk_num*4*elec_num ; i++) {
if (fabs(factor_ee_gl_hpc[i] - factor_ee_gl_doc[i]) > 1.e-12) {
printf("i=%ld\nfactor_ee_gl_hpc=%f\nfactor_ee_gl_doc=%f\n", i, factor_ee_gl_hpc[i], factor_ee_gl_doc[i]);
fflush(stdout);
}
assert(fabs(factor_ee_gl_hpc[i] - factor_ee_gl_doc[i]) < 1.e-8);
}
}
#+end_src
** Electron-nucleus component
*** Asymptotic component
Calculate the asymptotic component ~asymp_jasa~ to be subtracted from the final
electron-nucleus jastrow factor \(J_{\text{eN}}\). The asymptotic component is calculated
via the ~a_vector~ and the electron-nucleus rescale factors ~rescale_factor_en~.
\[
J_{\text{en}}^{\infty \alpha} = -\frac{a_1 \kappa_\alpha^{-1}}{1 + a_2 \kappa_\alpha^{-1}}
\]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_asymp_jasa(qmckl_context context,
double* const asymp_jasa,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_asymp_jasa(qmckl_context context,
double* const asymp_jasa,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_asymp_jasa",
NULL);
}
/* Provided in finalize_jastrow */
/*
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_asymp_jasa(context);
if(rc != QMCKL_SUCCESS) return rc;
,*/
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (asymp_jasa == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_asymp_jasa",
"Null pointer");
}
const int64_t sze = ctx->jastrow_champ.type_nucl_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_asymp_jasa",
"Array too small. Expected nucl_num");
}
memcpy(asymp_jasa, ctx->jastrow_champ.asymp_jasa, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_asymp_jasa(context, &
asymp_jasa, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: asymp_jasa(size_max)
end function qmckl_get_jastrow_champ_asymp_jasa
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_asymp_jasa(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_asymp_jasa(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_asymp_jasa",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_asymp_jasa",
NULL);
}
// /* Compute if necessary */
// if (ctx->date > ctx->jastrow_champ.asymp_jasa_date) {
/* Allocate array */
if (ctx->jastrow_champ.asymp_jasa == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->jastrow_champ.type_nucl_num * sizeof(double);
double* asymp_jasa = (double*) qmckl_malloc(context, mem_info);
if (asymp_jasa == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_asymp_jasa",
NULL);
}
ctx->jastrow_champ.asymp_jasa = asymp_jasa;
}
rc = qmckl_compute_jastrow_champ_asymp_jasa(context,
ctx->jastrow_champ.aord_num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.a_vector,
ctx->jastrow_champ.rescale_factor_en,
ctx->jastrow_champ.asymp_jasa);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.asymp_jasa_date = ctx->date;
// }
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_asymp_jasa
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_asymp_jasa_args
| Variable | Type | In/Out | Description |
|---------------------+-------------------------------------+--------+----------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~aord_num~ | ~int64_t~ | in | Order of the polynomial |
| ~type_nucl_num~ | ~int64_t~ | in | Number of nucleus types |
| ~a_vector~ | ~double[type_nucl_num][aord_num+1]~ | in | Values of a |
| ~rescale_factor_en~ | ~double[type_nucl_num]~ | in | Electron nucleus distances |
| ~asymp_jasa~ | ~double[type_nucl_num]~ | out | Asymptotic value |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_asymp_jasa_f(context, aord_num, type_nucl_num, a_vector, &
rescale_factor_en, asymp_jasa) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: aord_num
integer*8 , intent(in) :: type_nucl_num
double precision , intent(in) :: a_vector(aord_num + 1, type_nucl_num)
double precision , intent(in) :: rescale_factor_en(type_nucl_num)
double precision , intent(out) :: asymp_jasa(type_nucl_num)
integer*8 :: i, j, p
double precision :: kappa_inv, x, asym_one
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_2
return
endif
do i=1,type_nucl_num
kappa_inv = 1.0d0 / rescale_factor_en(i)
asymp_jasa(i) = a_vector(1,i) * kappa_inv / (1.0d0 + a_vector(2,i) * kappa_inv)
x = kappa_inv
do p = 2, aord_num
x = x * kappa_inv
asymp_jasa(i) = asymp_jasa(i) + a_vector(p+1, i) * x
end do
end do
end function qmckl_compute_jastrow_champ_asymp_jasa_f
#+end_src
#+CALL: generate_c_interface(table=qmckl_asymp_jasa_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_asymp_jasa &
(context, aord_num, type_nucl_num, a_vector, rescale_factor_en, asymp_jasa) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: aord_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: rescale_factor_en(type_nucl_num)
real (c_double ) , intent(out) :: asymp_jasa(type_nucl_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_asymp_jasa_f
info = qmckl_compute_jastrow_champ_asymp_jasa_f &
(context, aord_num, type_nucl_num, a_vector, rescale_factor_en, asymp_jasa)
end function qmckl_compute_jastrow_champ_asymp_jasa
#+end_src
#+CALL: generate_c_header(table=qmckl_asymp_jasa_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_asymp_jasa (
const qmckl_context context,
const int64_t aord_num,
const int64_t type_nucl_num,
const double* a_vector,
const double* rescale_factor_en,
double* const asymp_jasa );
#+end_src
**** Test :noexport:
#+name: asymp_jasa
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
asymp_jasa = a_vector[0] * kappa_inv / (1.0 + a_vector[1]*kappa_inv)
x = kappa_inv
for p in range(1,aord_num):
x = x * kappa_inv
asymp_jasa += a_vector[p + 1] * x
print("asymp_jasa[i] : ", asymp_jasa)
#+end_src
#+RESULTS: asymp_jasa
: asymp_jasa[i] : [-1.75529774]
double asymp_jasa[2];
rc = qmckl_get_jastrow_champ_asymp_jasa(context, asymp_jasa, type_nucl_num);
// calculate asymp_jasb
printf("%e %e\n", asymp_jasa[0], -1.75529774);
fflush(stdout);
assert(fabs(-1.75529774 - asymp_jasa[0]) < 1.e-8);
#+end_src
*** Electron-nucleus rescaled distances
~en_distance_rescaled~ stores the matrix of the rescaled distances between
electrons and nuclei.
\[
C_{i\alpha} = \frac{ 1 - e^{-\kappa_\alpha R_{i\alpha}}}{\kappa_\alpha}
\]
where \(R_{i\alpha}\) is the matrix of electron-nucleus distances.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_en_distance_rescaled(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_en_distance_rescaled(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_en_distance_rescaled(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (distance_rescaled == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_en_distance_rescaled",
"Null pointer");
}
const int64_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_en_distance_rescaled",
"Array too small. Expected walk_num*nucl_num*elec_num");
}
memcpy(distance_rescaled, ctx->jastrow_champ.en_distance_rescaled, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!(ctx->nucleus.provided)) {
return QMCKL_NOT_PROVIDED;
}
/* Compute if necessary */
if (ctx->electron.walker.point.date > ctx->jastrow_champ.en_distance_rescaled_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.en_distance_rescaled != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.en_distance_rescaled);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_en_distance_rescaled",
"Unable to free ctx->jastrow_champ.en_distance_rescaled");
}
ctx->jastrow_champ.en_distance_rescaled = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.en_distance_rescaled == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->nucleus.num *
ctx->electron.walker.num * sizeof(double);
double* en_distance_rescaled = (double*) qmckl_malloc(context, mem_info);
if (en_distance_rescaled == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_en_distance_rescaled",
NULL);
}
ctx->jastrow_champ.en_distance_rescaled = en_distance_rescaled;
}
qmckl_exit_code rc =
qmckl_compute_en_distance_rescaled(context,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.rescale_factor_en,
ctx->electron.walker.num,
ctx->electron.walker.point.coord.data,
ctx->nucleus.coord.data,
ctx->jastrow_champ.en_distance_rescaled);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.en_distance_rescaled_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_en_distance_rescaled
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_en_distance_rescaled_args
| Variable | Type | In/Out | Description |
|------------------------+----------------------------------------+--------+-----------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~type_nucl_num~ | ~int64_t~ | in | Number of types of nuclei |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | Number of types of nuclei |
| ~rescale_factor_en~ | ~double[type_nucl_num]~ | in | The factor for rescaled distances |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates |
| ~nucl_coord~ | ~double[3][elec_num]~ | in | Nuclear coordinates |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | out | Electron-nucleus distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_en_distance_rescaled_doc(context, &
elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, rescale_factor_en, walk_num, elec_coord, &
nucl_coord, en_distance_rescaled) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: rescale_factor_en(type_nucl_num)
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
real (c_double ) , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: i, k
double precision :: coord(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do i=1, nucl_num
coord(1:3) = nucl_coord(i,1:3)
do k=1,walk_num
info = qmckl_distance_rescaled(context, 'T', 'N', elec_num, 1_8, &
elec_coord(1,k,1), elec_num*walk_num, coord, 3_8, &
en_distance_rescaled(1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)+1))
if (info /= QMCKL_SUCCESS) then
return
endif
end do
end do
end function qmckl_compute_en_distance_rescaled_doc
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_hpc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (elec_num <= 0) return QMCKL_INVALID_ARG_2;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_3;
if (type_nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (type_nucl_vector == NULL) return QMCKL_INVALID_ARG_5;
if (rescale_factor_en == NULL) return QMCKL_INVALID_ARG_6;
if (walk_num <= 0) return QMCKL_INVALID_ARG_7;
if (elec_coord == NULL) return QMCKL_INVALID_ARG_8;
if (nucl_coord == NULL) return QMCKL_INVALID_ARG_9;
if (en_distance_rescaled == NULL) return QMCKL_INVALID_ARG_10;
const int64_t sze = elec_num*walk_num;
qmckl_exit_code result = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
qmckl_exit_code rc = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t k=0 ; k<walk_num ; ++k)
{
for (int64_t a=0 ; a<nucl_num ; ++a) {
const double coord[3] = { nucl_coord[a], nucl_coord[a+nucl_num], nucl_coord[a+2*nucl_num] };
rc |= qmckl_distance_rescaled(context, 'T', 'N', elec_num, 1,
&(elec_coord[k*elec_num]), sze,
coord, 3,
&(en_distance_rescaled[elec_num*(a+nucl_num*k)]), elec_num,
rescale_factor_en[type_nucl_vector[a]]);
}
}
#ifdef HAVE_OPENMP
#pragma omp critical
#endif
result |= rc;
}
return result;
}
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_doc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled );
qmckl_exit_code qmckl_compute_en_distance_rescaled_hpc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled );
qmckl_exit_code qmckl_compute_en_distance_rescaled (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled );
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled )
{
#ifdef HAVE_HPC
return qmckl_compute_en_distance_rescaled_hpc
#else
return qmckl_compute_en_distance_rescaled_doc
#endif
(context, elec_num, nucl_num, type_nucl_num, type_nucl_vector,
rescale_factor_en, walk_num, elec_coord, nucl_coord, en_distance_rescaled );
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none
import numpy as np
kappa = 0.6
elec_1_w1 = np.array( [-0.250655104764153, 0.503070975550133 , -0.166554344502303])
elec_2_w1 = np.array( [-0.587812193472177, -0.128751981129274 , 0.187773606533075])
elec_5_w1 = np.array( [-0.127732483187947, -0.138975497694196 , -8.669850480215846E-002])
elec_6_w1 = np.array( [-0.232271834949124, -1.059321673434182E-002 , -0.504862241464867])
nucl_1 = np.array( [ 0., 0., 0. ])
nucl_2 = np.array( [ 0., 0., 2.059801 ])
print ( "[0][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_1)) )/kappa )
print ( "[1][0] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_1_w1-nucl_2)) )/kappa )
print ( "[0][1] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_2_w1-nucl_1)) )/kappa )
print ( "[0][5] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_5_w1-nucl_1)) )/kappa )
print ( "[1][5] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_5_w1-nucl_2)) )/kappa )
print ( "[0][6] : ", (1.0 - np.exp(-kappa * np.linalg.norm(elec_6_w1-nucl_1)) )/kappa )
#+end_src
#+RESULTS:
: [0][0] : 0.4942158656729477
: [1][0] : 1.2464137498005765
: [0][1] : 0.5248654474756858
: [0][5] : 0.19529459944794733
: [1][5] : 1.2091967687767369
: [0][6] : 0.4726452953409436
#+begin_src c :tangle (eval c_test)
{
assert(qmckl_electron_provided(context));
assert(qmckl_nucleus_provided(context));
double en_distance_rescaled[walk_num][nucl_num][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_en_distance_rescaled(context,
&(en_distance_rescaled[0][0][0]),
walk_num*nucl_num*elec_num)
);
assert (rc == QMCKL_SUCCESS);
// (e,n,w) in Fortran notation
// (1,1,1)
assert(fabs(en_distance_rescaled[0][0][0] - 0.4942158656729477) < 1.e-12);
// (1,2,1)
assert(fabs(en_distance_rescaled[0][1][0] - 1.2464137498005765) < 1.e-12);
// (2,1,1)
assert(fabs(en_distance_rescaled[0][0][1] - 0.5248654474756858) < 1.e-12);
// (1,1,2)
assert(fabs(en_distance_rescaled[0][0][5] - 0.19529459944794733) < 1.e-12);
// (1,2,2)
assert(fabs(en_distance_rescaled[0][1][5] - 1.2091967687767369) < 1.e-12);
// (2,1,2)
assert(fabs(en_distance_rescaled[0][0][6] - 0.4726452953409436) < 1.e-12);
}
{
printf("en_distance_rescaled_hpc\n");
double en_distance_rescaled_doc[walk_num*nucl_num*elec_num];
memset(&(en_distance_rescaled_doc[0]), 0, walk_num*nucl_num*elec_num*sizeof(double));
rc = qmckl_compute_en_distance_rescaled_doc(context, elec_num, nucl_num, type_nucl_num,
type_nucl_vector, rescale_factor_en, walk_num,
elec_coord, nucl_coord, en_distance_rescaled_doc);
assert(rc == QMCKL_SUCCESS);
double en_distance_rescaled_hpc[walk_num*nucl_num*elec_num];
memset(&(en_distance_rescaled_hpc[0]), 0, walk_num*nucl_num*elec_num*sizeof(double));
rc = qmckl_compute_en_distance_rescaled_hpc(context, elec_num, nucl_num, type_nucl_num,
type_nucl_vector, rescale_factor_en, walk_num,
elec_coord, nucl_coord, en_distance_rescaled_hpc);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<walk_num*nucl_num*elec_num ; ++i) {
if (fabs(en_distance_rescaled_doc[i] - en_distance_rescaled_hpc[i]) > 1.e-12) {
printf("i = %ld, doc = %e, hpc = %e\n", i, en_distance_rescaled_doc[i], en_distance_rescaled_hpc[i]);
fflush(stdout);
}
assert(fabs(en_distance_rescaled_doc[i] - en_distance_rescaled_hpc[i]) < 1.e-8);
}
}
#+end_src
*** Electron-electron rescaled distance gradients and Laplacian with respect to electron coordinates
The rescaled distances, represented by $C_{i\alpha} = (1 - e^{-\kappa_\alpha R_{i\alpha}})/\kappa$
are differentiated with respect to the electron coordinates.
This information is stored in the tensor
~en_distance_rescaled_gl~. The initial three sequential
elements of this three-index tensor provide the $x$, $y$, and $z$
direction derivatives, while the fourth index corresponds to the Laplacian.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_en_distance_rescaled_gl(qmckl_context context,
double* const distance_rescaled_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_en_distance_rescaled_gl(qmckl_context context,
double* const distance_rescaled_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_en_distance_rescaled_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (distance_rescaled_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_en_distance_rescaled_gl",
"Null pointer");
}
const int64_t sze = 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_en_distance_rescaled_gl",
"Array too small. Expected walk_num*elec_num*4");
}
memcpy(distance_rescaled_gl, ctx->jastrow_champ.en_distance_rescaled_gl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_en_distance_rescaled_gl(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!(ctx->nucleus.provided)) {
return QMCKL_NOT_PROVIDED;
}
/* Compute if necessary */
if (ctx->electron.walker.point.date > ctx->jastrow_champ.en_distance_rescaled_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.en_distance_rescaled_gl != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->jastrow_champ.en_distance_rescaled_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_en_distance_rescaled_gl",
"Unable to free ctx->jastrow_champ.en_distance_rescaled_gl");
}
ctx->jastrow_champ.en_distance_rescaled_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.en_distance_rescaled_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->nucleus.num *
ctx->electron.walker.num * sizeof(double);
double* en_distance_rescaled_gl = (double*) qmckl_malloc(context, mem_info);
if (en_distance_rescaled_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_en_distance_rescaled_gl",
NULL);
}
ctx->jastrow_champ.en_distance_rescaled_gl = en_distance_rescaled_gl;
}
qmckl_exit_code rc =
qmckl_compute_en_distance_rescaled_gl(context,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.rescale_factor_en,
ctx->electron.walker.num,
ctx->electron.walker.point.coord.data,
ctx->nucleus.coord.data,
ctx->jastrow_champ.en_distance_rescaled_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.en_distance_rescaled_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_en_distance_rescaled_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_en_distance_rescaled_gl_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------+--------+---------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~type_nucl_num~ | ~int64_t~ | in | Number of nucleus types |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | Array of nucleus types |
| ~rescale_factor_en~ | ~double[nucl_num]~ | in | The factors for rescaled distances |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_coord~ | ~double[3][walk_num][elec_num]~ | in | Electron coordinates |
| ~nucl_coord~ | ~double[3][elec_num]~ | in | Nuclear coordinates |
| ~en_distance_rescaled_gl~ | ~double[walk_num][nucl_num][elec_num][4]~ | out | Electron-nucleus distance derivatives |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_en_distance_rescaled_gl_doc_f(context, elec_num, nucl_num, &
type_nucl_num, type_nucl_vector, rescale_factor_en, walk_num, elec_coord, &
nucl_coord, en_distance_rescaled_gl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: rescale_factor_en(nucl_num)
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: elec_coord(elec_num,walk_num,3)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(out) :: en_distance_rescaled_gl(4,elec_num,nucl_num,walk_num)
integer*8 :: i, k
double precision :: coord(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do i=1, nucl_num
coord(1:3) = nucl_coord(i,1:3)
do k=1,walk_num
info = qmckl_distance_rescaled_gl(context, 'T', 'T', elec_num, 1_8, &
elec_coord(1,k,1), elec_num*walk_num, coord, 1_8, &
en_distance_rescaled_gl(1,1,i,k), elec_num, rescale_factor_en(type_nucl_vector(i)+1))
if (info /= QMCKL_SUCCESS) then
return
endif
end do
end do
end function qmckl_compute_en_distance_rescaled_gl_doc_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_gl_doc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_gl );
qmckl_exit_code qmckl_compute_en_distance_rescaled_gl_hpc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_gl );
qmckl_exit_code qmckl_compute_en_distance_rescaled_gl (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_gl );
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_gl_hpc (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_gl )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (elec_num <= 0) return QMCKL_INVALID_ARG_2;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_3;
if (type_nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (type_nucl_vector == NULL) return QMCKL_INVALID_ARG_5;
if (rescale_factor_en == NULL) return QMCKL_INVALID_ARG_6;
if (walk_num <= 0) return QMCKL_INVALID_ARG_7;
if (elec_coord == NULL) return QMCKL_INVALID_ARG_8;
if (nucl_coord == NULL) return QMCKL_INVALID_ARG_9;
if (en_distance_rescaled_gl == NULL) return QMCKL_INVALID_ARG_10;
const int64_t sze = elec_num*walk_num;
qmckl_exit_code result = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
qmckl_exit_code rc = QMCKL_SUCCESS;
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t k=0 ; k<walk_num ; ++k)
{
for (int64_t a=0 ; a<nucl_num ; ++a) {
const double coord[3] = { nucl_coord[a], nucl_coord[a+nucl_num], nucl_coord[a+2*nucl_num] };
rc |= qmckl_distance_rescaled_gl(context, 'T', 'T', elec_num, 1,
&(elec_coord[k*elec_num]), sze,
coord, 1,
&(en_distance_rescaled_gl[4*elec_num*(a+nucl_num*k)]), elec_num,
rescale_factor_en[type_nucl_vector[a]]);
}
}
#ifdef HAVE_OPENMP
#pragma omp critical
#endif
result |= rc;
}
return result;
}
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_en_distance_rescaled_gl (
const qmckl_context context,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const double* rescale_factor_en,
const int64_t walk_num,
const double* elec_coord,
const double* nucl_coord,
double* const en_distance_rescaled_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_en_distance_rescaled_gl_hpc
#else
return qmckl_compute_en_distance_rescaled_gl_doc
#endif
(context, elec_num, nucl_num, type_nucl_num, type_nucl_vector, rescale_factor_en,
walk_num, elec_coord, nucl_coord, en_distance_rescaled_gl );
}
#+end_src
#+CALL: generate_c_interface(table=qmckl_en_distance_rescaled_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_en_distance_rescaled_gl_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_en_distance_rescaled_gl_doc &
(context, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
rescale_factor_en, &
walk_num, &
elec_coord, &
nucl_coord, &
en_distance_rescaled_gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: rescale_factor_en(nucl_num)
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3)
real (c_double ) , intent(in) :: nucl_coord(elec_num,3)
real (c_double ) , intent(out) :: en_distance_rescaled_gl(4,elec_num,nucl_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_en_distance_rescaled_gl_doc_f
info = qmckl_compute_en_distance_rescaled_gl_doc_f &
(context, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
rescale_factor_en, &
walk_num, &
elec_coord, &
nucl_coord, &
en_distance_rescaled_gl)
end function qmckl_compute_en_distance_rescaled_gl_doc
#+end_src
**** Test :noexport:
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
{
printf("en_distance_rescaled_gl\n");
double fd[walk_num][nucl_num][elec_num][4];
double delta_x = 0.001;
// Finite difference coefficients for gradients
double coef[9] = { 1.0/280.0, -4.0/105.0, 1.0/5.0, -4.0/5.0, 0.0, 4.0/5.0, -1.0/5.0, 4.0/105.0, -1.0/280.0 };
// Finite difference coefficients for Laplacian
double coef2[9]= {-1.0/560.0, 8.0/315.0, -1.0/5.0, 8.0/5.0, -205.0/72.0, 8.0/5.0, -1.0/5.0, 8.0/315.0, -1.0/560.0 };
qmckl_exit_code rc;
int64_t walk_num;
rc = qmckl_get_electron_walk_num(context, &walk_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
int64_t elec_num;
rc = qmckl_get_electron_num(context, &elec_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
double elec_coord[walk_num][elec_num][3];
rc = qmckl_get_electron_coord (context, 'N', &(elec_coord[0][0][0]), 3*walk_num*elec_num);
double temp_coord[walk_num][elec_num][3];
memcpy(&(temp_coord[0][0][0]), &(elec_coord[0][0][0]), sizeof(temp_coord));
double function_values[walk_num][nucl_num][elec_num];
memset(&(fd[0][0][0][0]), 0, sizeof(fd));
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 3; k++) {
for (int64_t m = -4; m <= 4; m++) { // Apply finite difference displacement
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k] + (double) m * delta_x;
}
// Update coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(temp_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Call the provided function
rc = qmckl_get_jastrow_champ_en_distance_rescaled(context, &(function_values[0][0][0]), nucl_num*elec_num*walk_num);
assert(rc == QMCKL_SUCCESS);
// Accumulate derivative using finite-difference coefficients
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t j = 0; j < nucl_num; j++) {
fd[nw][j][i][k] += coef [m + 4] * function_values[nw][j][i];
fd[nw][j][i][3] += coef2[m + 4] * function_values[nw][j][i];
}
}
}
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k];
}
}
}
// Reset coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(elec_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Normalize by the step size
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t i = 0; i < nucl_num; i++) {
for (int64_t k = 0; k < 4; k++) {
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][i][j][k] /= delta_x;
}
}
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][i][j][3] /= delta_x;
}
}
}
double en_distance_rescaled_gl[walk_num][nucl_num][elec_num][4];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_en_distance_rescaled_gl(context,
&(en_distance_rescaled_gl[0][0][0][0]),
walk_num*nucl_num*4*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int nw = 0; nw < walk_num; nw++){
for (int i = 0; i < nucl_num; i++) {
for (int j = 0; j < elec_num; j++) {
for (int k = 0; k < 3; k++){
printf("%.10f\t", fd[nw][i][j][k]);
printf("%.10f\n", en_distance_rescaled_gl[nw][i][j][k]);
fflush(stdout);
assert(fabs(fd[nw][i][j][k] - en_distance_rescaled_gl[nw][i][j][k]) < 1.e-8);
}
int k=3;
if (i != j) {
printf("%.10f\t", fd[nw][i][j][k]);
printf("%.10f\n", en_distance_rescaled_gl[nw][i][j][k]);
fflush(stdout);
assert(fabs(fd[nw][i][j][k] - en_distance_rescaled_gl[nw][i][j][k]) < 1.e-6);
}
}
}
}
printf("OK\n");
}
{
printf("en_distance_rescaled_gl_hpc\n");
double en_distance_rescaled_gl_doc[walk_num*nucl_num*elec_num*4];
rc = qmckl_compute_en_distance_rescaled_gl_doc (context,
elec_num, nucl_num, type_nucl_num, type_nucl_vector, rescale_factor_en,
walk_num, elec_coord, nucl_coord,
&(en_distance_rescaled_gl_doc[0]));
assert(rc == QMCKL_SUCCESS);
double en_distance_rescaled_gl_hpc[walk_num*nucl_num*elec_num*4];
rc = qmckl_compute_en_distance_rescaled_gl_hpc (context,
elec_num, nucl_num, type_nucl_num, type_nucl_vector, rescale_factor_en,
walk_num, elec_coord, nucl_coord,
&(en_distance_rescaled_gl_hpc[0]));
assert(rc == QMCKL_SUCCESS);
for (int i = 0; i < walk_num*nucl_num*elec_num*4; i++) {
if (fabs(en_distance_rescaled_gl_doc[i] - en_distance_rescaled_gl_hpc[i]) > 1.e-8) {
printf("i = %d, doc = %e, hpc = %e\n", i, en_distance_rescaled_gl_doc[i], en_distance_rescaled_gl_hpc[i]);
fflush(stdout);
}
assert(fabs(en_distance_rescaled_gl_doc[i] - en_distance_rescaled_gl_hpc[i]) < 1.e-8);
}
}
#+end_src
*** Electron-nucleus component
Calculate the electron-electron jastrow component ~factor_en~ using the ~a_vector~
coeffecients and the electron-nucleus rescaled distances ~en_distance_rescaled~.
\[
f_{\alpha}(R_{i\alpha}) = - \sum_{i,j<i} \left[ \frac{ A_0 C_{ij}}{1 - A_1 C_{ij}} + \sum^{N^\alpha_{\text{ord}}}_{k}A_k C_{ij}^k \right]
\]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_en(qmckl_context context,
double* const factor_en,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_en(qmckl_context context,
double* const factor_en,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_factor_en",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_factor_en(context);
if (rc != QMCKL_SUCCESS) return rc;
if (factor_en == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_en",
"Null pointer");
}
const int64_t sze=ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_en",
"Array too small. Expected walk_num");
}
memcpy(factor_en, ctx->jastrow_champ.factor_en, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_en (context, &
factor_en, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_en(size_max)
end function qmckl_get_jastrow_champ_factor_en
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_en(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_en(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_factor_en",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_factor_en",
NULL);
}
/* Check if en rescaled distance is provided */
rc = qmckl_provide_en_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Provided in finalize_jastrow */
/*
rc = qmckl_provide_jastrow_champ_asymp_jasa(context);
if(rc != QMCKL_SUCCESS) return rc;
*/
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_en_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_en != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_en);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_en",
"Unable to free ctx->jastrow_champ.factor_en");
}
ctx->jastrow_champ.factor_en = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_en == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * sizeof(double);
double* factor_en = (double*) qmckl_malloc(context, mem_info);
if (factor_en == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_en",
NULL);
}
ctx->jastrow_champ.factor_en = factor_en;
}
rc = qmckl_compute_jastrow_champ_factor_en(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.aord_num,
ctx->jastrow_champ.a_vector,
ctx->jastrow_champ.en_distance_rescaled,
ctx->jastrow_champ.asymp_jasa,
ctx->jastrow_champ.factor_en);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_en_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_en_doc
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_en_args
| Variable | Type | In/Out | Description |
|------------------------+----------------------------------------+--------+----------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nuclei |
| ~aord_num~ | ~int64_t~ | in | Number of coefficients |
| ~a_vector~ | ~double[type_nucl_num][aord_num+1]~ | in | List of coefficients |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~asymp_jasa~ | ~double[type_nucl_num]~ | in | Type of nuclei |
| ~factor_en~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_jastrow_champ_factor_en_doc( &
context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, a_vector, &
en_distance_rescaled, asymp_jasa, factor_en) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: asymp_jasa(type_nucl_num)
real (c_double ) , intent(out) :: factor_en(walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: i, a, p, nw
double precision :: x, power_ser
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_7
return
endif
do nw =1, walk_num
factor_en(nw) = 0.0d0
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(i, a, nw)
factor_en(nw) = factor_en(nw) + a_vector(1, type_nucl_vector(a)+1) * x / &
(1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x) - asymp_jasa(type_nucl_vector(a)+1)
do p = 2, aord_num
x = x * en_distance_rescaled(i, a, nw)
factor_en(nw) = factor_en(nw) + a_vector(p + 1, type_nucl_vector(a)+1) * x
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_en_doc
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_en_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* asymp_jasa,
double* const factor_en );
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* asymp_jasa,
double* const factor_en );
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* asymp_jasa,
double* const factor_en );
#+end_src
#+begin_src c :tangle (eval c) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* asymp_jasa,
double* const factor_en )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_en_hpc
#else
return qmckl_compute_jastrow_champ_factor_en_doc
#endif
(context, walk_num, elec_num, nucl_num, type_nucl_num,
type_nucl_vector, aord_num, a_vector, en_distance_rescaled,
asymp_jasa, factor_en );
}
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* asymp_jasa,
double* const factor_en )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) return QMCKL_NULL_CONTEXT;
if (walk_num <= 0) return QMCKL_INVALID_ARG_3;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (type_nucl_num <= 0) return QMCKL_INVALID_ARG_5;
if (type_nucl_vector == NULL) return QMCKL_INVALID_ARG_6;
if (aord_num < 0) return QMCKL_INVALID_ARG_7;
if (a_vector == NULL) return QMCKL_INVALID_ARG_8;
if (en_distance_rescaled == NULL) return QMCKL_INVALID_ARG_9;
if (asymp_jasa == NULL) return QMCKL_INVALID_ARG_10;
if (factor_en == NULL) return QMCKL_INVALID_ARG_11;
const double de = (double) elec_num;
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (int64_t nw=0 ; nw<walk_num ; ++nw) {
factor_en[nw] = 0.;
const double* en_distance_rescaled_ = &(en_distance_rescaled[nw*elec_num*nucl_num]);
for (int64_t a=0 ; a<nucl_num ; ++a) {
const double* en_distance_rescaled__ = &(en_distance_rescaled_[a*elec_num]);
const double* a_vec = &(a_vector[(aord_num+1)*type_nucl_vector[a]]);
factor_en[nw] = factor_en[nw] - asymp_jasa[type_nucl_vector[a]]*de;
for (int64_t i=0 ; i<elec_num ; ++i) {
double x = en_distance_rescaled__[i];
factor_en[nw] = factor_en[nw] + a_vec[0]*x / (1.0 + a_vec[1]*x);
for (int64_t p=2 ; p <= aord_num ; ++p) {
x *= en_distance_rescaled__[i];
factor_en[nw] = factor_en[nw] + a_vec[p]*x;
}
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasa>>
factor_en = 0.0
for a in range(0,nucl_num):
for i in range(0,elec_num):
x = en_distance_rescaled[a][i]
pow_ser = 0.0
for p in range(2,aord_num+1):
x = x * en_distance_rescaled[a][i]
pow_ser += a_vector[(p-1) + 1][type_nucl_vector[a]] * x
factor_en += a_vector[0][type_nucl_vector[a]] * x \
/ (1.0 + a_vector[1][type_nucl_vector[a]] * x) \
+ pow_ser
factor_en -= asymp_jasa[type_nucl_vector[a]]
print("factor_en :",factor_en)
#+end_src
#+RESULTS:
: asymp_jasa[i] : [-1.75529774]
: factor_en : 22.781375792083587
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
double factor_en[walk_num];
rc = qmckl_get_jastrow_champ_factor_en(context, factor_en,walk_num);
// calculate factor_en
printf("%f %f\n", factor_en[0], 22.781375792083587);
fflush(stdout);
assert(fabs(22.781375792083587 - factor_en[0]) < 1.e-12);
{
printf("factor_en_hpc\n");
double asymp_jasa[type_nucl_num];
rc = qmckl_get_jastrow_champ_asymp_jasa(context, asymp_jasa, type_nucl_num);
assert(rc == QMCKL_SUCCESS);
double en_distance_rescaled[walk_num*nucl_num*elec_num];
rc = qmckl_get_jastrow_champ_en_distance_rescaled(context,
en_distance_rescaled,
walk_num*nucl_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double factor_en_doc[walk_num];
memset(&(factor_en_doc[0]), 0, sizeof(factor_en_doc));
rc = qmckl_compute_jastrow_champ_factor_en_doc (context,
walk_num, elec_num, nucl_num, type_nucl_num, type_nucl_vector,
aord_num, a_vector,
en_distance_rescaled, asymp_jasa, factor_en_doc);
assert(rc == QMCKL_SUCCESS);
double factor_en_hpc[walk_num];
rc = qmckl_compute_jastrow_champ_factor_en_hpc (context,
walk_num, elec_num, nucl_num, type_nucl_num, type_nucl_vector,
aord_num, a_vector,
en_distance_rescaled, asymp_jasa, factor_en_hpc);
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num; i++) {
assert(fabs(factor_en_doc[i] - factor_en_hpc[i]) < 1.e-10);
}
}
#+end_src
*** Derivative
Calculate the electron-electron jastrow component ~factor_en_gl~ derivative
with respect to the electron coordinates using the ~en_distance_rescaled~ and ~en_distance_rescaled_gl~ which are already calculated previously.
TODO: write equations.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_en_gl(qmckl_context context,
double* const factor_en_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_en_gl(qmckl_context context,
double* const factor_en_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_factor_en_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (factor_en_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_en_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_en_gl",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_en_gl, ctx->jastrow_champ.factor_en_gl, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_en_gl (context, &
factor_en_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_en_gl(size_max)
end function qmckl_get_jastrow_champ_factor_en_gl
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_en_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_en_gl(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_factor_en_gl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_factor_en_gl",
NULL);
}
/* Check if en rescaled distance is provided */
rc = qmckl_provide_en_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_en_distance_rescaled_gl(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_en_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_en_gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_en_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_en_gl",
"Unable to free ctx->jastrow_champ.factor_en_gl");
}
ctx->jastrow_champ.factor_en_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_en_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * 4 * ctx->electron.num * sizeof(double);
double* factor_en_gl = (double*) qmckl_malloc(context, mem_info);
if (factor_en_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_en_gl",
NULL);
}
ctx->jastrow_champ.factor_en_gl = factor_en_gl;
}
rc = qmckl_compute_jastrow_champ_factor_en_gl(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.aord_num,
ctx->jastrow_champ.a_vector,
ctx->jastrow_champ.en_distance_rescaled,
ctx->jastrow_champ.en_distance_rescaled_gl,
ctx->jastrow_champ.factor_en_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_en_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_en_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_en_gl_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------+--------+---------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nuclei |
| ~aord_num~ | ~int64_t~ | in | Number of coefficients |
| ~a_vector~ | ~double[type_nucl_num][aord_num+1]~ | in | List of coefficients |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~en_distance_rescaled_gl~ | ~double[walk_num][nucl_num][elec_num][4]~ | in | Electron-nucleus distance derivatives |
| ~factor_en_gl~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_jastrow_champ_factor_en_gl_doc( &
context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, a_vector, &
en_distance_rescaled, en_distance_rescaled_gl, factor_en_gl) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_distance_rescaled_gl(4, elec_num,nucl_num,walk_num)
real (c_double ) , intent(out) :: factor_en_gl(elec_num,4,walk_num)
integer(qmckl_exit_code) :: info
integer*8 :: i, a, k, nw, ii
double precision :: x, x1, kf
double precision :: denom, invdenom, invdenom2, f
double precision :: grad_c2
double precision :: dx(4)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_7
return
endif
do nw =1, walk_num
factor_en_gl(:,:,nw) = 0.0d0
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(i,a,nw)
if(abs(x) < 1.d-12) continue
denom = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x
invdenom = 1.0d0 / denom
invdenom2 = invdenom*invdenom
dx(1) = en_distance_rescaled_gl(1,i,a,nw)
dx(2) = en_distance_rescaled_gl(2,i,a,nw)
dx(3) = en_distance_rescaled_gl(3,i,a,nw)
dx(4) = en_distance_rescaled_gl(4,i,a,nw)
f = a_vector(1, type_nucl_vector(a)+1) * invdenom2
grad_c2 = dx(1)*dx(1) + dx(2)*dx(2) + dx(3)*dx(3)
factor_en_gl(i,1,nw) = factor_en_gl(i,1,nw) + f * dx(1)
factor_en_gl(i,2,nw) = factor_en_gl(i,2,nw) + f * dx(2)
factor_en_gl(i,3,nw) = factor_en_gl(i,3,nw) + f * dx(3)
factor_en_gl(i,4,nw) = factor_en_gl(i,4,nw) &
+ f * (dx(4) - 2.d0 * a_vector(2, type_nucl_vector(a)+1) * grad_c2 * invdenom)
kf = 2.d0
x1 = x
x = 1.d0
do k=2, aord_num
f = a_vector(k+1,type_nucl_vector(a)+1) * kf * x
factor_en_gl(i,1,nw) = factor_en_gl(i,1,nw) + f * x1 * dx(1)
factor_en_gl(i,2,nw) = factor_en_gl(i,2,nw) + f * x1 * dx(2)
factor_en_gl(i,3,nw) = factor_en_gl(i,3,nw) + f * x1 * dx(3)
factor_en_gl(i,4,nw) = factor_en_gl(i,4,nw) &
+ f * (x1 * dx(4) + (kf-1.d0) * grad_c2)
x = x*x1
kf = kf + 1.d0
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_en_gl_doc
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_en_gl_hpc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_gl,
double* const factor_en_gl )
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) return QMCKL_NULL_CONTEXT;
if (walk_num <= 0) return QMCKL_INVALID_ARG_3;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (type_nucl_num <= 0) return QMCKL_INVALID_ARG_5;
if (type_nucl_vector == NULL) return QMCKL_INVALID_ARG_6;
if (aord_num < 0) return QMCKL_INVALID_ARG_7;
if (a_vector == NULL) return QMCKL_INVALID_ARG_8;
if (en_distance_rescaled == NULL) return QMCKL_INVALID_ARG_9;
if (en_distance_rescaled_gl == NULL) return QMCKL_INVALID_ARG_10;
if (factor_en_gl == NULL) return QMCKL_INVALID_ARG_11;
double kf[aord_num+1];
for (int k=0 ; k<=aord_num ; ++k) {
kf[k] = (double) k;
}
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (int64_t nw = 0; nw < walk_num; ++nw) {
bool touched = false;
for (int64_t a = 0; a < nucl_num; ++a) {
const double* dxj = &en_distance_rescaled_gl[4*elec_num*(a+nw*nucl_num)];
const double* xj = &en_distance_rescaled [ elec_num*(a+nw*nucl_num)];
const double* a_vec = &( a_vector[(aord_num+1)*type_nucl_vector[a]] );
double * restrict factor_en_gl_0 = &(factor_en_gl[nw*elec_num*4]);
double * restrict factor_en_gl_1 = factor_en_gl_0 + elec_num;
double * restrict factor_en_gl_2 = factor_en_gl_1 + elec_num;
double * restrict factor_en_gl_3 = factor_en_gl_2 + elec_num;
for (int64_t i = 0; i < elec_num; ++i) {
double x = xj[i];
if (x < 1.e-12) continue;
const double denom = 1.0 + a_vec[1]*x;
const double invdenom = 1.0 / denom;
const double invdenom2 = invdenom * invdenom;
const double* restrict dx = dxj + 4*i;
const double grad_c2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
double f = a_vec[0] * invdenom2;
if (touched) {
factor_en_gl_0[i] = factor_en_gl_0[i] + f*dx[0];
factor_en_gl_1[i] = factor_en_gl_1[i] + f*dx[1];
factor_en_gl_2[i] = factor_en_gl_2[i] + f*dx[2];
factor_en_gl_3[i] = factor_en_gl_3[i] + f*dx[3];
} else {
factor_en_gl_0[i] = f*dx[0];
factor_en_gl_1[i] = f*dx[1];
factor_en_gl_2[i] = f*dx[2];
factor_en_gl_3[i] = f*dx[3];
}
factor_en_gl_3[i] = factor_en_gl_3[i] - f*grad_c2*invdenom*2.0 * a_vec[1];
double xk[aord_num+1];
xk[0] = 1.0;
for (int k=1 ; k<= aord_num ; ++k) {
xk[k] = xk[k-1]*x;
}
for (int k=2 ; k<= aord_num ; ++k) {
const double f1 = a_vec[k] * kf[k] * xk[k-2];
const double f2 = f1*xk[1];
factor_en_gl_0[i] = factor_en_gl_0[i] + f2*dx[0];
factor_en_gl_1[i] = factor_en_gl_1[i] + f2*dx[1];
factor_en_gl_2[i] = factor_en_gl_2[i] + f2*dx[2];
factor_en_gl_3[i] = factor_en_gl_3[i] + f2*dx[3];
factor_en_gl_3[i] = factor_en_gl_3[i] + f1*kf[k-1]*grad_c2;
}
}
touched = true;
}
if (!touched) {
memset(&(factor_en_gl[nw*4*elec_num]), 0, elec_num*4*sizeof(double));
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_en_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_gl_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_gl,
double* const factor_en_gl );
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_gl,
double* const factor_en_gl );
qmckl_exit_code qmckl_compute_jastrow_champ_factor_en_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_gl,
double* const factor_en_gl );
#+end_src
#+begin_src c :tangle (eval c) :comments org :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_en_gl (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_gl,
double* const factor_en_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_en_gl_hpc
#else
return qmckl_compute_jastrow_champ_factor_en_gl_doc
#endif
(context, walk_num, elec_num, nucl_num, type_nucl_num, type_nucl_vector, aord_num,
a_vector, en_distance_rescaled, en_distance_rescaled_gl, factor_en_gl );
}
#+end_src
**** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
kappa = 0.6
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for j in range(nucl_num):
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
elnuc_dist_gl = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_gl[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_gl[3, i, a] = 2.0 * rij_inv
en_distance_rescaled_gl = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
f = 1.0 - kappa * en_distance_rescaled[a][i]
for ii in range(4):
en_distance_rescaled_gl[ii][i][a] = elnuc_dist_gl[ii][i][a]
en_distance_rescaled_gl[3][i][a] = en_distance_rescaled_gl[3][i][a] + \
(-kappa * en_distance_rescaled_gl[0][i][a] * en_distance_rescaled_gl[0][i][a]) + \
(-kappa * en_distance_rescaled_gl[1][i][a] * en_distance_rescaled_gl[1][i][a]) + \
(-kappa * en_distance_rescaled_gl[2][i][a] * en_distance_rescaled_gl[2][i][a])
for ii in range(4):
en_distance_rescaled_gl[ii][i][a] = en_distance_rescaled_gl[ii][i][a] * f
third = 1.0 / 3.0
factor_en_gl = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(3),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
x = en_distance_rescaled[a][i]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + a_vector[1][type_nucl_vector[a]] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (x + 1.0E-18)
for ii in range(4):
dx[ii] = en_distance_rescaled_gl[ii][i][a]
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = en_distance_rescaled[a][i]
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * a_vector[(p-1) + 1][type_nucl_vector[a]] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[a][i]
lap3 = lap3 - 2.0 * a_vector[1][type_nucl_vector[a]] * dx[ii] * dx[ii]
factor_en_gl[ii][i] = factor_en_gl[ii][i] - a_vector[0][type_nucl_vector[a]] * \
dx[ii] * invden2 - pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (a_vector[0][type_nucl_vector[a]] * invden3)
factor_en_gl[ii][i] = factor_en_gl[ii][i] - lap1 - lap2 - lap3
print("factor_en_gl[0][0]:",factor_en_gl[0][0])
print("factor_en_gl[1][0]:",factor_en_gl[1][0])
print("factor_en_gl[2][0]:",factor_en_gl[2][0])
print("factor_en_gl[3][0]:",factor_en_gl[3][0])
#+end_src
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
{
printf("factor_en_gl\n");
double fd[walk_num][4][elec_num];
double delta_x = 0.001;
// Finite difference coefficients for gradients
double coef[9] = { 1.0/280.0, -4.0/105.0, 1.0/5.0, -4.0/5.0, 0.0, 4.0/5.0, -1.0/5.0, 4.0/105.0, -1.0/280.0 };
// Finite difference coefficients for Laplacian
double coef2[9]= {-1.0/560.0, 8.0/315.0, -1.0/5.0, 8.0/5.0, -205.0/72.0, 8.0/5.0, -1.0/5.0, 8.0/315.0, -1.0/560.0 };
qmckl_exit_code rc;
int64_t walk_num;
rc = qmckl_get_electron_walk_num(context, &walk_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
int64_t elec_num;
rc = qmckl_get_electron_num(context, &elec_num);
if (rc != QMCKL_SUCCESS) {
return rc;
}
double elec_coord[walk_num][elec_num][3];
rc = qmckl_get_electron_coord (context, 'N', &(elec_coord[0][0][0]), 3*walk_num*elec_num);
double temp_coord[walk_num][elec_num][3];
memcpy(&(temp_coord[0][0][0]), &(elec_coord[0][0][0]), sizeof(temp_coord));
double function_values[walk_num];
memset(&(fd[0][0][0]), 0, sizeof(fd));
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 3; k++) {
for (int64_t m = -4; m <= 4; m++) { // Apply finite difference displacement
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k] + (double) m * delta_x;
}
// Update coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(temp_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Call the provided function
rc = qmckl_get_jastrow_champ_factor_en(context, &(function_values[0]), walk_num);
assert(rc == QMCKL_SUCCESS);
// Accumulate derivative using finite-difference coefficients
for (int64_t nw=0 ; nw<walk_num ; nw++) {
fd[nw][k][i] += coef [m + 4] * function_values[nw];
fd[nw][3][i] += coef2[m + 4] * function_values[nw];
}
}
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][i][k] = elec_coord[nw][i][k];
}
}
}
// Reset coordinates in the context
rc = qmckl_set_electron_coord (context, 'N', walk_num, &(elec_coord[0][0][0]), walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Normalize by the step size
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t k = 0; k < 4; k++) {
for (int64_t i = 0; i < elec_num; i++) {
fd[nw][k][i] /= delta_x;
}
}
for (int64_t i = 0; i < elec_num; i++) {
fd[nw][3][i] /= delta_x;
}
}
double factor_en_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_en_gl(context,
&(factor_en_gl[0][0][0]),
walk_num*4*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int nw = 0; nw < walk_num; nw++){
for (int i = 0; i < elec_num; i++) {
for (int k = 0; k < 3; k++){
printf("%.10f\t", fd[nw][k][i]);
printf("%.10f\n", factor_en_gl[nw][k][i]);
fflush(stdout);
assert(fabs(fd[nw][k][i] - factor_en_gl[nw][k][i]) < 1.e-8);
}
int k=3;
if (fabs(fd[nw][k][i] - factor_en_gl[nw][k][i]) > 1.e-5) {
printf("i=%d doc=%f hpc=%f\n", i, fd[nw][k][i], factor_en_gl[nw][k][i]);
fflush(stdout);
}
assert(fabs(fd[nw][k][i] - factor_en_gl[nw][k][i]) < 1.e-5);
}
}
printf("OK\n");
}
{
printf("factor_en_gl_hpc\n");
double en_distance_rescaled[walk_num][nucl_num][elec_num];
rc = qmckl_get_jastrow_champ_en_distance_rescaled(context,
&(en_distance_rescaled[0][0][0]),
walk_num*nucl_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double en_distance_rescaled_gl[walk_num][4][elec_num][nucl_num];
rc = qmckl_get_jastrow_champ_en_distance_rescaled_gl(context,
&(en_distance_rescaled_gl[0][0][0][0]),
walk_num*4*elec_num*nucl_num);
assert(rc == QMCKL_SUCCESS);
double factor_en_gl_doc[walk_num*4*elec_num];
memset(&(factor_en_gl_doc[0]), 0, sizeof(factor_en_gl_doc));
rc = qmckl_compute_jastrow_champ_factor_en_gl_doc(context, walk_num, elec_num,
nucl_num, type_nucl_num, type_nucl_vector, aord_num, &(a_vector[0]),
&(en_distance_rescaled[0][0][0]), &(en_distance_rescaled_gl[0][0][0][0]), &(factor_en_gl_doc[0]));
assert(rc == QMCKL_SUCCESS);
double factor_en_gl_hpc[walk_num*4*elec_num];
memset(&(factor_en_gl_hpc[0]), 0, sizeof(factor_en_gl_hpc));
rc = qmckl_compute_jastrow_champ_factor_en_gl_hpc(context, walk_num, elec_num,
nucl_num, type_nucl_num, type_nucl_vector, aord_num, &(a_vector[0]),
&(en_distance_rescaled[0][0][0]), &(en_distance_rescaled_gl[0][0][0][0]), &(factor_en_gl_hpc[0]));
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num*4*elec_num; i++) {
if (fabs(factor_en_gl_doc[i] - factor_en_gl_hpc[i]) > 1.e-12) {
printf("i=%ld doc=%f hpc=%f\n", i, factor_en_gl_doc[i], factor_en_gl_hpc[i]);
fflush(stdout);
}
assert(fabs(factor_en_gl_doc[i] - factor_en_gl_hpc[i]) < 1.e-8);
}
}
#+end_src
** Electron-electron-nucleus component
*** Electron-electron rescaled distances in $J_\text{eeN}$ ~een_rescaled_e~ stores the table of the rescaled distances between all
pairs of electrons and raised to the power \(p\) defined by ~cord_num~:
\[
C_{ij,p} = \left[ \exp\left(-\kappa_\text{e}\, r_{ij}\right) \right]^p
\]
where \(r_{ij}\) is the matrix of electron-electron distances.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_een_distance_rescaled_e(qmckl_context context,
double* const een_rescaled_e,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_een_distance_rescaled_e(qmckl_context context,
double* const een_rescaled_e,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (een_rescaled_e == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_een_distance_rescaled_e",
"Null pointer");
}
const int64_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_een_distance_rescaled_e",
"Array too small. Expected elec_num*elec_num*walk_num*(cord_num + 1)");
}
memcpy(een_rescaled_e, ctx->jastrow_champ.een_rescaled_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_ee_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.een_rescaled_e_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.een_rescaled_e != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.een_rescaled_e);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_een_rescaled_e",
"Unable to free ctx->jastrow_champ.een_rescaled_e");
}
ctx->jastrow_champ.een_rescaled_e = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.een_rescaled_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->electron.num *
ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1) * sizeof(double);
double* een_rescaled_e = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_een_rescaled_e",
NULL);
}
ctx->jastrow_champ.een_rescaled_e = een_rescaled_e;
}
rc = qmckl_compute_een_rescaled_e(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.ee_distance,
ctx->jastrow_champ.een_rescaled_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.een_rescaled_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_een_rescaled_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_e_args
| Variable | Type | In/Out | Description |
|---------------------+----------------------------------------------------+--------+------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances for each walker |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances for each walker |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_een_rescaled_e_doc_f( &
context, walk_num, elec_num, cord_num, rescale_factor_ee, &
ee_distance, een_rescaled_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_ee
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
double precision,dimension(:,:),allocatable :: een_rescaled_e_ij
double precision :: x
integer*8 :: i, j, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
allocate(een_rescaled_e_ij(elec_num * (elec_num - 1) / 2, cord_num + 1))
! Prepare table of exponentiated distances raised to appropriate power
do nw = 1, walk_num
een_rescaled_e_ij(:, 1) = 1.0d0
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_ee * ee_distance(i, j, nw))
end do
end do
do l = 2, cord_num
do k = 1, elec_num * (elec_num - 1)/2
een_rescaled_e_ij(k, l+1) = een_rescaled_e_ij(k, l) * een_rescaled_e_ij(k, 2)
end do
end do
! prepare the actual een table
een_rescaled_e(:, :, 0, nw) = 1.0d0
do j = 1, elec_num
een_rescaled_e(j, j, 0, nw) = 0.0d0
end do
do l = 1, cord_num
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
x = een_rescaled_e_ij(k, l+1)
een_rescaled_e(i, j, l, nw) = x
een_rescaled_e(j, i, l, nw) = x
end do
een_rescaled_e(j, j, l, nw) = 0.0d0
end do
end do
end do
end function qmckl_compute_een_rescaled_e_doc_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname="qmckl_compute_een_rescaled_e_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_een_rescaled_e_doc &
(context, walk_num, elec_num, cord_num, rescale_factor_ee, &
ee_distance, een_rescaled_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_een_rescaled_e_doc_f
info = qmckl_compute_een_rescaled_e_doc_f &
(context, walk_num, elec_num, cord_num, rescale_factor_ee, ee_distance, een_rescaled_e)
end function qmckl_compute_een_rescaled_e_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_een_rescaled_e_hpc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (cord_num < 0) {
return QMCKL_INVALID_ARG_4;
}
// Prepare table of exponentiated distances raised to appropriate power
// init
const size_t elec_pairs = (size_t) (elec_num * (elec_num - 1)) / 2;
const size_t len_een_ij = (size_t) elec_pairs * (cord_num + 1);
// number of elements for the een_rescaled_e_ij[N_e*(N_e-1)/2][cord+1]
// probably in C is better [cord+1, Ne*(Ne-1)/2]
// elec_pairs = (elec_num * (elec_num - 1)) / 2;
// len_een_ij = elec_pairs * (cord_num + 1);
const size_t e2 = elec_num*elec_num;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
double* restrict een_rescaled_e_ij = calloc(len_een_ij,sizeof(double));
for (size_t kk = 0; kk < elec_pairs ; ++kk) {
een_rescaled_e_ij[kk]= 1.0;
}
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (size_t nw = 0; nw < (size_t) walk_num; ++nw) {
size_t kk = 0;
for (size_t i = 0; i < (size_t) elec_num; ++i) {
double* restrict ee1 = &een_rescaled_e_ij[kk + elec_pairs];
const double* restrict ee2 = &ee_distance[i*elec_num + nw*e2];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t j = 0; j < i; ++j) {
// een_rescaled_e_ij[j + kk + elec_pairs] = -rescale_factor_ee * ee_distance[j + i*elec_num + nw*e2];
ee1[j] = -rescale_factor_ee * ee2[j];
}
kk += i;
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t k = elec_pairs; k < 2*elec_pairs; ++k) {
een_rescaled_e_ij[k] = exp(een_rescaled_e_ij[k]);
}
const double* const ee3 = &een_rescaled_e_ij[elec_pairs];
for (size_t l = 2; l < (size_t) (cord_num+1); ++l) {
double* restrict ee1 = &een_rescaled_e_ij[l*elec_pairs];
const double* restrict ee2 = &een_rescaled_e_ij[(l-1)*elec_pairs];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t k = 0; k < elec_pairs; ++k) {
// een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2)
// een_rescaled_e_ij[k+l*elec_pairs] = een_rescaled_e_ij[k + (l - 1)*elec_pairs] *
// een_rescaled_e_ij[k + elec_pairs];
ee1[k] = ee2[k] * ee3[k];
}
}
double* restrict const een_rescaled_e_ = &(een_rescaled_e[nw*(cord_num+1)*e2]);
// prepare the actual een table
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t i = 0; i < e2; ++i){
een_rescaled_e_[i] = 1.0;
}
for ( size_t l = 1; l < (size_t) (cord_num+1); ++l) {
double* x = een_rescaled_e_ij + l*elec_pairs;
double* const een_rescaled_e__ = &(een_rescaled_e_[l*e2]);
double* een_rescaled_e_i = een_rescaled_e__;
for (size_t i = 0; i < (size_t) elec_num; ++i) {
for (size_t j = 0; j < i; ++j) {
een_rescaled_e_i[j] = *x;
een_rescaled_e__[i + j*elec_num] = *x;
x += 1;
}
een_rescaled_e_i += elec_num;
}
}
double* const x0 = &(een_rescaled_e[nw*e2*(cord_num+1)]);
for (size_t l = 0; l < (size_t) (cord_num + 1); ++l) {
double* x1 = &(x0[l*e2]);
for (size_t j = 0; j < (size_t) elec_num; ++j) {
,*x1 = 0.0;
x1 += 1+elec_num;
}
}
}
free(een_rescaled_e_ij);
} // OpenMP
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname="qmckl_compute_een_rescaled_e_doc")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_een_rescaled_e_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_een_rescaled_e_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* ee_distance,
double* const een_rescaled_e ) {
#ifdef HAVE_HPC
return qmckl_compute_een_rescaled_e_hpc
#else
return qmckl_compute_een_rescaled_e_doc
#endif
(context, walk_num, elec_num, cord_num, rescale_factor_ee, ee_distance, een_rescaled_e);
}
#+end_src
**** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
kappa = 0.6
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1])
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1])
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1])
print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2])
print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2])
print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2])
#+end_src
#+RESULTS:
: een_rescaled_e[0, 2, 1] = 0.2211015082992776
: een_rescaled_e[0, 3, 1] = 0.2611178387068169
: een_rescaled_e[0, 4, 1] = 0.08840123507637472
: een_rescaled_e[1, 3, 2] = 0.10166855073546568
: een_rescaled_e[1, 4, 2] = 0.011311807324686948
: een_rescaled_e[1, 5, 2] = 0.5257156022077619
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
{
double een_rescaled_e[walk_num][(cord_num + 1)][elec_num][elec_num];
rc = qmckl_get_jastrow_champ_een_distance_rescaled_e(context, &(een_rescaled_e[0][0][0][0]),elec_num*elec_num*(cord_num+1)*walk_num);
// value of (0,2,1)
assert(fabs(een_rescaled_e[0][1][0][2]- 0.2211015082992776 ) < 1.e-12);
assert(fabs(een_rescaled_e[0][1][0][3]- 0.2611178387068169 ) < 1.e-12);
assert(fabs(een_rescaled_e[0][1][0][4]- 0.0884012350763747 ) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][3]- 0.1016685507354656 ) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][4]- 0.0113118073246869 ) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][5]- 0.5257156022077619 ) < 1.e-12);
}
{
printf("een_rescaled_e_hpc\n");
double ee_distance[walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance(context, &(ee_distance[0]), walk_num*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
double een_rescaled_e_doc[walk_num][cord_num+1][elec_num][elec_num];
memset(&(een_rescaled_e_doc[0][0][0][0]), 0, sizeof(een_rescaled_e_doc));
rc = qmckl_compute_een_rescaled_e(context, walk_num, elec_num, cord_num,
0.6, &(ee_distance[0]), &(een_rescaled_e_doc[0][0][0][0]));
assert(rc == QMCKL_SUCCESS);
double een_rescaled_e_hpc[walk_num][cord_num+1][elec_num][elec_num];
memset(&(een_rescaled_e_hpc[0][0][0][0]), 0, sizeof(een_rescaled_e_hpc));
rc = qmckl_compute_een_rescaled_e_hpc(context, walk_num, elec_num, cord_num,
0.6, &(ee_distance[0]), &(een_rescaled_e_hpc[0][0][0][0]));
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num; i++) {
for (int64_t j = 0; j < cord_num+1; j++) {
for (int64_t k = 0; k < elec_num; k++) {
for (int64_t l = 0; l < elec_num; l++) {
if (fabs(een_rescaled_e_doc[i][j][k][l] - een_rescaled_e_hpc[i][j][k][l]) > 1.e-12) {
printf("i=%ld j=%ld k=%ld l=%ld doc=%f hpc=%f\n", i, j, k, l, een_rescaled_e_doc[i][j][k][l], een_rescaled_e_hpc[i][j][k][l]);
fflush(stdout);
}
assert(fabs(een_rescaled_e_doc[i][j][k][l] - een_rescaled_e_hpc[i][j][k][l]) < 1.e-8);
}
}
}
}
}
#+end_src
*** Electron-electron rescaled distances derivatives in $J_\text{eeN}$ ~een_rescaled_e_gl~ stores the table of the derivatives of the
rescaled distances between all pairs of electrons and raised to the
power $p$ defined by ~cord_num~. Here we take its derivatives
required for the een jastrow_champ.
\[ \frac{\partial}{\partial x} \left[ {g_\text{e}(r)}\right]^p =
-\frac{x}{r} \kappa_\text{e}\, p\,\left[ {g_\text{e}(r)}\right]^p \]
\[ \Delta \left[ {g_\text{e}(r)}\right]^p = \frac{2}{r} \kappa_\text{e}\, p\,\left[ {g_\text{e}(r)}\right]^p \right] + \left(\frac{\partial}{\partial x}\left[ {g_\text{e}(r)}\right]^p \right)^2 + \left(\frac{\partial}{\partial y}\left[ {g_\text{e}(r)}\right]^p \right)^2 + \left(\frac{\partial}{\partial z}\left[ {g_\text{e}(r)}\right]^p \right)^2 \]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_een_distance_rescaled_e_gl(qmckl_context context,
double* const een_rescaled_e_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_een_distance_rescaled_e_gl(qmckl_context context,
double* const een_rescaled_e_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_e_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (een_rescaled_e_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_een_distance_rescaled_e_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.num * 4 * ctx->electron.num *
ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_een_distance_rescaled_e_gl",
"Array too small. Expected elec_num*4*elec_num*walk_num*(cord_num + 1)");
}
memcpy(een_rescaled_e_gl, ctx->jastrow_champ.een_rescaled_e_gl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e_gl(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_ee_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if een rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.een_rescaled_e_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.een_rescaled_e_gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.een_rescaled_e_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_een_rescaled_e_gl",
"Unable to free ctx->jastrow_champ.een_rescaled_e_gl");
}
ctx->jastrow_champ.een_rescaled_e_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.een_rescaled_e_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * 4 * ctx->electron.num *
ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1) * sizeof(double);
double* een_rescaled_e_gl = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_e_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_een_rescaled_e_gl",
NULL);
}
ctx->jastrow_champ.een_rescaled_e_gl = een_rescaled_e_gl;
}
rc = qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.walker.point.coord.data,
ctx->electron.ee_distance,
ctx->jastrow_champ.een_rescaled_e,
ctx->jastrow_champ.een_rescaled_e_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.een_rescaled_e_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_e_gl_args
| Variable | Type | In/Out | Description |
|---------------------+-------------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~coord_ee~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates |
| ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~een_rescaled_e_gl~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | out | Electron-electron rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_f( &
context, walk_num, elec_num, cord_num, rescale_factor_ee, &
coord_ee, ee_distance, een_rescaled_e, een_rescaled_e_gl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_ee
double precision , intent(in) :: coord_ee(elec_num,3,walk_num)
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
double precision , intent(out) :: een_rescaled_e_gl(elec_num,4,elec_num,0:cord_num,walk_num)
double precision, allocatable :: elec_dist_gl(:,:,:)
double precision :: x, kappa_l
integer*8 :: i, j, k, l, nw, ii
double precision :: rij_inv(elec_num)
allocate(elec_dist_gl(elec_num, 4, elec_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do nw = 1, walk_num
! Prepare table of exponentiated distances raised to appropriate power
do j = 1, elec_num
do i = 1, j-1
rij_inv(i) = 1.0d0 / ee_distance(i, j, nw)
enddo
rij_inv(j) = 0.0d0
do i = j+1, elec_num
rij_inv(i) = 1.0d0 / ee_distance(i, j, nw)
enddo
do i = 1, elec_num
do ii = 1, 3
elec_dist_gl(i, ii, j) = (coord_ee(i, ii, nw) - coord_ee(j, ii, nw)) * rij_inv(i)
end do
elec_dist_gl(i, 4, j) = 2.0d0 * rij_inv(i)
end do
end do
! Not necessary: should be set to zero by qmckl_malloc
een_rescaled_e_gl(:,:,:,0,nw) = 0.d0
do l = 1, cord_num
kappa_l = - dble(l) * rescale_factor_ee
do j = 1, elec_num
do i = 1, elec_num
een_rescaled_e_gl(i, 1, j, l, nw) = kappa_l * elec_dist_gl(i, 1, j)
een_rescaled_e_gl(i, 2, j, l, nw) = kappa_l * elec_dist_gl(i, 2, j)
een_rescaled_e_gl(i, 3, j, l, nw) = kappa_l * elec_dist_gl(i, 3, j)
een_rescaled_e_gl(i, 4, j, l, nw) = kappa_l * elec_dist_gl(i, 4, j)
end do
do i = 1, elec_num
een_rescaled_e_gl(i, 4, j, l, nw) = een_rescaled_e_gl(i, 4, j, l, nw) &
+ een_rescaled_e_gl(i, 1, j, l, nw) * een_rescaled_e_gl(i, 1, j, l, nw) &
+ een_rescaled_e_gl(i, 2, j, l, nw) * een_rescaled_e_gl(i, 2, j, l, nw) &
+ een_rescaled_e_gl(i, 3, j, l, nw) * een_rescaled_e_gl(i, 3, j, l, nw)
end do
do i = 1, elec_num
een_rescaled_e_gl(i,1,j,l,nw) = een_rescaled_e_gl(i,1,j,l,nw) * een_rescaled_e(i,j,l,nw)
een_rescaled_e_gl(i,2,j,l,nw) = een_rescaled_e_gl(i,2,j,l,nw) * een_rescaled_e(i,j,l,nw)
een_rescaled_e_gl(i,3,j,l,nw) = een_rescaled_e_gl(i,3,j,l,nw) * een_rescaled_e(i,j,l,nw)
een_rescaled_e_gl(i,4,j,l,nw) = een_rescaled_e_gl(i,4,j,l,nw) * een_rescaled_e(i,j,l,nw)
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord_ee,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_gl );
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord_ee,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_gl );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_doc &
(context, &
walk_num, &
elec_num, &
cord_num, &
rescale_factor_ee, &
coord_ee, &
ee_distance, &
een_rescaled_e, &
een_rescaled_e_gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
real (c_double ) , intent(in) :: coord_ee(elec_num,3,walk_num)
real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_e_gl(elec_num,4,elec_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_f
info = qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_f &
(context, &
walk_num, &
elec_num, &
cord_num, &
rescale_factor_ee, &
coord_ee, &
ee_distance, &
een_rescaled_e, &
een_rescaled_e_gl)
end function qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_doc
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord_ee,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_gl );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord_ee,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_gl )
{
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (walk_num <= 0) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (cord_num < 0) return QMCKL_INVALID_ARG_4;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
double* restrict elec_dist_gl0 = (double*) calloc(elec_num * elec_num, sizeof(double));
double* restrict elec_dist_gl1 = (double*) calloc(elec_num * elec_num, sizeof(double));
double* restrict elec_dist_gl2 = (double*) calloc(elec_num * elec_num, sizeof(double));
double* restrict elec_dist_gl3 = (double*) calloc(elec_num * elec_num, sizeof(double));
assert (elec_dist_gl0 != NULL);
assert (elec_dist_gl1 != NULL);
assert (elec_dist_gl2 != NULL);
assert (elec_dist_gl3 != NULL);
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t nw = 0; nw < walk_num; ++nw) {
double rij_inv[elec_num];
for (int64_t j=0; j<elec_num; ++j) {
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i = 0; i < elec_num ; ++i) {
rij_inv[i] = ee_distance[i+j*elec_num+nw*elec_num*elec_num];
}
rij_inv[j] = 1.0;
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i = 0; i < elec_num ; ++i) {
rij_inv[i] = 1.0/rij_inv[i];
}
rij_inv[j] = 0.0;
const double xj = coord_ee[j + nw * elec_num * 3];
const double yj = coord_ee[j + elec_num + nw * elec_num * 3];
const double zj = coord_ee[j + 2 * elec_num + nw * elec_num * 3];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i = 0; i < elec_num ; ++i) {
const double xi = coord_ee[i + nw * elec_num * 3];
const double yi = coord_ee[i + elec_num + nw * elec_num * 3];
const double zi = coord_ee[i + 2 * elec_num + nw * elec_num * 3];
elec_dist_gl0[i + j * elec_num] = rij_inv[i] * (xi-xj);
elec_dist_gl1[i + j * elec_num] = rij_inv[i] * (yi-yj);
elec_dist_gl2[i + j * elec_num] = rij_inv[i] * (zi-zj);
elec_dist_gl3[i + j * elec_num] = rij_inv[i] + rij_inv[i];
}
}
for (int64_t j = 0; j < elec_num; ++j) {
double* restrict eegl = &een_rescaled_e_gl[ elec_num * 4 * (j + elec_num * (cord_num + 1) * nw)];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i = 0; i < 4*elec_num; ++i) {
eegl[i] = 0.0;
}
}
for (int64_t l=1; l<=cord_num; ++l) {
double kappa_l = - (double)l * rescale_factor_ee;
for (int64_t j=0; j<elec_num; ++j) {
double* restrict eegl =
&een_rescaled_e_gl[elec_num*4*(j+elec_num*(l+(cord_num+1)*nw))];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i=0; i<elec_num; ++i) {
eegl[i ] = kappa_l * elec_dist_gl0[i + j * elec_num];
eegl[i + elec_num ] = kappa_l * elec_dist_gl1[i + j * elec_num];
eegl[i + elec_num * 2] = kappa_l * elec_dist_gl2[i + j * elec_num];
eegl[i + elec_num * 3] = kappa_l * elec_dist_gl3[i + j * elec_num];
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i=0; i<elec_num; ++i) {
eegl[i + elec_num*3] = eegl[i + elec_num*3] +
eegl[i] * eegl[i] +
eegl[i + elec_num*1] * eegl[i + elec_num*1] +
eegl[i + elec_num*2] * eegl[i + elec_num*2];
}
const double* restrict ee =
&een_rescaled_e[elec_num*(j+elec_num*(l+(cord_num+1)*nw))];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t i=0; i<elec_num; ++i) {
eegl[i ] *= ee[i];
eegl[i + elec_num * 1] *= ee[i];
eegl[i + elec_num * 2] *= ee[i];
eegl[i + elec_num * 3] *= ee[i];
}
}
}
}
free(elec_dist_gl0);
free(elec_dist_gl1);
free(elec_dist_gl2);
free(elec_dist_gl3);
}
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord_ee,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_hpc
#else
return qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_doc
#endif
(context, walk_num, elec_num, cord_num, rescale_factor_ee,
coord_ee, ee_distance, een_rescaled_e, een_rescaled_e_gl );
}
#+end_src
**** Test :noexport:
#+name: een_e_gl
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
elec_dist_gl = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_gl[ii, i, j] = (elec_coord[i][ii] - elec_coord[j][ii]) * rij_inv
elec_dist_gl[3, i, j] = 2.0 * rij_inv
elec_dist_gl[:, j, j] = 0.0
kappa = 0.6
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
een_rescaled_e_gl = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float)
for l in range(0,cord_num+1):
kappa_l = -1.0 * kappa * l
for j in range(0,elec_num):
for i in range(0,elec_num):
for ii in range(0,4):
een_rescaled_e_gl[i,ii,j,l] = kappa_l * elec_dist_gl[ii,i,j]
een_rescaled_e_gl[i,3,j,l] = een_rescaled_e_gl[i,3,j,l] + \
een_rescaled_e_gl[i,0,j,l] * een_rescaled_e_gl[i,0,j,l] + \
een_rescaled_e_gl[i,1,j,l] * een_rescaled_e_gl[i,1,j,l] + \
een_rescaled_e_gl[i,2,j,l] * een_rescaled_e_gl[i,2,j,l]
for ii in range(0,4):
een_rescaled_e_gl[i,ii,j,l] = een_rescaled_e_gl[i,ii,j,l] * een_rescaled_e[i,j,l]
print(" een_rescaled_e_gl[1, 1, 3, 1] = ",een_rescaled_e_gl[0, 0, 2, 1])
print(" een_rescaled_e_gl[1, 1, 4, 1] = ",een_rescaled_e_gl[0, 0, 3, 1])
print(" een_rescaled_e_gl[1, 1, 5, 1] = ",een_rescaled_e_gl[0, 0, 4, 1])
print(" een_rescaled_e_gl[2, 1, 4, 2] = ",een_rescaled_e_gl[1, 0, 3, 2])
print(" een_rescaled_e_gl[2, 1, 5, 2] = ",een_rescaled_e_gl[1, 0, 4, 2])
print(" een_rescaled_e_gl[2, 1, 6, 2] = ",een_rescaled_e_gl[1, 0, 5, 2])
#+end_src
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
{
double een_rescaled_e_gl[walk_num][(cord_num + 1)][elec_num][4][elec_num];
size_max=walk_num*(cord_num + 1)*elec_num*4*elec_num;
rc = qmckl_get_jastrow_champ_een_distance_rescaled_e_gl(context,
&(een_rescaled_e_gl[0][0][0][0][0]),size_max);
assert(fabs(een_rescaled_e_gl[0][1][0][0][2] + 0.09831391870751387 ) < 1.e-8);
assert(fabs(een_rescaled_e_gl[0][1][0][0][3] + 0.017204157459682526 ) < 1.e-8);
assert(fabs(een_rescaled_e_gl[0][1][0][0][4] + 0.013345768421098641 ) < 1.e-8);
assert(fabs(een_rescaled_e_gl[0][2][1][0][3] + 0.03733086358273962 ) < 1.e-8);
assert(fabs(een_rescaled_e_gl[0][2][1][0][4] + 0.004922634822943517 ) < 1.e-8);
assert(fabs(een_rescaled_e_gl[0][2][1][0][5] + 0.5416751547830984 ) < 1.e-8);
}
{
qmckl_context_struct* ctx = (qmckl_context_struct*) context;
double een_rescaled_e_gl_doc[walk_num*(cord_num + 1)*elec_num*4*elec_num];
memset(een_rescaled_e_gl_doc, 0, sizeof(een_rescaled_e_gl_doc));
rc = qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_doc(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.walker.point.coord.data,
ctx->electron.ee_distance,
ctx->jastrow_champ.een_rescaled_e,
een_rescaled_e_gl_doc);
assert(rc == QMCKL_SUCCESS);
double een_rescaled_e_gl_hpc[walk_num*(cord_num + 1)*elec_num*4*elec_num];
memset(een_rescaled_e_gl_hpc, 0, sizeof(een_rescaled_e_gl_hpc));
rc = qmckl_compute_jastrow_champ_factor_een_rescaled_e_gl_hpc(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_ee,
ctx->electron.walker.point.coord.data,
ctx->electron.ee_distance,
ctx->jastrow_champ.een_rescaled_e,
een_rescaled_e_gl_hpc);
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num*(cord_num + 1)*elec_num*4*elec_num; i++) {
if (fabs(een_rescaled_e_gl_doc[i] - een_rescaled_e_gl_hpc[i]) > 1.e-12) {
printf("i = %ld, doc = %f, hpc = %f\n", i, een_rescaled_e_gl_doc[i], een_rescaled_e_gl_hpc[i]);
fflush(stdout);
}
assert(fabs(een_rescaled_e_gl_doc[i] - een_rescaled_e_gl_hpc[i]) < 1.e-8);
}
}
{
/* Finite difference test fails and I can't understand why... */
/*
printf("een_distance_rescaled_e_gl\n");
double fd[walk_num][cord_num+1][elec_num][4][elec_num];
double delta_x = 0.001;
// Finite difference coefficients for gradients
double coef[9] = { 1.0/280.0, -4.0/105.0, 1.0/5.0, -4.0/5.0, 0.0, 4.0/5.0, -1.0/5.0, 4.0/105.0, -1.0/280.0 };
// Finite difference coefficients for Laplacian
double coef2[9]= {-1.0/560.0, 8.0/315.0, -1.0/5.0, 8.0/5.0, -205.0/72.0, 8.0/5.0, -1.0/5.0, 8.0/315.0, -1.0/560.0 };
qmckl_exit_code rc;
double elec_coord[walk_num][3][elec_num];
rc = qmckl_get_electron_coord (context, 'T', &(elec_coord[0][0][0]), 3*walk_num*elec_num);
assert (rc == QMCKL_SUCCESS);
double temp_coord[walk_num][3][elec_num];
memcpy(&(temp_coord[0][0][0]), &(elec_coord[0][0][0]), sizeof(temp_coord));
double function_values[walk_num][cord_num+1][elec_num][elec_num];
memset(&(fd[0][0][0][0]), 0, sizeof(fd));
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 3; k++) {
for (int64_t m = -4; m <= 4; m++) { // Apply finite difference displacement
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][k][i] = elec_coord[nw][k][i] + (double) m * delta_x;
}
// Update coordinates in the context
rc = qmckl_set_electron_coord (context, 'T', walk_num,
&(temp_coord[0][0][0]),
walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Call the provided function
rc = qmckl_get_jastrow_champ_een_distance_rescaled_e(context,
&(function_values[0][0][0][0]),
walk_num*(cord_num+1)*elec_num*elec_num);
assert(rc == QMCKL_SUCCESS);
// Accumulate derivative using finite-difference coefficients
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t c = 0; c < cord_num+1 ; c++) {
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][c][j][k][i] += coef [m + 4] * function_values[nw][c][j][i];
fd[nw][c][j][3][i] += coef2[m + 4] * function_values[nw][c][j][i];
}
}
}
}
for (int64_t nw=0 ; nw<walk_num ; nw++) {
temp_coord[nw][k][i] = elec_coord[nw][k][i];
}
}
}
// Reset coordinates in the context
rc = qmckl_set_electron_coord (context, 'T', walk_num,
&(elec_coord[0][0][0]),
walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
// Normalize by the step size
for (int64_t nw=0 ; nw<walk_num ; nw++) {
for (int64_t c = 0; c < cord_num+1 ; c++) {
for (int64_t i = 0; i < elec_num; i++) {
for (int64_t k = 0; k < 4; k++) {
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][c][i][k][j] /= delta_x;
}
}
for (int64_t j = 0; j < elec_num; j++) {
fd[nw][c][i][3][j] /= delta_x;
}
}
}
}
double een_distance_rescaled_e_gl[walk_num][cord_num+1][elec_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_een_distance_rescaled_e_gl(context,
&(een_distance_rescaled_e_gl[0][0][0][0][0]),
walk_num*(cord_num+1)*elec_num*4*elec_num)
);
assert(rc == QMCKL_SUCCESS);
for (int nw = 0; nw < walk_num; nw++){
for (int c = 0; c < cord_num+1 ; c++) {
for (int i = 0; i < elec_num; i++) {
for (int j = 0; j < elec_num; j++) {
for (int k = 0; k < 3; k++){
if (fabs(fd[nw][c][i][k][j] - een_distance_rescaled_e_gl[nw][c][i][k][j]) > 1.e-10) {
printf("%2d %2d %2d %2d %2d\t", nw, c, i, k, j);
printf("%.10e\t", fd[nw][c][i][k][j]);
printf("%.10e\n", een_distance_rescaled_e_gl[nw][c][i][k][j]);
fflush(stdout);
}
assert(fabs(fd[nw][c][i][k][j] - een_distance_rescaled_e_gl[nw][c][i][k][j]) < 1.e-8);
}
int k=3;
if (i != j) {
if (fabs(fd[nw][c][i][k][j] - een_distance_rescaled_e_gl[nw][c][i][k][j]) > 1.e-8) {
printf("%2d %2d %2d %2d %2d\t", nw, c, i, k, j);
printf("%.10e\t", fd[nw][c][i][k][j]);
printf("%.10e\n", een_distance_rescaled_e_gl[nw][c][i][k][j]);
fflush(stdout);
}
assert(fabs(fd[nw][c][i][k][j] - een_distance_rescaled_e_gl[nw][c][i][k][j]) < 1.e-6);
}
}
}
}
}
printf("OK\n");
*/
}
#+end_src
*** Electron-nucleus rescaled distances in $J_\text{eeN}$ ~een_rescaled_n~ stores the table of the rescaled distances between
electrons and nuclei raised to the power \(p\) defined by ~cord_num~:
\[
C_{i\alpha,p} = \left[ \exp\left(-\kappa_\alpha\, R_{i\alpha}\right) \right]^p
\]
where \(R_{i\alpha}\) is the matrix of electron-nucleus distances.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_een_rescaled_n(qmckl_context context,
double* const een_rescaled_n,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_een_rescaled_n(qmckl_context context,
double* const een_rescaled_n,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_n(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (een_rescaled_n == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_een_rescaled_n",
"Null pointer");
}
const int64_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_een_rescaled_n",
"Array too small. Expected elec_num*nucl_num*walk_num*(cord_num + 1)");
}
memcpy(een_rescaled_n, ctx->jastrow_champ.een_rescaled_n, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_en_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.een_rescaled_n_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.een_rescaled_n != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.een_rescaled_n);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_een_rescaled_n",
"Unable to free ctx->jastrow_champ.een_rescaled_n");
}
ctx->jastrow_champ.een_rescaled_n = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.een_rescaled_n == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->nucleus.num *
ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1) * sizeof(double);
double* een_rescaled_n = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_n == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_een_rescaled_n",
NULL);
}
ctx->jastrow_champ.een_rescaled_n = een_rescaled_n;
}
rc = qmckl_compute_een_rescaled_n(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_en,
ctx->electron.en_distance,
ctx->jastrow_champ.een_rescaled_n);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.een_rescaled_n_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_een_rescaled_n
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_n_args
| Variable | Type | In/Out | Description |
|---------------------+----------------------------------------------------+--------+-------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~type_nucl_num~ | ~int64_t~ | in | Number of atom types |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | Types of atoms |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_en~ | ~double[nucl_num]~ | in | Factor to rescale ee distances |
| ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | out | Electron-nucleus rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_een_rescaled_n_f( &
context, walk_num, elec_num, nucl_num, &
type_nucl_num, type_nucl_vector, cord_num, rescale_factor_en, &
en_distance, een_rescaled_n) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_en(type_nucl_num)
double precision , intent(in) :: en_distance(nucl_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do nw = 1, walk_num
! prepare the actual een table
een_rescaled_n(:, :, 0, nw) = 1.0d0
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_en(type_nucl_vector(a)+1) * en_distance(a, i, nw))
end do
end do
do l = 2, cord_num
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(i, a, l, nw) = een_rescaled_n(i, a, l - 1, nw) * een_rescaled_n(i, a, 1, nw)
end do
end do
end do
end do
end function qmckl_compute_een_rescaled_n_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
/*
qmckl_exit_code qmckl_compute_een_rescaled_n (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const int64_t cord_num,
const double* rescale_factor_en,
const double* en_distance,
double* const een_rescaled_n ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (cord_num < 0) {
return QMCKL_INVALID_ARG_5;
}
// Prepare table of exponentiated distances raised to appropriate power
for (int i = 0; i < (walk_num*(cord_num+1)*nucl_num*elec_num); ++i) {
een_rescaled_n[i] = 1.0;
}
for (int nw = 0; nw < walk_num; ++nw) {
for (int a = 0; a < nucl_num; ++a) {
for (int i = 0; i < elec_num; ++i) {
een_rescaled_n[i + a*elec_num + nw * elec_num*nucl_num*(cord_num+1)] = 1.0;
een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] =
exp(-rescale_factor_en[type_nucl_vector[a]] * en_distance[a + i*nucl_num + nw*elec_num*nucl_num]);
}
}
for (int l = 2; l < (cord_num+1); ++l){
for (int a = 0; a < nucl_num; ++a) {
for (int i = 0; i < elec_num; ++i) {
een_rescaled_n[i + a*elec_num + l*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] =
een_rescaled_n[i + a*elec_num + (l-1)*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] *
een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)];
}
}
}
}
return QMCKL_SUCCESS;
}
*/
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_een_rescaled_n &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
cord_num, &
rescale_factor_en, &
en_distance, &
een_rescaled_n) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) :: rescale_factor_en(nucl_num)
real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_een_rescaled_n_f
info = qmckl_compute_een_rescaled_n_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
cord_num, &
rescale_factor_en, &
en_distance, &
een_rescaled_n)
end function qmckl_compute_een_rescaled_n
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_n (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const int64_t cord_num,
const double* rescale_factor_en,
const double* en_distance,
double* const een_rescaled_n );
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
kappa = 0.6
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1])
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1])
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1])
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2])
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
#+end_src
#+RESULTS:
: een_rescaled_n[0, 2, 1] =
: een_rescaled_n[0, 3, 1] =
: een_rescaled_n[0, 4, 1] =
: een_rescaled_n[1, 3, 2] =
: een_rescaled_n[1, 4, 2] =
: een_rescaled_n[1, 5, 2] =
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double een_rescaled_n[walk_num][(cord_num + 1)][nucl_num][elec_num];
size_max=walk_num*(cord_num + 1)*nucl_num*elec_num;
rc = qmckl_get_jastrow_champ_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]),size_max);
// value of (0,2,1)
assert(fabs(een_rescaled_n[0][1][0][2]-0.2603169838750542 )< 1.e-12);
assert(fabs(een_rescaled_n[0][1][0][3]-0.3016180139679065 )< 1.e-12);
assert(fabs(een_rescaled_n[0][1][0][4]-0.10506023826192266)< 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][3]-0.9267719759374164 )< 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][4]-0.11497585238132658)< 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][5]-0.07534033469115217)< 1.e-12);
#+end_src
*** Electron-nucleus rescaled distances derivatives in $J_\text{eeN}$ ~een_rescaled_n_gl~ stores the table of the derivatives of the
rescaled distances between all electron-nucleus pairs and raised to the
power $p$ defined by ~cord_num~. Here we take its derivatives
required for the een jastrow_champ.
\[ \frac{\partial}{\partial x} \left[ {g_\alpha(R_{i\alpha})}\right]^p =
-\frac{x}{R_{i\alpha}} \kappa_\alpha\, p\,\left[ {g_\alpha(R_{i\alpha})}\right]^p \]
\[ \Delta \left[ {g_\alpha(R_{i\alpha})}\right]^p = \frac{2}{R_{i\alpha}}
\kappa_\alpha\, p\,\left[ {g_\alpha(R_{i\alpha})}\right]^p \right] +
\left(\frac{\partial}{\partial x}\left[ {g_\alpha(R_{i\alpha})}\right]^p
\right)^2 + \left(\frac{\partial}{\partial y}\left[
{g_\alpha(R_{i\alpha})}\right]^p \right)^2 + \left(\frac{\partial}{\partial
z}\left[ {g_\alpha(R_{i\alpha})}\right]^p \right)^2 \]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_een_rescaled_n_gl(qmckl_context context,
double* const een_rescaled_n_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_een_rescaled_n_gl(qmckl_context context,
double* const een_rescaled_n_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_n_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (een_rescaled_n_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_een_rescaled_n_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_een_rescaled_n_gl",
"Array too small. Expected ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1)");
}
memcpy(een_rescaled_n_gl, ctx->jastrow_champ.een_rescaled_n_gl, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n_gl(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_en_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if ee distance is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.een_rescaled_n_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.een_rescaled_n_gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.een_rescaled_n_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_een_rescaled_n_gl",
"Unable to free ctx->jastrow_champ.een_rescaled_n_gl");
}
ctx->jastrow_champ.een_rescaled_n_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.een_rescaled_n_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * 4 * ctx->nucleus.num *
ctx->electron.walker.num * (ctx->jastrow_champ.cord_num + 1) * sizeof(double);
double* een_rescaled_n_gl = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_n_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_een_rescaled_n_gl",
NULL);
}
ctx->jastrow_champ.een_rescaled_n_gl = een_rescaled_n_gl;
}
rc = qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.rescale_factor_en,
ctx->electron.walker.point.coord.data,
ctx->nucleus.coord.data,
ctx->electron.en_distance,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.een_rescaled_n_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_args
| Variable | Type | In/Out | Description |
|---------------------+-------------------------------------------------------+--------+-------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~type_nucl_num~ | ~int64_t~ | in | Number of atom types |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | Types of atoms |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_en~ | ~double[nucl_num]~ | in | Factor to rescale ee distances |
| ~coord_ee~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates |
| ~coord_n~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n_gl~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | out | Electron-nucleus rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_f( &
context, walk_num, elec_num, nucl_num, type_nucl_num, type_nucl_vector, &
cord_num, rescale_factor_en, &
coord_ee, coord_n, en_distance, een_rescaled_n, een_rescaled_n_gl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_en(type_nucl_num)
double precision , intent(in) :: coord_ee(elec_num,3,walk_num)
double precision , intent(in) :: coord_n(nucl_num,3)
double precision , intent(in) :: en_distance(nucl_num,elec_num,walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
double precision , intent(out) :: een_rescaled_n_gl(elec_num,4,nucl_num,0:cord_num,walk_num)
double precision,dimension(:,:,:),allocatable :: elnuc_dist_gl
double precision :: x, ria_inv, kappa_l
integer*8 :: i, a, k, l, nw, ii
allocate(elnuc_dist_gl(elec_num, 4, nucl_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_n_gl = 0.0d0
do nw = 1, walk_num
! prepare the actual een table
do a = 1, nucl_num
do i = 1, elec_num
ria_inv = 1.0d0 / en_distance(a, i, nw)
do ii = 1, 3
elnuc_dist_gl(i, ii, a) = (coord_ee(i, ii, nw) - coord_n(a, ii)) * ria_inv
end do
elnuc_dist_gl(i, 4, a) = 2.0d0 * ria_inv
end do
end do
do l = 0, cord_num
do a = 1, nucl_num
kappa_l = - dble(l) * rescale_factor_en(type_nucl_vector(a)+1)
do i = 1, elec_num
een_rescaled_n_gl(i, 1, a, l, nw) = kappa_l * elnuc_dist_gl(i, 1, a)
een_rescaled_n_gl(i, 2, a, l, nw) = kappa_l * elnuc_dist_gl(i, 2, a)
een_rescaled_n_gl(i, 3, a, l, nw) = kappa_l * elnuc_dist_gl(i, 3, a)
een_rescaled_n_gl(i, 4, a, l, nw) = kappa_l * elnuc_dist_gl(i, 4, a)
een_rescaled_n_gl(i, 4, a, l, nw) = een_rescaled_n_gl(i, 4, a, l, nw) &
+ een_rescaled_n_gl(i, 1, a, l, nw) * een_rescaled_n_gl(i, 1, a, l, nw) &
+ een_rescaled_n_gl(i, 2, a, l, nw) * een_rescaled_n_gl(i, 2, a, l, nw) &
+ een_rescaled_n_gl(i, 3, a, l, nw) * een_rescaled_n_gl(i, 3, a, l, nw)
een_rescaled_n_gl(i, 1, a, l, nw) = een_rescaled_n_gl(i, 1, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_gl(i, 2, a, l, nw) = een_rescaled_n_gl(i, 2, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_gl(i, 3, a, l, nw) = een_rescaled_n_gl(i, 3, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_gl(i, 4, a, l, nw) = een_rescaled_n_gl(i, 4, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
int64_t* const type_nucl_vector,
const int64_t cord_num,
const double* rescale_factor_en,
const double* coord_ee,
const double* coord_n,
const double* en_distance,
const double* een_rescaled_n,
double* const een_rescaled_n_gl );
#+end_src
#+CALL: generate_c_interface(table=qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
cord_num, &
rescale_factor_en, &
coord_ee, &
coord_n, &
en_distance, &
een_rescaled_n, &
een_rescaled_n_gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) :: rescale_factor_en(nucl_num)
real (c_double ) , intent(in) :: coord_ee(elec_num,3,walk_num)
real (c_double ) , intent(in) :: coord_n(nucl_num,3)
real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_n_gl(elec_num,4,nucl_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_f
info = qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
cord_num, &
rescale_factor_en, &
coord_ee, &
coord_n, &
en_distance, &
een_rescaled_n, &
een_rescaled_n_gl)
end function qmckl_compute_jastrow_champ_factor_een_rescaled_n_gl
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
elnuc_dist_gl = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_gl[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_gl[3, i, a] = 2.0 * rij_inv
kappa = 0.6
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
een_rescaled_n_gl = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float)
for l in range(0,cord_num+1):
kappa_l = -1.0 * kappa * l
for j in range(0,elec_num):
for a in range(0,nucl_num):
for ii in range(0,4):
een_rescaled_n_gl[j,ii,a,l] = kappa_l * elnuc_dist_gl[ii,j,a]
een_rescaled_n_gl[j,3,a,l] = een_rescaled_n_gl[j,3,a,l] + \
een_rescaled_n_gl[j,0,a,l] * een_rescaled_n_gl[j,0,a,l] + \
een_rescaled_n_gl[j,1,a,l] * een_rescaled_n_gl[j,1,a,l] + \
een_rescaled_n_gl[j,2,a,l] * een_rescaled_n_gl[j,2,a,l]
for ii in range(0,4):
een_rescaled_n_gl[j,ii,a,l] = een_rescaled_n_gl[j,ii,a,l] * een_rescaled_n[a,j,l]
print(" een_rescaled_n_gl[1, 1, 3, 1] = ",een_rescaled_n_gl[2, 0, 0, 1])
print(" een_rescaled_n_gl[1, 1, 4, 1] = ",een_rescaled_n_gl[3, 0, 0, 1])
print(" een_rescaled_n_gl[1, 1, 5, 1] = ",een_rescaled_n_gl[4, 0, 0, 1])
print(" een_rescaled_n_gl[2, 1, 4, 2] = ",een_rescaled_n_gl[3, 0, 1, 2])
print(" een_rescaled_n_gl[2, 1, 5, 2] = ",een_rescaled_n_gl[4, 0, 1, 2])
print(" een_rescaled_n_gl[2, 1, 6, 2] = ",een_rescaled_n_gl[5, 0, 1, 2])
#+end_src
#+RESULTS:
: een_rescaled_n_gl[1, 1, 3, 1] =
: een_rescaled_n_gl[1, 1, 4, 1] =
: een_rescaled_n_gl[1, 1, 5, 1] =
: een_rescaled_n_gl[2, 1, 4, 2] =
: een_rescaled_n_gl[2, 1, 5, 2] =
: een_rescaled_n_gl[2, 1, 6, 2] =
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double een_rescaled_n_gl[walk_num][(cord_num + 1)][nucl_num][4][elec_num];
size_max=walk_num*(cord_num + 1)*nucl_num*4*elec_num;
rc = qmckl_get_jastrow_champ_een_rescaled_n_gl(context, &(een_rescaled_n_gl[0][0][0][0][0]),size_max);
// value of (0,2,1)
assert(fabs( -0.11234061209936878 - een_rescaled_n_gl[0][1][0][0][2]) < 1.e-12);
assert(fabs( 0.0004440109367151707 - een_rescaled_n_gl[0][1][0][0][3]) < 1.e-12);
assert(fabs( -0.012868642597346566 - een_rescaled_n_gl[0][1][0][0][4]) < 1.e-12);
assert(fabs( 0.08601122289922644 - een_rescaled_n_gl[0][2][1][0][3]) < 1.e-12);
assert(fabs( -0.058681563677207206 - een_rescaled_n_gl[0][2][1][0][4]) < 1.e-12);
assert(fabs( 0.005359281880312882 - een_rescaled_n_gl[0][2][1][0][5]) < 1.e-12);
#+end_src
*** Temporary arrays for electron-electron-nucleus Jastrow $f_{een}$
Prepare ~c_vector_full~ and ~lkpm_combined_index~ tables required for the
calculation of the three-body jastrow ~factor_een~ and its derivative ~factor_een_gl~.
**** Compute dim_c_vector
:PROPERTIES:
:Name: qmckl_compute_dim_c_vector
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
Computes the dimension of the vector of parameters.
#+begin_src python :exports results
def compute(cord_num):
dim_c_vector = 0
for p in range(2,cord_num+1):
for k in range(p-1, -1, -1):
if k != 0:
lmax = p - k
else:
lmax = p - k - 2
for l in range(lmax, -1, -1):
if ( ((p - k - l) & 1)==1): continue
dim_c_vector += 1
return dim_c_vector
return [ ("$N_{ord}$", "Number of parameters"), ("","") ] + \
[ (i, compute(i)) for i in range(1,11) ]
#+end_src
#+RESULTS:
| $N_{ord}$ | Number of parameters |
| | |
| 1 | 0 |
| 2 | 2 |
| 3 | 6 |
| 4 | 13 |
| 5 | 23 |
| 6 | 37 |
| 7 | 55 |
| 8 | 78 |
| 9 | 106 |
| 10 | 140 |
#+NAME: qmckl_factor_dim_c_vector_args
| Variable | Type | In/Out | Description |
|----------------+-----------------+--------+------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | out | Number of parameters per atom type |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_dim_c_vector_f( &
context, cord_num, dim_c_vector) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(out) :: dim_c_vector
double precision :: x
integer*8 :: i, a, k, l, p, lmax
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_2
return
endif
dim_c_vector = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
endif
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) == 1) cycle
dim_c_vector = dim_c_vector + 1
end do
end do
end do
end function qmckl_compute_dim_c_vector_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dim_c_vector (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_c_vector){
int lmax;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num < 0) {
return QMCKL_INVALID_ARG_2;
}
,*dim_c_vector = 0;
for (int p=2; p <= cord_num; ++p){
for (int k=p-1; k >= 0; --k) {
if (k != 0) {
lmax = p - k;
} else {
lmax = p - k - 2;
}
for (int l = lmax; l >= 0; --l) {
if ( ((p - k - l) & 1)==1) continue;
,*dim_c_vector=*dim_c_vector+1;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_dim_c_vector_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dim_c_vector (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_c_vector );
#+end_src
**** Get
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_tmp_c(qmckl_context context,
double* const tmp_c,
const int64_t size_max);
qmckl_exit_code
qmckl_get_jastrow_champ_dtmp_c(qmckl_context context,
double* const dtmp_c,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_tmp_c(qmckl_context context,
double* const tmp_c,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_tmp_c(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (tmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_tmp_c",
"Null pointer");
}
const int64_t sze = (ctx->jastrow_champ.cord_num) * (ctx->jastrow_champ.cord_num + 1) *
ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_tmp_c",
"Array too small. Expected cord_num*(cord_num+1)*walk_num*elec_num*nucl_num");
}
memcpy(tmp_c, ctx->jastrow_champ.tmp_c, sze * sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_champ_dtmp_c(qmckl_context context,
double* const dtmp_c,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_dtmp_c(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (dtmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_dtmp_c",
"Null pointer");
}
const int64_t sze = (ctx->jastrow_champ.cord_num) * (ctx->jastrow_champ.cord_num + 1)*
4* ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith(context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_dtmp_c",
"Array too small. Expected 4*cord_num*(cord_num+1)*walk_num*elec_num*nucl_num");
}
memcpy(dtmp_c, ctx->jastrow_champ.dtmp_c, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_c_vector_full(qmckl_context context);
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context);
qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context);
qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_c_vector_full(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
qmckl_exit_code rc = QMCKL_SUCCESS;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.c_vector_full_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.c_vector_full != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.c_vector_full);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_c_vector_full",
"Unable to free ctx->jastrow_champ.c_vector_full");
}
ctx->jastrow_champ.c_vector_full = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.c_vector_full == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->jastrow_champ.dim_c_vector * ctx->nucleus.num * sizeof(double);
double* c_vector_full = (double*) qmckl_malloc(context, mem_info);
if (c_vector_full == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_c_vector_full",
NULL);
}
ctx->jastrow_champ.c_vector_full = c_vector_full;
}
rc = qmckl_compute_c_vector_full(context,
ctx->nucleus.num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.type_nucl_num,
ctx->jastrow_champ.type_nucl_vector,
ctx->jastrow_champ.c_vector,
ctx->jastrow_champ.c_vector_full);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.c_vector_full_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
qmckl_exit_code rc = QMCKL_SUCCESS;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.lkpm_combined_index_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.lkpm_combined_index != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.lkpm_combined_index);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_ee",
"Unable to free ctx->jastrow_champ.lkpm_combined_index");
}
ctx->jastrow_champ.lkpm_combined_index = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.lkpm_combined_index == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->jastrow_champ.dim_c_vector * sizeof(int64_t);
int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info);
if (lkpm_combined_index == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_lkpm_combined_index",
NULL);
}
ctx->jastrow_champ.lkpm_combined_index = lkpm_combined_index;
}
rc = qmckl_compute_lkpm_combined_index(context,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.lkpm_combined_index);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.lkpm_combined_index_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
qmckl_exit_code rc = QMCKL_SUCCESS;
rc = qmckl_provide_een_rescaled_e(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_een_rescaled_n(context);
if (rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.tmp_c_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.tmp_c != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.tmp_c);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_tmp_c",
"Unable to free ctx->jastrow_champ.tmp_c");
}
ctx->jastrow_champ.tmp_c = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.tmp_c == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (ctx->jastrow_champ.cord_num) * (ctx->jastrow_champ.cord_num + 1)
,* ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num * sizeof(double);
double* tmp_c = (double*) qmckl_malloc(context, mem_info);
if (tmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_tmp_c",
NULL);
}
ctx->jastrow_champ.tmp_c = tmp_c;
}
rc = qmckl_compute_tmp_c(context,
ctx->jastrow_champ.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walker.num,
ctx->jastrow_champ.een_rescaled_e,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.tmp_c);
ctx->jastrow_champ.tmp_c_date = ctx->date;
}
return rc;
}
qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
rc = qmckl_provide_een_rescaled_e_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_een_rescaled_n(context);
if (rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.dtmp_c_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.dtmp_c != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.dtmp_c);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_dtmp_c",
"Unable to free ctx->jastrow_champ.dtmp_c");
}
ctx->jastrow_champ.dtmp_c = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.dtmp_c == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (ctx->jastrow_champ.cord_num) * (ctx->jastrow_champ.cord_num + 1)
,* 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walker.num * sizeof(double);
double* dtmp_c = (double*) qmckl_malloc(context, mem_info);
if (dtmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_dtmp_c",
NULL);
}
ctx->jastrow_champ.dtmp_c = dtmp_c;
}
rc = qmckl_compute_dtmp_c(context,
ctx->jastrow_champ.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walker.num,
ctx->jastrow_champ.een_rescaled_e_gl,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.dtmp_c);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.dtmp_c_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute c_vector_full
:PROPERTIES:
:Name: qmckl_compute_c_vector_full
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_c_vector_full_args
| Variable | Type | In/Out | Description |
|--------------------+---------------------------------------+--------+------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of cord full table |
| ~type_nucl_num~ | ~int64_t~ | in | dimension of cord full table |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | dimension of cord full table |
| ~c_vector~ | ~double[dim_c_vector][type_nucl_num]~ | in | dimension of cord full table |
| ~c_vector_full~ | ~double[nucl_num][dim_c_vector]~ | out | Full list of coefficients |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_c_vector_full_doc_f( &
context, nucl_num, dim_c_vector, type_nucl_num, &
type_nucl_vector, c_vector, c_vector_full) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: dim_c_vector
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: c_vector(dim_c_vector, type_nucl_num)
double precision , intent(out) :: c_vector_full(nucl_num, dim_c_vector)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_2
if (dim_c_vector < 0) info = QMCKL_INVALID_ARG_3
if (type_nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (info /= QMCKL_SUCCESS) return
do a = 1, nucl_num
c_vector_full(a,1:dim_c_vector) = c_vector(1:dim_c_vector, type_nucl_vector(a)+1)
end do
end function qmckl_compute_c_vector_full_doc_f
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_c_vector_full_args,rettyp=get_value("CRetType"),fname="qmckl_compute_c_vector_full_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_c_vector_full_doc &
(context, nucl_num, dim_c_vector, type_nucl_num, type_nucl_vector, c_vector, c_vector_full) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: c_vector(type_nucl_num,dim_c_vector)
real (c_double ) , intent(out) :: c_vector_full(nucl_num,dim_c_vector)
integer(c_int32_t), external :: qmckl_compute_c_vector_full_doc_f
info = qmckl_compute_c_vector_full_doc_f &
(context, nucl_num, dim_c_vector, type_nucl_num, type_nucl_vector, c_vector, c_vector_full)
end function qmckl_compute_c_vector_full_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_c_vector_full_hpc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_c_vector,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* c_vector,
double* const c_vector_full ) {
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_2;
if (dim_c_vector < 0) return QMCKL_INVALID_ARG_3;
if (type_nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (type_nucl_vector == NULL) return QMCKL_INVALID_ARG_5;
if (c_vector == NULL) return QMCKL_INVALID_ARG_6;
if (c_vector_full == NULL) return QMCKL_INVALID_ARG_7;
for (int i=0; i < dim_c_vector; ++i) {
for (int a=0; a < nucl_num; ++a){
c_vector_full[a + i*nucl_num] = c_vector[i + type_nucl_vector[a]*dim_c_vector];
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_c_vector_full_args,rettyp=get_value("CRetType"),fname="qmckl_compute_c_vector_full_doc")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_c_vector_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_c_vector,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* c_vector,
double* const c_vector_full );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_c_vector_full_doc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_c_vector,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* c_vector,
double* const c_vector_full );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_c_vector_full_hpc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_c_vector,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* c_vector,
double* const c_vector_full );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_c_vector_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_c_vector,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* c_vector,
double* const c_vector_full ) {
#ifdef HAVE_HPC
return qmckl_compute_c_vector_full_hpc
#else
return qmckl_compute_c_vector_full_doc
#endif
(context, nucl_num, dim_c_vector, type_nucl_num, type_nucl_vector, c_vector, c_vector_full);
}
#+end_src
**** Compute lkpm_combined_index
:PROPERTIES:
:Name: qmckl_compute_lkpm_combined_index
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: lkpm_combined_index_args
| Variable | Type | In/Out | Description |
|-----------------------+----------------------------+--------+-------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of cord full table |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | out | Full list of combined indices |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_lkpm_combined_index_doc_f( &
context, cord_num, dim_c_vector, lkpm_combined_index) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_c_vector
integer*8 , intent(out) :: lkpm_combined_index(dim_c_vector, 4)
double precision :: x
integer*8 :: i, a, k, l, kk, p, lmax, m
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (cord_num < 0) info = QMCKL_INVALID_ARG_2
if (dim_c_vector < 0) info = QMCKL_INVALID_ARG_3
if (info /= QMCKL_SUCCESS) return
kk = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k /= 0) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) .eq. 1_8) cycle
m = (p - k - l)/2
kk = kk + 1
lkpm_combined_index(kk, 1) = l
lkpm_combined_index(kk, 2) = k
lkpm_combined_index(kk, 3) = p
lkpm_combined_index(kk, 4) = m
end do
end do
end do
end function qmckl_compute_lkpm_combined_index_doc_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_lkpm_combined_index_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index ) {
int kk, lmax, m;
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (cord_num < 0) return QMCKL_INVALID_ARG_2;
if (dim_c_vector < 0) return QMCKL_INVALID_ARG_3;
kk = 0;
for (int p = 2; p <= cord_num; ++p) {
for (int k=(p-1); k >= 0; --k) {
if (k != 0) {
lmax = p - k;
} else {
lmax = p - k - 2;
}
for (int l=lmax; l >= 0; --l) {
if (((p - k - l) & 1) == 1) continue;
m = (p - k - l)/2;
lkpm_combined_index[kk ] = l;
lkpm_combined_index[kk + dim_c_vector] = k;
lkpm_combined_index[kk + 2*dim_c_vector] = p;
lkpm_combined_index[kk + 3*dim_c_vector] = m;
kk = kk + 1;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
#+CALL: generate_c_interface(table=lkpm_combined_index_args,rettyp=get_value("CRetType"),fname="qmckl_compute_lkpm_combined_index_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_lkpm_combined_index_doc &
(context, cord_num, dim_c_vector, lkpm_combined_index) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
integer (c_int64_t) , intent(out) :: lkpm_combined_index(dim_c_vector,4)
integer(c_int32_t), external :: qmckl_compute_lkpm_combined_index_doc_f
info = qmckl_compute_lkpm_combined_index_doc_f &
(context, cord_num, dim_c_vector, lkpm_combined_index)
end function qmckl_compute_lkpm_combined_index_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index ) {
#ifdef HAVE_HPC
return qmckl_compute_lkpm_combined_index_hpc
#else
return qmckl_compute_lkpm_combined_index_doc
#endif
(context, cord_num, dim_c_vector, lkpm_combined_index);
}
#+end_src
#+CALL: generate_c_header(table=lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index );
#+end_src
#+CALL: generate_c_header(table=lkpm_combined_index_args,rettyp=get_value("CRetType"),fname="qmckl_compute_lkpm_combined_index_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_lkpm_combined_index_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index );
#+end_src
#+CALL: generate_c_header(table=lkpm_combined_index_args,rettyp=get_value("CRetType"),fname="qmckl_compute_lkpm_combined_index_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_lkpm_combined_index_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index );
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index );
#+end_src
#+CALL: generate_c_header(table=lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_c_vector,
int64_t* const lkpm_combined_index );
#+end_src
**** Compute tmp_c
:PROPERTIES:
:Name: qmckl_compute_tmp_c
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_tmp_c_args
| Variable | Type | In/Out | Description |
|------------------+------------------------------------------------------------------+--------+-----------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron rescaled factor |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients |
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_tmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c )
{
#ifdef HAVE_HPC
return qmckl_compute_tmp_c_hpc
#else
return qmckl_compute_tmp_c_doc
#endif
(context, cord_num, elec_num, nucl_num, walk_num,
een_rescaled_e, een_rescaled_n, tmp_c);
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_tmp_c (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_tmp_c_doc_f( &
context, cord_num, elec_num, nucl_num, &
walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: x
integer*8 :: i, j, a, l, kk, p, lmax, nw
character :: TransA, TransB
double precision :: alpha, beta
integer*8 :: M, N, K, LDA, LDB, LDC
TransA = 'N'
TransB = 'N'
alpha = 1.0d0
beta = 0.0d0
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (cord_num < 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (walk_num <= 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
M = elec_num
N = nucl_num*(cord_num + 1)
K = elec_num
LDA = size(een_rescaled_e,1)
LDB = size(een_rescaled_n,1)
LDC = size(tmp_c,1)
do nw=1, walk_num
do i=0, cord_num-1
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha, &
een_rescaled_e(1,1,i,nw),LDA*1_8, &
een_rescaled_n(1,1,0,nw),LDB*1_8, &
beta, &
tmp_c(1,1,0,i,nw),LDC)
end do
end do
end function qmckl_compute_tmp_c_doc_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_tmp_c_args,rettyp=get_value("FRetType"),fname="qmckl_compute_tmp_c_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_tmp_c_doc &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_tmp_c_doc_f
info = qmckl_compute_tmp_c_doc_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c)
end function qmckl_compute_tmp_c_doc
#+end_src
***** CPU :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_tmp_c_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c ) {
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (cord_num < 0) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (walk_num <= 0) return QMCKL_INVALID_ARG_5;
qmckl_exit_code info = QMCKL_SUCCESS;
const char TransA = 'N';
const char TransB = 'N';
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = elec_num;
const int64_t af = elec_num*elec_num;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = bf;
#ifdef HAVE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int64_t nw=0; nw < walk_num; ++nw) {
for (int64_t i=0; i<cord_num; ++i){
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha,
&(een_rescaled_e[af*(i+nw*(cord_num+1))]), LDA,
&(een_rescaled_n[bf*nw]), LDB, beta,
&(tmp_c[cf*(i+nw*cord_num)]), LDC);
}
}
return info;
}
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_hpc (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
**** Compute dtmp_c
:PROPERTIES:
:Name: qmckl_compute_dtmp_c
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_dtmp_c_args
| Variable | Type | In/Out | Description |
|---------------------+------------------------------------------------------------------+--------+-----------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~een_rescaled_e_gl~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | in | Electron-electron rescaled factor derivatives |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients |
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_dtmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_gl,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_dtmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_gl,
const double* een_rescaled_n,
double* const dtmp_c )
{
#ifdef HAVE_HPC
return qmckl_compute_dtmp_c_hpc
#else
return qmckl_compute_dtmp_c_doc
#endif
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_gl,
een_rescaled_n, dtmp_c );
}
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_dtmp_c_doc_f( &
context, cord_num, elec_num, nucl_num, &
walk_num, een_rescaled_e_gl, een_rescaled_n, dtmp_c) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: een_rescaled_e_gl(elec_num, 4, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: x
integer*8 :: i, j, a, l, kk, p, lmax, nw, ii
character :: TransA, TransB
double precision :: alpha, beta
integer*8 :: M, N, K, LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (cord_num < 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (walk_num <= 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
TransA = 'N'
TransB = 'N'
alpha = 1.0d0
beta = 0.0d0
M = 4*elec_num
N = nucl_num*(cord_num + 1)
K = elec_num
LDA = 4*size(een_rescaled_e_gl,1)
LDB = size(een_rescaled_n,1)
LDC = 4*size(dtmp_c,1)
do nw=1, walk_num
do i=0, cord_num-1
info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, &
een_rescaled_e_gl(1,1,1,i,nw),LDA*1_8, &
een_rescaled_n(1,1,0,nw),LDB*1_8, &
beta, &
dtmp_c(1,1,1,0,i,nw),LDC)
end do
end do
end function qmckl_compute_dtmp_c_doc_f
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_dtmp_c_args,rettyp=get_value("FRetType"),fname="qmckl_compute_dtmp_c_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_dtmp_c_doc &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_gl, een_rescaled_n, dtmp_c) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: een_rescaled_e_gl(elec_num,4,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_dtmp_c_doc_f
info = qmckl_compute_dtmp_c_doc_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_gl, een_rescaled_n, dtmp_c)
end function qmckl_compute_dtmp_c_doc
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dtmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_gl,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
***** CPU :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_dtmp_c_hpc (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_gl,
const double* een_rescaled_n,
double* const dtmp_c )
{
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (cord_num < 0) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (walk_num <= 0) return QMCKL_INVALID_ARG_5;
qmckl_exit_code info = QMCKL_SUCCESS;
const char TransA = 'N';
const char TransB = 'N';
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = 4*elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = 4*elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = 4*elec_num;
const int64_t af = elec_num*elec_num*4;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = elec_num*4*nucl_num*(cord_num+1);
#ifdef HAVE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int64_t nw=0; nw < walk_num; ++nw) {
for (int64_t i=0; i < cord_num; ++i) {
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha,
&(een_rescaled_e_gl[af*(i+nw*(cord_num+1))]), LDA,
&(een_rescaled_n[bf*nw]), LDB, beta,
&(dtmp_c[cf*(i+nw*cord_num)]), LDC);
}
}
return info;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dtmp_c_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_gl,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
**** Test :noexport:
#+name: helper_funcs
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
kappa = 0.6
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
kappa = 0.6
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
lkpm_of_cindex = np.array(lkpm_combined_index).T
#+end_src
#+RESULTS: helper_funcs
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double tmp_c[walk_num][cord_num][cord_num+1][nucl_num][elec_num];
rc = qmckl_get_jastrow_champ_tmp_c(context, &(tmp_c[0][0][0][0][0]), sizeof(tmp_c)/sizeof(double));
double dtmp_c[walk_num][cord_num][cord_num+1][nucl_num][4][elec_num];
rc = qmckl_get_jastrow_champ_dtmp_c(context, &(dtmp_c[0][0][0][0][0][0]), sizeof(dtmp_c)/sizeof(double));
printf("%e\n%e\n", tmp_c[0][0][1][0][0], 3.954384);
fflush(stdout);
assert(fabs(tmp_c[0][0][1][0][0] - 3.954384) < 1e-6);
printf("%e\n%e\n", dtmp_c[0][1][0][0][0][0],3.278657e-01);
fflush(stdout);
assert(fabs(dtmp_c[0][1][0][0][0][0] - 3.278657e-01 ) < 1e-6);
#+end_src
*** Electron-electron-nucleus Jastrow $f_{een}$
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~
using the above prepared tables.
TODO: write equations.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_een(qmckl_context context,
double* const factor_een,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_een(qmckl_context context,
double* const factor_een,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_factor_een(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (factor_een == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_een",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_een",
"Array too small. Expected walk_num");
}
memcpy(factor_een, ctx->jastrow_champ.factor_een, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_een (context, &
factor_een, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_een(size_max)
end function qmckl_get_jastrow_champ_factor_een
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_een(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_een(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (ctx->jastrow_champ.cord_num > 0) {
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
}
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_een_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_een != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_een);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_een",
"Unable to free ctx->jastrow_champ.factor_een");
}
ctx->jastrow_champ.factor_een = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_een == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * sizeof(double);
double* factor_een = (double*) qmckl_malloc(context, mem_info);
if (factor_een == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_een",
NULL);
}
ctx->jastrow_champ.factor_een = factor_een;
}
rc = qmckl_compute_jastrow_champ_factor_een(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.factor_een);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_een_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute naive
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_naive
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_naive_args
| Variable | Type | In/Out | Description |
|-----------------------+----------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~c_vector_full~ | ~double[dim_c_vector][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | in | combined indices |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_naive_f( &
context, walk_num, elec_num, nucl_num, cord_num,&
dim_c_vector, c_vector_full, lkpm_combined_index, &
een_rescaled_e, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer*8 , intent(in) :: lkpm_combined_index(dim_c_vector,4)
double precision , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (cord_num < 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
do nw =1, walk_num
factor_een(nw) = 0.d0
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
accu2 = 0.0d0
cn = c_vector_full(a, n)
do j = 1, elec_num
accu = 0.0d0
do i = 1, j-1
accu = accu + een_rescaled_e(i,j,k,nw) * &
(een_rescaled_n(i,a,l,nw) + een_rescaled_n(j,a,l,nw)) * &
(een_rescaled_n(i,a,m,nw) * een_rescaled_n(j,a,m,nw))
end do
accu2 = accu2 + accu
end do
factor_een(nw) = factor_een(nw) + accu2 * cn
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_naive_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_naive (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const factor_een );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_naive &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
real (c_double ) , intent(in) :: c_vector_full(nucl_num,dim_c_vector)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
real (c_double ) , intent(out) :: factor_een(walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_naive_f
info = qmckl_compute_jastrow_champ_factor_een_naive_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een)
end function qmckl_compute_jastrow_champ_factor_een_naive
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_doc
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_args
| Variable | Type | In/Out | Description |
|-----------------------+------------------------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~c_vector_full~ | ~double[dim_c_vector][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | in | combined indices |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | in | vector of non-zero coefficients |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled distances |
| ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_doc_f( &
context, walk_num, elec_num, nucl_num, cord_num, &
dim_c_vector, c_vector_full, lkpm_combined_index, &
tmp_c, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer*8 , intent(in) :: lkpm_combined_index(dim_c_vector,4)
double precision , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (cord_num < 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
factor_een = 0.0d0
if (cord_num == 0) return
do nw =1, walk_num
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = c_vector_full(a, n)
if(cn == 0.d0) cycle
accu = 0.0d0
do j = 1, elec_num
accu = accu + een_rescaled_n(j,a,m,nw) * tmp_c(j,a,m+l,k,nw)
end do
factor_een(nw) = factor_een(nw) + accu * cn
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_doc_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_args,rettyp=qmckl_exit_code),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een_doc (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* een_rescaled_n,
double* const factor_een );
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* een_rescaled_n,
double* const factor_een );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een (const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* een_rescaled_n,
double* const factor_een )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_een_doc
#else
return qmckl_compute_jastrow_champ_factor_een_doc
#endif
(context, walk_num, elec_num, nucl_num, cord_num, dim_c_vector,
c_vector_full, lkpm_combined_index, tmp_c, een_rescaled_n,
factor_een );
}
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_factor_een_doc"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_doc &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
tmp_c, &
een_rescaled_n, &
factor_een) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
real (c_double ) , intent(in) :: c_vector_full(nucl_num,dim_c_vector)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real (c_double ) , intent(in) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: factor_een(walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_doc_f
info = qmckl_compute_jastrow_champ_factor_een_doc_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
tmp_c, &
een_rescaled_n, &
factor_een)
end function qmckl_compute_jastrow_champ_factor_een_doc
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<helper_funcs>>
kappa = 0.6
factor_een = 0.0
for n in range(0, dim_c_vector):
l = lkpm_of_cindex[0,n]
k = lkpm_of_cindex[1,n]
p = lkpm_of_cindex[2,n]
m = lkpm_of_cindex[3,n]
for a in range(0, nucl_num):
accu2 = 0.0
cn = c_vector_full[a][n]
for j in range(0, elec_num):
accu = 0.0
for i in range(0, elec_num):
accu = accu + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m]
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
factor_een = factor_een + accu2 * cn
print("factor_een:",factor_een)
#+end_src
#+RESULTS:
: factor_een: -0.382580260174321
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
double factor_een[walk_num];
rc = qmckl_get_jastrow_champ_factor_een(context, &(factor_een[0]),walk_num);
assert(fabs(factor_een[0] + 0.382580260174321) < 1e-12);
{
double factor_een_naive[walk_num];
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
rc = qmckl_compute_jastrow_champ_factor_een_naive(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.een_rescaled_e,
ctx->jastrow_champ.een_rescaled_n,
factor_een_naive);
for (int64_t i = 0; i < walk_num; i++) {
if (fabs(factor_een[i] - factor_een_naive[i]) > 1e-12) {
printf("factor_een[%ld] = %e\n", i, factor_een[i]);
printf("factor_een_naive[%ld] = %e\n", i, factor_een_naive[i]);
}
assert(fabs(factor_een[i] - factor_een_naive[i]) < 1e-12);
}
}
#+end_src
*** Electron-electron-nucleus Jastrow $f_{een}$ derivative
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een_gl~
using the above prepared tables.
TODO: write equations.
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_factor_een_gl(qmckl_context context,
double* const factor_een_gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_factor_een_gl(qmckl_context context,
double* const factor_een_gl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_jastrow_champ_factor_een_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (factor_een_gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_factor_een_gl",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_factor_een_gl",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_een_gl, ctx->jastrow_champ.factor_een_gl, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_factor_een_gl (context, &
factor_een_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: factor_een_gl(size_max)
end function qmckl_get_jastrow_champ_factor_een_gl
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_een_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_factor_een_gl(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (ctx->jastrow_champ.cord_num > 0) {
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e_gl(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n_gl(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_jastrow_champ_c_vector_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if dtmp_c is provided */
rc = qmckl_provide_dtmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
}
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.factor_een_gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.factor_een_gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.factor_een_gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_factor_een_gl",
"Unable to free ctx->jastrow_champ.factor_een_gl");
}
ctx->jastrow_champ.factor_een_gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.factor_een_gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->electron.walker.num * sizeof(double);
double* factor_een_gl = (double*) qmckl_malloc(context, mem_info);
if (factor_een_gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_factor_een_gl",
NULL);
}
ctx->jastrow_champ.factor_een_gl = factor_een_gl;
}
rc = qmckl_compute_jastrow_champ_factor_een_gl(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.dtmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_gl,
ctx->jastrow_champ.factor_een_gl);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow_champ.factor_een_gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute Naive
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_gl_naive
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_gl_naive_args
| Variable | Type | In/Out | Description |
|-----------------------+-------------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~c_vector_full~ | ~double[dim_c_vector][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | in | combined indices |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~een_rescaled_e_gl~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n_gl~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~factor_een_gl~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_gl_naive_f( &
context, walk_num, elec_num, nucl_num, cord_num, dim_c_vector, &
c_vector_full, lkpm_combined_index, een_rescaled_e, een_rescaled_n, &
een_rescaled_e_gl, een_rescaled_n_gl, factor_een_gl)&
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer*8 , intent(in) :: lkpm_combined_index(dim_c_vector, 4)
double precision , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_e_gl(elec_num, 4, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een_gl(elec_num, 4, walk_num)
integer*8 :: i, a, j, l, k, m, n, nw
double precision :: accu, accu2, cn
double precision :: daccu(1:4), daccu2(1:4)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (cord_num < 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
factor_een_gl = 0.0d0
do nw =1, walk_num
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = c_vector_full(a, n)
do j = 1, elec_num
accu = 0.0d0
accu2 = 0.0d0
daccu = 0.0d0
daccu2 = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(i, j, k, nw) * een_rescaled_n(i, a, m, nw)
accu2 = accu2 + een_rescaled_e(i, j, k, nw) * een_rescaled_n(i, a, m + l, nw)
daccu(1:4) = daccu(1:4) + een_rescaled_e_gl(j, 1:4, i, k, nw) * &
een_rescaled_n(i, a, m, nw)
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_gl(j, 1:4, i, k, nw) * &
een_rescaled_n(i, a, m + l, nw)
end do
factor_een_gl(j, 1:4, nw) = factor_een_gl(j, 1:4, nw) + &
(accu * een_rescaled_n_gl(j, 1:4, a, m + l, nw) &
+ daccu(1:4) * een_rescaled_n(j, a, m + l, nw) &
+ daccu2(1:4) * een_rescaled_n(j, a, m, nw) &
+ accu2 * een_rescaled_n_gl(j, 1:4, a, m, nw)) * cn
factor_een_gl(j, 4, nw) = factor_een_gl(j, 4, nw) + 2.0d0 * ( &
daccu (1) * een_rescaled_n_gl(j, 1, a, m + l, nw) + &
daccu (2) * een_rescaled_n_gl(j, 2, a, m + l, nw) + &
daccu (3) * een_rescaled_n_gl(j, 3, a, m + l, nw) + &
daccu2(1) * een_rescaled_n_gl(j, 1, a, m, nw ) + &
daccu2(2) * een_rescaled_n_gl(j, 2, a, m, nw ) + &
daccu2(3) * een_rescaled_n_gl(j, 3, a, m, nw ) ) * cn
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_gl_naive_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_gl_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_gl_naive (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
const double* een_rescaled_e_gl,
const double* een_rescaled_n_gl,
double* const factor_een_gl );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_gl_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_gl_naive &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
een_rescaled_e_gl, &
een_rescaled_n_gl, &
factor_een_gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
real (c_double ) , intent(in) :: c_vector_full(nucl_num,dim_c_vector)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_e_gl(0:cord_num,elec_num,4,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n_gl(0:cord_num,nucl_num,4,elec_num,walk_num)
real (c_double ) , intent(out) :: factor_een_gl(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_gl_naive_f
info = qmckl_compute_jastrow_champ_factor_een_gl_naive_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
een_rescaled_e_gl, &
een_rescaled_n_gl, &
factor_een_gl)
end function qmckl_compute_jastrow_champ_factor_een_gl_naive
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_factor_een_gl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_gl_args
|-----------------------+---------------------------------------------------------------------+--------+------------------------------------------------|
| Variable | Type | In/Out | Description |
|-----------------------+---------------------------------------------------------------------+--------+------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_c_vector~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~c_vector_full~ | ~double[dim_c_vector][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_c_vector]~ | in | combined indices |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | in | Temporary intermediate tensor |
| ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num]~ | in | vector of non-zero coefficients |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~een_rescaled_n_gl~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | in | Derivative of Electron-nucleus rescaled factor |
| ~factor_een_gl~ | ~double[walk_num][4][elec_num]~ | out | Derivative of Electron-nucleus jastrow |
|-----------------------+---------------------------------------------------------------------+--------+------------------------------------------------|
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_factor_een_gl_doc_f( &
context, walk_num, elec_num, nucl_num, &
cord_num, dim_c_vector, c_vector_full, lkpm_combined_index, &
tmp_c, dtmp_c, een_rescaled_n, een_rescaled_n_gl, factor_een_gl)&
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer*8 , intent(in) :: lkpm_combined_index(dim_c_vector,4)
double precision , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een_gl(elec_num,4,walk_num)
integer*8 :: i, a, j, l, k, m, n, nw, ii
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_2
if (elec_num <= 0) info = QMCKL_INVALID_ARG_3
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_4
if (cord_num < 0) info = QMCKL_INVALID_ARG_5
if (info /= QMCKL_SUCCESS) return
if (cord_num == 0) then
factor_een_gl = 0.0d0
return
end if
do nw =1, walk_num
factor_een_gl(:,:,nw) = 0.0d0
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = c_vector_full(a, n)
if(cn == 0.d0) cycle
do ii = 1, 4
do j = 1, elec_num
factor_een_gl(j,ii,nw) = factor_een_gl(j,ii,nw) + ( &
tmp_c (j, a,m ,k,nw) * een_rescaled_n_gl(j,ii,a,m+l,nw) + &
tmp_c (j, a,m+l,k,nw) * een_rescaled_n_gl(j,ii,a,m ,nw) + &
dtmp_c(j,ii,a,m ,k,nw) * een_rescaled_n (j, a,m+l,nw) + &
dtmp_c(j,ii,a,m+l,k,nw) * een_rescaled_n (j, a,m ,nw) &
) * cn
end do
end do
cn = cn + cn
do j = 1, elec_num
factor_een_gl(j,4,nw) = factor_een_gl(j,4,nw) + ( &
dtmp_c(j,1,a,m ,k,nw) * een_rescaled_n_gl(j,1,a,m+l,nw) + &
dtmp_c(j,2,a,m ,k,nw) * een_rescaled_n_gl(j,2,a,m+l,nw) + &
dtmp_c(j,3,a,m ,k,nw) * een_rescaled_n_gl(j,3,a,m+l,nw) + &
dtmp_c(j,1,a,m+l,k,nw) * een_rescaled_n_gl(j,1,a,m ,nw) + &
dtmp_c(j,2,a,m+l,k,nw) * een_rescaled_n_gl(j,2,a,m ,nw) + &
dtmp_c(j,3,a,m+l,k,nw) * een_rescaled_n_gl(j,3,a,m ,nw) &
) * cn
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_een_gl_doc_f
#+end_src
#+CALL: generate_private_c_header(table=qmckl_factor_een_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_factor_een_gl_doc" )
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_gl_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* dtmp_c,
const double* een_rescaled_n,
const double* een_rescaled_n_gl,
double* const factor_een_gl );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_factor_een_gl_doc"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_factor_een_gl_doc &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
tmp_c, &
dtmp_c, &
een_rescaled_n, &
een_rescaled_n_gl, &
factor_een_gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
real (c_double ) , intent(in) :: c_vector_full(nucl_num,dim_c_vector)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real (c_double ) , intent(in) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
real (c_double ) , intent(in) :: dtmp_c(elec_num,4,nucl_num,0:cord_num,0:cord_num-1,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n_gl(elec_num,4,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: factor_een_gl(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_factor_een_gl_doc_f
info = qmckl_compute_jastrow_champ_factor_een_gl_doc_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_c_vector, &
c_vector_full, &
lkpm_combined_index, &
tmp_c, &
dtmp_c, &
een_rescaled_n, &
een_rescaled_n_gl, &
factor_een_gl)
end function qmckl_compute_jastrow_champ_factor_een_gl_doc
#+end_src
#+CALL: generate_private_c_header(table=qmckl_factor_een_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_factor_een_gl" )
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_factor_een_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* dtmp_c,
const double* een_rescaled_n,
const double* een_rescaled_n_gl,
double* const factor_een_gl );
#+end_src
#+begin_src c :tangle (eval c) :comments org
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een_gl(const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double *c_vector_full,
const int64_t *lkpm_combined_index,
const double *tmp_c,
const double *dtmp_c,
const double *een_rescaled_n,
const double *een_rescaled_n_gl,
double* const factor_een_gl)
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_factor_een_gl_hpc
#else
return qmckl_compute_jastrow_champ_factor_een_gl_doc
#endif
(context, walk_num, elec_num, nucl_num,
cord_num, dim_c_vector, c_vector_full,
lkpm_combined_index, tmp_c, dtmp_c,
een_rescaled_n, een_rescaled_n_gl,
factor_een_gl);
}
#+end_src
***** HPC implementation :noexport:
#+CALL: generate_private_c_header(table=qmckl_factor_een_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_factor_een_gl_hpc" )
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double* c_vector_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* dtmp_c,
const double* een_rescaled_n,
const double* een_rescaled_n_gl,
double* const factor_een_gl );
#+end_src
#+begin_src c :tangle (eval c) :comments org
qmckl_exit_code
qmckl_compute_jastrow_champ_factor_een_gl_hpc(const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_c_vector,
const double *c_vector_full,
const int64_t *lkpm_combined_index,
const double *tmp_c,
const double *dtmp_c,
const double *een_rescaled_n,
const double *een_rescaled_n_gl,
double* const factor_een_gl)
{
int64_t info = QMCKL_SUCCESS;
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (walk_num <= 0) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0) return QMCKL_INVALID_ARG_3;
if (nucl_num <= 0) return QMCKL_INVALID_ARG_4;
if (cord_num < 0) return QMCKL_INVALID_ARG_5;
if (cord_num == 0) {
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (size_t nw = 0; nw < (size_t) walk_num; ++nw) {
double* const restrict factor_een_gl_0nw = &(factor_een_gl[elec_num*4*nw]);
memset(factor_een_gl_0nw, 0, elec_num*4*sizeof(double));
}
return QMCKL_SUCCESS;
}
const size_t elec_num2 = elec_num + elec_num;
const size_t elec_num3 = elec_num2 + elec_num;
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (size_t nw = 0; nw < (size_t) walk_num; ++nw) {
double* const restrict factor_een_gl_0nw = &(factor_een_gl[elec_num*4*nw]);
memset(factor_een_gl_0nw, 0, elec_num*4*sizeof(double));
for (size_t n = 0; n < (size_t) dim_c_vector; ++n) {
const size_t l = lkpm_combined_index[n];
const size_t k = lkpm_combined_index[n+ dim_c_vector];
const size_t m = lkpm_combined_index[n+3*dim_c_vector];
const size_t en = elec_num*nucl_num;
const size_t len = l*en;
const size_t len4 = len*4;
const size_t c1 = cord_num+1;
const size_t cn = cord_num*nw;
const size_t addr0 = en*(m+c1*(k+cn));
const size_t addr1 = en*(m+c1*nw);
const double* restrict tmp_c_mkn = &(tmp_c[addr0]);
const double* restrict tmp_c_mlkn = tmp_c_mkn + len;
const double* restrict een_rescaled_n_mnw = &(een_rescaled_n[addr1]);
const double* restrict een_rescaled_n_mlnw = een_rescaled_n_mnw + len;
const double* restrict dtmp_c_mknw = &(dtmp_c[addr0*4]);
const double* restrict dtmp_c_mlknw = dtmp_c_mknw + len4;
const double* restrict een_rescaled_n_gl_mnw = &(een_rescaled_n_gl[addr1*4]); // ?
const double* restrict een_rescaled_n_gl_mlnw = een_rescaled_n_gl_mnw + len4;
for (size_t a = 0; a < (size_t) nucl_num; a++) {
double cn = c_vector_full[a+n*nucl_num];
if (cn == 0.0) continue;
const size_t ishift = elec_num*a;
const size_t ishift4 = ishift*4;
const double* restrict tmp_c_amkn = tmp_c_mkn + ishift;
const double* restrict tmp_c_amlkn = tmp_c_mlkn + ishift;
const double* restrict een_rescaled_n_amnw = een_rescaled_n_mnw + ishift;
const double* restrict een_rescaled_n_amlnw = een_rescaled_n_mlnw + ishift;
const double* restrict dtmp_c_0amknw = dtmp_c_mknw + ishift4;
const double* restrict dtmp_c_0amlknw = dtmp_c_mlknw + ishift4;
const double* restrict een_rescaled_n_gl_0amnw = een_rescaled_n_gl_mnw + ishift4;
const double* restrict een_rescaled_n_gl_0amlnw = een_rescaled_n_gl_mlnw + ishift4;
const double* restrict dtmp_c_1amknw = dtmp_c_0amknw + elec_num;
const double* restrict dtmp_c_1amlknw = dtmp_c_0amlknw + elec_num;
const double* restrict dtmp_c_2amknw = dtmp_c_0amknw + elec_num2;
const double* restrict dtmp_c_2amlknw = dtmp_c_0amlknw + elec_num2;
const double* restrict dtmp_c_3amknw = dtmp_c_0amknw + elec_num3;
const double* restrict dtmp_c_3amlknw = dtmp_c_0amlknw + elec_num3;
const double* restrict een_rescaled_n_gl_1amnw = een_rescaled_n_gl_0amnw + elec_num;
const double* restrict een_rescaled_n_gl_1amlnw = een_rescaled_n_gl_0amlnw + elec_num;
const double* restrict een_rescaled_n_gl_2amnw = een_rescaled_n_gl_0amnw + elec_num2;
const double* restrict een_rescaled_n_gl_2amlnw = een_rescaled_n_gl_0amlnw + elec_num2;
const double* restrict een_rescaled_n_gl_3amnw = een_rescaled_n_gl_0amnw + elec_num3;
const double* restrict een_rescaled_n_gl_3amlnw = een_rescaled_n_gl_0amlnw + elec_num3;
double* const restrict factor_een_gl_1nw = factor_een_gl_0nw + elec_num;
double* const restrict factor_een_gl_2nw = factor_een_gl_0nw + elec_num2;
double* const restrict factor_een_gl_3nw = factor_een_gl_0nw + elec_num3;
double tmp3[elec_num];
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t j = 0; j < (size_t) elec_num; ++j) {
factor_een_gl_0nw[j] = factor_een_gl_0nw[j] + cn * (
dtmp_c_0amknw [j] * een_rescaled_n_amlnw[j] +
dtmp_c_0amlknw[j] * een_rescaled_n_amnw [j] +
tmp_c_amkn [j] * een_rescaled_n_gl_0amlnw[j] +
tmp_c_amlkn[j] * een_rescaled_n_gl_0amnw [j] );
tmp3[j] =
dtmp_c_0amknw [j] * een_rescaled_n_gl_0amlnw[j] +
dtmp_c_0amlknw[j] * een_rescaled_n_gl_0amnw [j];
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t j = 0; j < (size_t) elec_num; ++j) {
factor_een_gl_1nw[j] = factor_een_gl_1nw[j] + cn * (
dtmp_c_1amknw [j] * een_rescaled_n_amlnw[j] +
dtmp_c_1amlknw[j] * een_rescaled_n_amnw [j] +
tmp_c_amkn [j] * een_rescaled_n_gl_1amlnw[j] +
tmp_c_amlkn[j] * een_rescaled_n_gl_1amnw [j]);
tmp3[j] = tmp3[j] +
dtmp_c_1amknw [j] * een_rescaled_n_gl_1amlnw[j] +
dtmp_c_1amlknw[j] * een_rescaled_n_gl_1amnw [j];
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t j = 0; j < (size_t) elec_num; ++j) {
factor_een_gl_2nw[j] = factor_een_gl_2nw[j] + cn * (
dtmp_c_2amknw [j] * een_rescaled_n_amlnw[j] +
dtmp_c_2amlknw[j] * een_rescaled_n_amnw [j] +
tmp_c_amkn [j] * een_rescaled_n_gl_2amlnw[j] +
tmp_c_amlkn[j] * een_rescaled_n_gl_2amnw [j]);
tmp3[j] = tmp3[j] +
dtmp_c_2amknw [j] * een_rescaled_n_gl_2amlnw[j] +
dtmp_c_2amlknw[j] * een_rescaled_n_gl_2amnw [j];
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (size_t j = 0; j < (size_t) elec_num; ++j) {
factor_een_gl_3nw[j] = factor_een_gl_3nw[j] + cn * (
dtmp_c_3amknw [j] * een_rescaled_n_amlnw[j] +
dtmp_c_3amlknw[j] * een_rescaled_n_amnw [j] +
tmp_c_amkn [j] * een_rescaled_n_gl_3amlnw[j] +
tmp_c_amlkn[j] * een_rescaled_n_gl_3amnw [j] +
tmp3[j]*2.0);
}
}
}
}
return info;
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<een_e_gl>>
<<helper_funcs>>
kappa = 0.6
factor_een = 0.0
daccu = np.zeros(4, dtype=float)
daccu2 = np.zeros(4, dtype=float)
een_rescaled_e_gl_t = een_rescaled_e_gl.T
print(een_rescaled_e_gl_t.shape)
for n in range(0, dim_c_vector):
l = lkpm_of_cindex[0,n]
k = lkpm_of_cindex[1,n]
m = lkpm_of_cindex[3,n]
for a in range(0, nucl_num):
cn = c_vector_full[a][n]
for j in range(0, elec_num):
accu = 0.0
accu2 = 0.0
daccu2 = 0.0
for i in range(0, elec_num):
accu = accu + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m]
accu2 = accu2 + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m+l]
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
factor_een = factor_een + accu2 * cn
print("factor_een:",factor_een)
#+end_src
#+RESULTS:
: een_rescaled_e_gl[1, 1, 3, 1] = 0.09831391870751387
: een_rescaled_e_gl[1, 1, 4, 1] = 0.017204157459682526
: een_rescaled_e_gl[1, 1, 5, 1] = 0.013345768421098641
: een_rescaled_e_gl[2, 1, 4, 2] = 0.03733086358273962
: een_rescaled_e_gl[2, 1, 5, 2] = 0.004922634822943517
: een_rescaled_e_gl[2, 1, 6, 2] = 0.5416751547830984
: (6, 10, 4, 10)
: factor_een: -14.956095654486404
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
double factor_een_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
rc = qmckl_get_jastrow_champ_factor_een_gl(context, &(factor_een_gl[0][0][0]),4*walk_num*elec_num)
);
assert(rc == QMCKL_SUCCESS);
/*
printf("%20.15e\n", factor_een_gl[0][0][0]);
assert(fabs(8.967809309100624e-02 - factor_een_gl[0][0][0]) < 1e-12);
printf("%20.15e\n", factor_een_gl[0][1][1]);
assert(fabs(3.543090132452453e-02 - factor_een_gl[0][1][1]) < 1e-12);
printf("%20.15e\n", factor_een_gl[0][2][2]);
assert(fabs(8.996044894431991e-04 - factor_een_gl[0][2][2]) < 1e-12);
printf("%20.15e\n", factor_een_gl[0][3][3]);
assert(fabs(-1.175028308456619e+00 - factor_een_gl[0][3][3]) < 1e-12);
TODO
*/
{
printf("factor_een_gl_hpc\n");
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
assert(walk_num == 2);
assert(elec_num == 10);
assert(nucl_num == 2);
assert(cord_num == 5);
assert(dim_c_vector == 23);
assert(ctx->electron.walker.num == walk_num);
assert(ctx->electron.num == elec_num);
assert(ctx->nucleus.num == nucl_num);
assert(ctx->jastrow_champ.cord_num == cord_num);
assert(ctx->jastrow_champ.dim_c_vector == dim_c_vector);
double factor_een_gl_naive[walk_num*4*elec_num];
memset(&(factor_een_gl_naive[0]), 0, sizeof(factor_een_gl_naive));
rc = qmckl_compute_jastrow_champ_factor_een_gl_naive(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.een_rescaled_e,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_e_gl,
ctx->jastrow_champ.een_rescaled_n_gl,
factor_een_gl_naive);
assert(rc == QMCKL_SUCCESS);
double factor_een_gl_doc[walk_num*4*elec_num];
memset(&(factor_een_gl_doc[0]), 0, sizeof(factor_een_gl_doc));
rc = qmckl_compute_jastrow_champ_factor_een_gl_doc(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.dtmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_gl,
factor_een_gl_doc);
assert(rc == QMCKL_SUCCESS);
for (int64_t i = 0; i < walk_num*4*elec_num; ++i) {
if (fabs(factor_een_gl_naive[i] - factor_een_gl_doc[i]) > 1e-12) {
printf("i = %ld\n", i);
printf("factor_een_gl_naive = %20.15e\n", factor_een_gl_naive[i]);
printf("factor_een_gl_doc = %20.15e\n", factor_een_gl_doc[i]);
fflush(stdout);
}
assert(fabs(factor_een_gl_naive[i] - factor_een_gl_doc[i]) < 1e-8);
}
double factor_een_gl_hpc[walk_num*4*elec_num];
memset(&(factor_een_gl_hpc[0]), 0, sizeof(factor_een_gl_hpc));
rc = qmckl_compute_jastrow_champ_factor_een_gl_hpc(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow_champ.cord_num,
ctx->jastrow_champ.dim_c_vector,
ctx->jastrow_champ.c_vector_full,
ctx->jastrow_champ.lkpm_combined_index,
ctx->jastrow_champ.tmp_c,
ctx->jastrow_champ.dtmp_c,
ctx->jastrow_champ.een_rescaled_n,
ctx->jastrow_champ.een_rescaled_n_gl,
factor_een_gl_hpc);
for (int64_t i = 0; i < walk_num*4*elec_num; ++i) {
if (fabs(factor_een_gl_doc[i] - factor_een_gl_hpc[i]) > 1e-12) {
printf("i = %ld\n", i);
printf("factor_een_gl_doc = %20.15e\n", factor_een_gl_doc[i]);
printf("factor_een_gl_hpc = %20.15e\n", factor_een_gl_hpc[i]);
fflush(stdout);
}
assert(fabs(factor_een_gl_doc[i] - factor_een_gl_hpc[i]) < 1e-8);
}
}
#+end_src
** Total Jastrow
*** Value
Value of the total Jastrow factor: $\exp(J)$
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_value(qmckl_context context,
double* const value,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_value(qmckl_context context,
double* const value,
const int64_t size_max)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_value",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
rc = qmckl_provide_jastrow_champ_value(context);
if (rc != QMCKL_SUCCESS) return rc;
if (value == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_value",
"Null pointer");
}
const int64_t sze = ctx->electron.walker.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_value",
"Array too small. Expected walk_num");
}
memcpy(value, ctx->jastrow_champ.value, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_value (context, &
value, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: value(size_max)
end function qmckl_get_jastrow_champ_value
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_value(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_value(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_value",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_value",
NULL);
}
rc = qmckl_provide_jastrow_champ_factor_ee(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_jastrow_champ_factor_en(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_jastrow_champ_factor_een(context);
if (rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.value_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.value != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.value);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_value",
"Unable to free ctx->jastrow_champ.value");
}
ctx->jastrow_champ.value = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.value == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * sizeof(double);
double* value = (double*) qmckl_malloc(context, mem_info);
if (value == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_value",
NULL);
}
ctx->jastrow_champ.value = value;
}
rc = qmckl_compute_jastrow_champ_value_doc(context,
ctx->electron.walker.num,
ctx->jastrow_champ.factor_ee,
ctx->jastrow_champ.factor_en,
ctx->jastrow_champ.factor_een,
ctx->jastrow_champ.value);
ctx->jastrow_champ.value_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_value_doc
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_jastrow_champ_value_args
| Variable | Type | In/Out | Description |
|------------+--------------------+--------+----------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~f_ee~ | ~double[walk_num]~ | in | ee component |
| ~f_en~ | ~double[walk_num]~ | in | eN component |
| ~f_een~ | ~double[walk_num]~ | in | eeN component |
| ~value~ | ~double[walk_num]~ | out | Total Jastrow factor |
#+CALL: generate_c_interface(table=qmckl_jastrow_champ_value_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_value_doc &
(context, walk_num, f_ee, f_en, f_een, value) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: f_ee(walk_num)
real (c_double ) , intent(in) :: f_en(walk_num)
real (c_double ) , intent(in) :: f_een(walk_num)
real (c_double ) , intent(out) :: value(walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_value_doc_f
info = qmckl_compute_jastrow_champ_value_doc_f &
(context, walk_num, f_ee, f_en, f_een, value)
end function qmckl_compute_jastrow_champ_value_doc
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_value_doc_f(context, &
walk_num, f_ee, f_en, f_een, value) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: f_ee(walk_num), f_en(walk_num), f_een(walk_num)
double precision , intent(out) :: value(walk_num)
integer*8 :: i
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
do i = 1, walk_num
value(i) = f_ee(i) + f_en(i) + f_een(i)
end do
do i = 1, walk_num
! Flush to zero to avoid floating-point exception
if (value(i) < -100.d0) then
value(i) = 0.d0
else
value(i) = dexp(value(i))
endif
end do
end function qmckl_compute_jastrow_champ_value_doc_f
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_value_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_value")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_value (
const qmckl_context context,
const int64_t walk_num,
const double* f_ee,
const double* f_en,
const double* f_een,
double* const value );
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_value_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_value_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_value_doc (
const qmckl_context context,
const int64_t walk_num,
const double* f_ee,
const double* f_en,
const double* f_een,
double* const value );
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_value_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_value_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_value_hpc (
const qmckl_context context,
const int64_t walk_num,
const double* f_ee,
const double* f_en,
const double* f_een,
double* const value );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
inline qmckl_exit_code
qmckl_compute_jastrow_champ_value_hpc (
const qmckl_context context,
const int64_t walk_num,
const double* factor_ee,
const double* factor_en,
const double* factor_een,
double* const value)
{
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (walk_num <= 0 ) return QMCKL_INVALID_ARG_2;
if (factor_ee == NULL ) return QMCKL_INVALID_ARG_3;
if (factor_en == NULL ) return QMCKL_INVALID_ARG_4;
if (factor_een == NULL ) return QMCKL_INVALID_ARG_5;
if (value == NULL ) return QMCKL_INVALID_ARG_6;
for (int64_t i = 0; i < walk_num; ++i) {
value[i] = exp(factor_ee[i] + factor_en[i] + factor_een[i]);
}
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_jastrow_champ_value (
const qmckl_context context,
const int64_t walk_num,
const double* factor_ee,
const double* factor_en,
const double* factor_een,
double* const value)
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_value_hpc
#else
return qmckl_compute_jastrow_champ_value_doc
#endif
(context, walk_num, factor_ee, factor_en, factor_een, value);
}
#+end_src
**** Test :noexport:
#+begin_src c :tangle (eval c_test)
printf("Total Jastrow value\n");
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
{
double factor_ee[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_ee(context, &(factor_ee[0]), walk_num)
);
assert(rc == QMCKL_SUCCESS);
double factor_en[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_en(context, &(factor_en[0]), walk_num)
);
assert(rc == QMCKL_SUCCESS);
double factor_een[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_een(context, &(factor_een[0]), walk_num)
);
assert(rc == QMCKL_SUCCESS);
double total_j[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_value(context, &(total_j[0]), walk_num)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i< walk_num ; ++i) {
if (fabs(total_j[i] - exp(factor_ee[i] + factor_en[i] + factor_een[i])) > 1e-12) {
printf("i = %ld\n", i);
printf("total_j = %20.15e\n", total_j[i]);
printf("exp(factor_ee + factor_en + factor_een) = %20.15e\n", exp(factor_ee[i] + factor_en[i] + factor_een[i]));
fflush(stdout);
}
assert (fabs(total_j[i] - exp(factor_ee[i] + factor_en[i] + factor_een[i])) < 1.e-8);
}
}
#+end_src
*** Derivatives
Gradients and Laplacian of the total Jastrow factor:
\[
\nabla \left[ e^{J(\mathbf{r})} \right] = e^{J(\mathbf{r})} \nabla J(\mathbf{r})
\]
\[
\Delta \left[ e^{J(\mathbf{r})} \right] = e^{J(\mathbf{r})}
\left[ \Delta J(\mathbf{r}) + \nabla J(\mathbf{r}) \cdot \nabla J(\mathbf{r}) \right]
\]
**** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_champ_gl(qmckl_context context,
double* const gl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_champ_gl(qmckl_context context,
double* const gl,
const int64_t size_max)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_jastrow_champ_gl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
rc = qmckl_provide_jastrow_champ_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
if (gl == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_champ_gl",
"Null pointer");
}
const int64_t sze = 4 * ctx->electron.walker.num * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_champ_gl",
"Array too small. Expected walk_num*elec_num*4");
}
memcpy(gl, ctx->jastrow_champ.gl, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
***** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_gl (context, &
gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: gl(size_max)
end function qmckl_get_jastrow_champ_gl
end interface
#+end_src
**** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_gl(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_jastrow_champ_gl(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_jastrow_champ_gl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->jastrow_champ.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_jastrow_champ_gl",
NULL);
}
rc = qmckl_provide_jastrow_champ_value(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_jastrow_champ_factor_ee_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_jastrow_champ_factor_en_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_jastrow_champ_factor_een_gl(context);
if (rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow_champ.gl_date) {
if (ctx->electron.walker.num > ctx->electron.walker_old.num) {
if (ctx->jastrow_champ.gl != NULL) {
rc = qmckl_free(context, ctx->jastrow_champ.gl);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_provide_jastrow_champ_gl",
"Unable to free ctx->jastrow_champ.gl");
}
ctx->jastrow_champ.gl = NULL;
}
}
/* Allocate array */
if (ctx->jastrow_champ.gl == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walker.num * ctx->electron.num * 4 * sizeof(double);
double* gl = (double*) qmckl_malloc(context, mem_info);
if (gl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_jastrow_champ_gl",
NULL);
}
ctx->jastrow_champ.gl = gl;
}
rc = qmckl_compute_jastrow_champ_gl_doc(context,
ctx->electron.walker.num,
ctx->electron.num,
ctx->jastrow_champ.value,
ctx->jastrow_champ.factor_ee_gl,
ctx->jastrow_champ.factor_en_gl,
ctx->jastrow_champ.factor_een_gl,
ctx->jastrow_champ.gl);
ctx->jastrow_champ.gl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Compute
:PROPERTIES:
:Name: qmckl_compute_jastrow_champ_gl_doc
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_jastrow_champ_gl_args
| Variable | Type | In/Out | Description |
|------------+---------------------------------+--------+----------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~value~ | ~double[walk_num]~ | in | Total Jastrow |
| ~gl_ee~ | ~double[walk_num][4][elec_num]~ | in | ee component |
| ~gl_en~ | ~double[walk_num][4][elec_num]~ | in | eN component |
| ~gl_een~ | ~double[walk_num][4][elec_num]~ | in | eeN component |
| ~gl~ | ~double[walk_num][4][elec_num]~ | out | Total Jastrow factor |
#+CALL: generate_c_interface(table=qmckl_jastrow_champ_gl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_jastrow_champ_gl_doc &
(context, walk_num, elec_num, value, gl_ee, gl_en, gl_een, gl) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) :: value(walk_num)
real (c_double ) , intent(in) :: gl_ee(elec_num,4,walk_num)
real (c_double ) , intent(in) :: gl_en(elec_num,4,walk_num)
real (c_double ) , intent(in) :: gl_een(elec_num,4,walk_num)
real (c_double ) , intent(out) :: gl(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_jastrow_champ_gl_doc_f
info = qmckl_compute_jastrow_champ_gl_doc_f &
(context, walk_num, elec_num, value, gl_ee, gl_en, gl_een, gl)
end function qmckl_compute_jastrow_champ_gl_doc
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_jastrow_champ_gl_doc_f(context, &
walk_num, elec_num, value, gl_ee, gl_en, gl_een, gl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num
double precision , intent(in) :: value (walk_num)
double precision , intent(in) :: gl_ee (elec_num,4,walk_num)
double precision , intent(in) :: gl_en (elec_num,4,walk_num)
double precision , intent(in) :: gl_een(elec_num,4,walk_num)
double precision , intent(out) :: gl (elec_num,4,walk_num)
integer*8 :: i, j, k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
do k = 1, walk_num
do j=1,4
do i = 1, elec_num
gl(i,j,k) = gl_ee(i,j,k) + gl_en(i,j,k) + gl_een(i,j,k)
end do
end do
do i = 1, elec_num
gl(i,4,k) = gl(i,4,k) + &
gl(i,1,k) * gl(i,1,k) + &
gl(i,2,k) * gl(i,2,k) + &
gl(i,3,k) * gl(i,3,k)
end do
gl(:,:,k) = gl(:,:,k) * value(k)
end do
end function qmckl_compute_jastrow_champ_gl_doc_f
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_gl")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const double* value,
const double* gl_ee,
const double* gl_en,
const double* gl_een,
double* const gl );
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_gl_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_gl_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const double* value,
const double* gl_ee,
const double* gl_en,
const double* gl_een,
double* const gl );
#+end_src
#+CALL: generate_private_c_header(table=qmckl_jastrow_champ_gl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_jastrow_champ_gl_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_jastrow_champ_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const double* value,
const double* gl_ee,
const double* gl_en,
const double* gl_een,
double* const gl );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
inline qmckl_exit_code
qmckl_compute_jastrow_champ_gl_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const double* value,
const double* gl_ee,
const double* gl_en,
const double* gl_een,
double* const gl)
{
if (context == QMCKL_NULL_CONTEXT) return QMCKL_INVALID_CONTEXT;
if (walk_num <= 0 ) return QMCKL_INVALID_ARG_2;
if (elec_num <= 0 ) return QMCKL_INVALID_ARG_3;
if (value == NULL ) return QMCKL_INVALID_ARG_4;
if (gl_ee == NULL ) return QMCKL_INVALID_ARG_5;
if (gl_en == NULL ) return QMCKL_INVALID_ARG_6;
if (gl_een == NULL ) return QMCKL_INVALID_ARG_7;
if (gl == NULL ) return QMCKL_INVALID_ARG_8;
for (int64_t k = 0; k < walk_num; ++k) {
for (int64_t j = 0; j < 4; ++j) {
for (int64_t i = 0; i < elec_num; ++i) {
gl[i + elec_num*(j + k*4)] = gl_ee[i + elec_num*(j + k*4)] +
gl_en[i + elec_num*(j + k*4)] + gl_een[i + elec_num*(j + k*4)];
}
}
for (int64_t i = 0; i < elec_num; ++i) {
gl[i + elec_num*(3 + walk_num*4)] +=
gl_ee[i + elec_num*(0 + k*4)] * gl_ee[i + elec_num*(0 + k*4)] +
gl_ee[i + elec_num*(1 + k*4)] * gl_ee[i + elec_num*(1 + k*4)] +
gl_ee[i + elec_num*(2 + k*4)] * gl_ee[i + elec_num*(2 + k*4)];
}
for (int64_t j = 0; j < 4; ++j) {
for (int64_t i = 0; i < elec_num; ++i) {
gl[i + elec_num*(j + k*4)] *= value[k];
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_jastrow_champ_gl (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const double* value,
const double* gl_ee,
const double* gl_en,
const double* gl_een,
double* const gl)
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_gl_hpc
#else
return qmckl_compute_jastrow_champ_gl_doc
#endif
(context, walk_num, elec_num, value, gl_ee, gl_en, gl_een, gl);
}
#+end_src
**** Test :noexport:
#+begin_src c :tangle (eval c_test)
printf("Total Jastrow derivatives\n");
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_champ_provided(context));
{
double factor_ee_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_ee_gl(context, &(factor_ee_gl[0][0][0]), walk_num*elec_num*4)
);
assert(rc == QMCKL_SUCCESS);
double factor_en_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_en_gl(context, &(factor_en_gl[0][0][0]), walk_num*elec_num*4)
);
assert(rc == QMCKL_SUCCESS);
double factor_een_gl[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_factor_een_gl(context, &(factor_een_gl[0][0][0]), walk_num*elec_num*4)
);
assert(rc == QMCKL_SUCCESS);
double total_j_deriv[walk_num][4][elec_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_gl(context, &(total_j_deriv[0][0][0]), walk_num*elec_num*4)
);
assert(rc == QMCKL_SUCCESS);
double total_j[walk_num];
rc = qmckl_check(context,
qmckl_get_jastrow_champ_value(context, &(total_j[0]), walk_num)
);
assert(rc == QMCKL_SUCCESS);
for (int64_t k=0 ; k< walk_num ; ++k) {
for (int64_t m=0 ; m<4; ++m) {
for (int64_t e=0 ; e<elec_num; ++e) {
if (m < 3) { /* test only gradients */
if (fabs(total_j_deriv[k][m][e]/total_j[k] - (factor_ee_gl[k][m][e] + factor_en_gl[k][m][e] + factor_een_gl[k][m][e])) > 1e-12) {
printf("k = %ld\n", k);
printf("m = %ld\n", m);
printf("e = %ld\n", e);
printf("total_j_deriv = %20.15e\n", total_j_deriv[k][m][e]/total_j[k]);
printf("factor_ee_gl + factor_en_gl + factor_een_gl = %20.15e\n", factor_ee_gl[k][m][e] + factor_en_gl[k][m][e] + factor_een_gl[k][m][e]);
fflush(stdout);
}
assert (fabs(total_j_deriv[k][m][e]/total_j[k] - (factor_ee_gl[k][m][e] + factor_en_gl[k][m][e] + factor_een_gl[k][m][e])) < 1.e-12);
}
}
}
}
}
#+end_src
* End of files :noexport:
#+begin_src c :tangle (eval h_private_type)
#endif
#+end_src
#+begin_src c :tangle (eval h_private_func)
#endif
#+end_src
*** Test :noexport:
#+begin_src c :tangle (eval c_test)
rc = qmckl_context_destroy(context);
assert (rc == QMCKL_SUCCESS);
return 0;
}
#+end_src
# -*- mode: org -*-
# vim: syntax=c