mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2024-11-09 07:33:59 +01:00
695 lines
22 KiB
Org Mode
695 lines
22 KiB
Org Mode
#+TITLE: Code examples
|
|
#+SETUPFILE: ../tools/theme.setup
|
|
#+INCLUDE: ../tools/lib.org
|
|
|
|
In this section, we provide hands-on examples to demonstrate the capabilities
|
|
of the QMCkl library. We furnish code samples in C, Fortran, and Python,
|
|
serving as exhaustive tutorials for effectively leveraging QMCkl.
|
|
For simplicity, we assume that the wave function parameters are stored in a
|
|
[[https://github.com/TREX-CoE/trexio][TREXIO]] file.
|
|
|
|
* Overlap matrix in the MO basis
|
|
|
|
The focal point of this example is the numerical evaluation of the overlap
|
|
matrix in the MO basis. Utilizing QMCkl, we approximate the MOs at
|
|
discrete grid points to compute the overlap matrix \( S_{ij} \) as follows:
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r})\, \phi_j(\mathbf{r}) \text{d}\mathbf{r} \approx
|
|
\sum_k \phi_i(\mathbf{r}_k)\, \phi_j(\mathbf{r}_k) \delta\mathbf{r}
|
|
\]
|
|
|
|
|
|
The code starts by reading a wave function from a TREXIO file. This is
|
|
accomplished using the ~qmckl_trexio_read~ function, which populates a
|
|
~qmckl_context~ with the necessary wave function parameters. The context
|
|
serves as the primary interface for interacting with the QMCkl library,
|
|
encapsulating the state and configurations of the system.
|
|
Subsequently, the code retrieves various attributes such as the number of
|
|
nuclei ~nucl_num~ and coordinates ~nucl_coord~.
|
|
These attributes are essential for setting up the integration grid.
|
|
|
|
The core of the example lies in the numerical computation of the overlap
|
|
matrix. To achieve this, the code employs a regular grid in three-dimensional
|
|
space, and the grid points are then populated into the ~qmckl_context~ using
|
|
the ~qmckl_set_point~ function.
|
|
|
|
The MO values at these grid points are computed using the
|
|
~qmckl_get_mo_basis_mo_value~ function. These values are then used to
|
|
calculate the overlap matrix through a matrix multiplication operation
|
|
facilitated by the ~qmckl_dgemm~ function.
|
|
|
|
The code is also instrumented to measure the execution time for the MO
|
|
value computation, providing an empirical assessment of the computational
|
|
efficiency. Error handling is robustly implemented at each stage to ensure the
|
|
reliability of the simulation.
|
|
|
|
In summary, this example serves as a holistic guide for leveraging the QMCkl
|
|
library, demonstrating its ease of use. It provides a concrete starting point
|
|
for researchers and developers interested in integrating QMCkl into their QMC
|
|
code.
|
|
|
|
** Python
|
|
:PROPERTIES:
|
|
:header-args: :tangle mo_ortho.py
|
|
:END:
|
|
|
|
In this example, we will compute numerically the overlap
|
|
between the molecular orbitals:
|
|
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
|
|
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
|
|
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
|
|
\]
|
|
\[
|
|
S_{ij} = \langle \phi_i | \phi_j \rangle
|
|
\sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle
|
|
\langle \mathbf{r}_k | \phi_j \rangle
|
|
\]
|
|
|
|
|
|
#+begin_src python :exports code
|
|
import numpy as np
|
|
import qmckl
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
|
|
First, we create a context for the QMCkl calculation, and load the
|
|
wave function stored in =h2o_5z.h5= inside it. It is a Hartree-Fock
|
|
determinant for the water molecule in the cc-pV5Z basis set.
|
|
|
|
#+begin_src python :exports code
|
|
trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5"
|
|
|
|
context = qmckl.context_create()
|
|
qmckl.trexio_read(context, trexio_filename)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: None
|
|
|
|
We now define the grid points $\mathbf{r}_k$ as a regular grid around the
|
|
molecule.
|
|
|
|
We fetch the nuclear coordinates from the context,
|
|
|
|
#+begin_src python :exports code
|
|
nucl_num = qmckl.get_nucleus_num(context)
|
|
|
|
nucl_charge = qmckl.get_nucleus_charge(context, nucl_num)
|
|
|
|
nucl_coord = qmckl.get_nucleus_coord(context, 'N', nucl_num*3)
|
|
nucl_coord = np.reshape(nucl_coord, (3, nucl_num))
|
|
|
|
for i in range(nucl_num):
|
|
print("%d %+f %+f %+f"%(int(nucl_charge[i]),
|
|
nucl_coord[i,0],
|
|
nucl_coord[i,1],
|
|
nucl_coord[i,2]) )
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
8 +0.000000 +0.000000 +0.000000
|
|
1 -1.430429 +0.000000 -1.107157
|
|
1 +1.430429 +0.000000 -1.107157
|
|
#+end_example
|
|
|
|
and compute the coordinates of the grid points:
|
|
|
|
#+begin_src python :exports code
|
|
nx = ( 120, 120, 120 )
|
|
shift = np.array([5.,5.,5.])
|
|
point_num = nx[0] * nx[1] * nx[2]
|
|
|
|
rmin = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) )
|
|
rmax = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) )
|
|
|
|
|
|
linspace = [ None for i in range(3) ]
|
|
step = [ None for i in range(3) ]
|
|
for a in range(3):
|
|
linspace[a], step[a] = np.linspace(rmin[a]-shift[a],
|
|
rmax[a]+shift[a],
|
|
num=nx[a],
|
|
retstep=True)
|
|
|
|
dr = step[0] * step[1] * step[2]
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
|
|
Now the grid is ready, we can create the list of grid points
|
|
$\mathbf{r}_k$ on which the MOs $\phi_i$ will be evaluated, and
|
|
transfer them to the QMCkl context:
|
|
|
|
#+begin_src python :exports code
|
|
point = []
|
|
for x in linspace[0]:
|
|
for y in linspace[1]:
|
|
for z in linspace[2]:
|
|
point += [ [x, y, z] ]
|
|
|
|
point = np.array(point)
|
|
point_num = len(point)
|
|
qmckl.set_point(context, 'N', point_num, np.reshape(point, (point_num*3)))
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: None
|
|
|
|
Then, we evaluate all the MOs at the grid points (and time the execution),
|
|
and thus obtain the matrix $M_{ki} = \langle \mathbf{r}_k | \phi_i \rangle =
|
|
\phi_i(\mathbf{r}_k)$.
|
|
|
|
#+begin_src python :exports code
|
|
import time
|
|
|
|
mo_num = qmckl.get_mo_basis_mo_num(context)
|
|
|
|
before = time.time()
|
|
mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
|
|
after = time.time()
|
|
|
|
mo_value = np.reshape( mo_value, (point_num, mo_num) ).T # Transpose to get mo_num x point_num
|
|
|
|
print("Number of MOs: ", mo_num)
|
|
print("Number of grid points: ", point_num)
|
|
print("Execution time : ", (after - before), "seconds")
|
|
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
Number of MOs: 201
|
|
Number of grid points: 1728000
|
|
Execution time : 5.577778577804565 seconds
|
|
#+end_example
|
|
|
|
and finally we compute the overlap between all the MOs as
|
|
$M.M^\dagger$.
|
|
|
|
#+begin_src python :exports code
|
|
overlap = mo_value @ mo_value.T * dr
|
|
print (overlap)
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
[[ 9.88693941e-01 2.34719693e-03 -1.50518232e-08 ... 3.12084178e-09
|
|
-5.81064929e-10 3.70130091e-02]
|
|
[ 2.34719693e-03 9.99509628e-01 3.18930040e-09 ... -2.46888958e-10
|
|
-1.06064273e-09 -7.65567973e-03]
|
|
[-1.50518232e-08 3.18930040e-09 9.99995073e-01 ... -5.84882580e-06
|
|
-1.21598117e-06 4.59036468e-08]
|
|
...
|
|
[ 3.12084178e-09 -2.46888958e-10 -5.84882580e-06 ... 1.00019107e+00
|
|
-2.03342837e-04 -1.36954855e-08]
|
|
[-5.81064929e-10 -1.06064273e-09 -1.21598117e-06 ... -2.03342837e-04
|
|
9.99262427e-01 1.18264754e-09]
|
|
[ 3.70130091e-02 -7.65567973e-03 4.59036468e-08 ... -1.36954855e-08
|
|
1.18264754e-09 8.97215950e-01]]
|
|
#+end_example
|
|
|
|
** C
|
|
In this example, electron-nucleus cusp fitting is added.
|
|
|
|
:PROPERTIES:
|
|
:header-args: :tangle mo_ortho.c
|
|
:END:
|
|
|
|
In this example, we will compute numerically the overlap
|
|
between the molecular orbitals:
|
|
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
|
|
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
|
|
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
|
|
\]
|
|
\[
|
|
S_{ij} = \langle \phi_i | \phi_j \rangle
|
|
\sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle
|
|
\langle \mathbf{r}_k | \phi_j \rangle
|
|
\]
|
|
|
|
We apply the cusp fitting procedure, so the MOs might deviate
|
|
slightly from orthonormality.
|
|
|
|
#+begin_src c :exports code
|
|
#include <qmckl.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const char* trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5";
|
|
qmckl_exit_code rc = QMCKL_SUCCESS;
|
|
#+end_src
|
|
|
|
First, we create a context for the QMCkl calculation, and load the
|
|
wave function stored in =h2o_5z.h5= inside it. It is a Hartree-Fock
|
|
determinant for the water molecule in the cc-pV5Z basis set.
|
|
|
|
#+begin_src c :exports code
|
|
qmckl_context context = qmckl_context_create();
|
|
|
|
rc = qmckl_trexio_read(context, trexio_filename, strlen(trexio_filename));
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error reading TREXIO file:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
#+end_src
|
|
|
|
We impose the electron-nucleus cusp fitting to occur when the
|
|
electrons are close to the nuclei. The critical distance
|
|
is 0.5 atomic units for hydrogens and 0.1 for the oxygen.
|
|
To identify which atom is an oxygen and which are hydrogens, we
|
|
fetch the nuclear charges from the context.
|
|
|
|
#+begin_src c :exports code
|
|
int64_t nucl_num;
|
|
|
|
rc = qmckl_get_nucleus_num(context, &nucl_num);
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error getting nucl_num:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
double nucl_charge[nucl_num];
|
|
|
|
rc = qmckl_get_nucleus_charge(context, &(nucl_charge[0]), nucl_num);
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error getting nucl_charge:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
double r_cusp[nucl_num];
|
|
|
|
for (size_t i=0 ; i<nucl_num ; ++i) {
|
|
|
|
switch ((int) nucl_charge[i]) {
|
|
|
|
case 1:
|
|
r_cusp[i] = 0.5;
|
|
break;
|
|
|
|
case 8:
|
|
r_cusp[i] = 0.1;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
rc = qmckl_set_mo_basis_r_cusp(context, &(r_cusp[0]), nucl_num);
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error setting r_cusp:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
#+end_src
|
|
|
|
|
|
We now define the grid points $\mathbf{r}_k$ as a regular grid around the
|
|
molecule.
|
|
We fetch the nuclear coordinates from the context,
|
|
|
|
#+begin_src c :exports code
|
|
double nucl_coord[nucl_num][3];
|
|
|
|
rc = qmckl_get_nucleus_coord(context, 'N', &(nucl_coord[0][0]), nucl_num*3);
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error getting nucl_coord:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
for (size_t i=0 ; i<nucl_num ; ++i) {
|
|
printf("%d %+f %+f %+f\n",
|
|
(int32_t) nucl_charge[i],
|
|
nucl_coord[i][0],
|
|
nucl_coord[i][1],
|
|
nucl_coord[i][2]);
|
|
}
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
8 +0.000000 +0.000000 +0.000000
|
|
1 -1.430429 +0.000000 -1.107157
|
|
1 +1.430429 +0.000000 -1.107157
|
|
#+end_example
|
|
|
|
and compute the coordinates of the grid points:
|
|
|
|
#+begin_src c :exports code
|
|
size_t nx[3] = { 120, 120, 120 };
|
|
double shift[3] = {5.,5.,5.};
|
|
int64_t point_num = nx[0] * nx[1] * nx[2];
|
|
|
|
double rmin[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
|
double rmax[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
|
|
|
for (size_t i=0 ; i<nucl_num ; ++i) {
|
|
for (int j=0 ; j<3 ; ++j) {
|
|
rmin[j] = nucl_coord[i][j] < rmin[j] ? nucl_coord[i][j] : rmin[j];
|
|
rmax[j] = nucl_coord[i][j] > rmax[j] ? nucl_coord[i][j] : rmax[j];
|
|
}
|
|
}
|
|
|
|
rmin[0] -= shift[0]; rmin[1] -= shift[1]; rmin[2] -= shift[2];
|
|
rmax[0] += shift[0]; rmax[1] += shift[1]; rmax[2] += shift[2];
|
|
|
|
double step[3];
|
|
|
|
double* linspace[3];
|
|
for (int i=0 ; i<3 ; ++i) {
|
|
|
|
linspace[i] = (double*) calloc( sizeof(double), nx[i] );
|
|
|
|
if (linspace[i] == NULL) {
|
|
fprintf(stderr, "Allocation failed (linspace)\n");
|
|
exit(1);
|
|
}
|
|
|
|
step[i] = (rmax[i] - rmin[i]) / ((double) (nx[i]-1));
|
|
|
|
for (size_t j=0 ; j<nx[i] ; ++j) {
|
|
linspace[i][j] = rmin[i] + j*step[i];
|
|
}
|
|
|
|
}
|
|
|
|
double dr = step[0] * step[1] * step[2];
|
|
#+end_src
|
|
|
|
Now the grid is ready, we can create the list of grid points
|
|
$\mathbf{r}_k$ on which the MOs $\phi_i$ will be evaluated, and
|
|
transfer them to the QMCkl context:
|
|
|
|
#+begin_src c :exports code
|
|
double* point = (double*) calloc(sizeof(double), 3*point_num);
|
|
|
|
if (point == NULL) {
|
|
fprintf(stderr, "Allocation failed (point)\n");
|
|
exit(1);
|
|
}
|
|
|
|
size_t m = 0;
|
|
for (size_t i=0 ; i<nx[0] ; ++i) {
|
|
for (size_t j=0 ; j<nx[1] ; ++j) {
|
|
for (size_t k=0 ; k<nx[2] ; ++k) {
|
|
|
|
point[m] = linspace[0][i];
|
|
m++;
|
|
|
|
point[m] = linspace[1][j];
|
|
m++;
|
|
|
|
point[m] = linspace[2][k];
|
|
m++;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
rc = qmckl_set_point(context, 'N', point_num, point, (point_num*3));
|
|
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error setting points:\n%s\n", qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: None
|
|
|
|
Then, we evaluate all the MOs at the grid points (and time the execution),
|
|
and thus obtain the matrix $M_{ki} = \langle \mathbf{r}_k | \phi_i
|
|
\rangle = \phi_i(\mathbf{r}_k)$.
|
|
|
|
#+begin_src c :exports code
|
|
|
|
int64_t mo_num;
|
|
rc = qmckl_get_mo_basis_mo_num(context, &mo_num);
|
|
|
|
long before, after;
|
|
struct timeval timecheck;
|
|
|
|
double* mo_value = (double*) calloc(sizeof(double), point_num*mo_num);
|
|
if (mo_value == NULL) {
|
|
fprintf(stderr, "Allocation failed (mo_value)\n");
|
|
exit(1);
|
|
}
|
|
|
|
gettimeofday(&timecheck, NULL);
|
|
before = (long)timecheck.tv_sec * 1000 + (long)timecheck.tv_usec / 1000;
|
|
|
|
rc = qmckl_get_mo_basis_mo_value(context, mo_value, point_num*mo_num);
|
|
if (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, "Error getting mo_value)\n");
|
|
exit(1);
|
|
}
|
|
|
|
gettimeofday(&timecheck, NULL);
|
|
after = (long)timecheck.tv_sec * 1000 + (long)timecheck.tv_usec / 1000;
|
|
|
|
printf("Number of MOs: %ld\n", mo_num);
|
|
printf("Number of grid points: %ld\n", point_num);
|
|
printf("Execution time : %f seconds\n", (after - before)*1.e-3);
|
|
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
Number of MOs: 201
|
|
Number of grid points: 1728000
|
|
Execution time : 5.608000 seconds
|
|
#+end_example
|
|
|
|
and finally we compute the overlap between all the MOs as
|
|
$M.M^\dagger$.
|
|
|
|
#+begin_src c :exports code
|
|
double* overlap = (double*) malloc (mo_num*mo_num*sizeof(double));
|
|
|
|
rc = qmckl_dgemm(context, 'N', 'T', mo_num, mo_num, point_num, dr,
|
|
mo_value, mo_num, mo_value, mo_num, 0.0,
|
|
overlap, mo_num);
|
|
|
|
for (size_t i=0 ; i<mo_num ; ++i) {
|
|
printf("%4ld", i);
|
|
for (size_t j=0 ; j<mo_num ; ++j) {
|
|
printf(" %f", overlap[i*mo_num+j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
}
|
|
#+end_src
|
|
|
|
#+begin_example
|
|
0 0.988765 0.002336 0.000000 -0.000734 0.000000 0.000530 0.000000 0.000446 0.000000 -0.000000 -0.000511 -0.000000 -0.000267 0.000000 0.000000 0.001007 0.000000 0.000168 -0.000000 -0.000000 -0.000670 -0.000000 0.000000 -0.000251 -0.000261 -0.000000 -0.000000 -0.000000 -0.000397 -0.000000 -0.000810 0.000000 0.000231 -0.000000 -0.000000 0.000000 -0.000000
|
|
...
|
|
200 0.039017 -0.013066 -0.000000 -0.001935 -0.000000 -0.003829 -0.000000 0.000996 -0.000000 0.000000 -0.003733 0.000000 0.000065 -0.000000 -0.000000 -0.002220 -0.000000 -0.001961 0.000000 0.000000 -0.004182 0.000000 -0.000000 -0.000165 -0.002445 0.000000 -0.000000 0.000000 0.001985 0.000000 0.001685 -0.000000 -0.002899 0.000000 0.000000 0.000000 -0.000000 0.002591 0.000000 -0.000000 0.000000 0.002385 0.000000 -0.011086 0.000000 -0.003885 0.000000 -0.000000 0.003602 -0.000000 0.000000 -0.003241 0.000000 0.000000 0.002613 -0.007344 -0.000000 -0.000000 0.000000 0.000017 0.000000 0.000000 0.000000 -0.008719 0.000000 -0.001358 -0.003233 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.003778 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.001190 0.000000 0.000000 -0.000000 0.005578 -0.000000 -0.001502 0.003899 -0.000000 -0.000000 0.000000 -0.003291 -0.001775 -0.000000 -0.002374 0.000000 -0.000000 -0.000000 -0.000000 -0.001290 -0.000000 0.002178 0.000000 0.000000 0.000000 -0.001252 0.000000 -0.000000 -0.000926 0.000000 -0.000000 -0.013130 -0.000000 0.012124 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.025194 0.000343 -0.000000 0.000000 -0.000000 -0.004421 0.000000 0.000000 -0.000599 -0.000000 0.005289 0.000000 -0.000000 0.012826 -0.000000 0.000000 0.006190 0.000000 0.000000 -0.000000 0.000000 -0.000321 0.000000 -0.000000 -0.000000 0.000000 -0.000000 0.001499 -0.006629 0.000000 0.000000 0.000000 -0.000000 0.008737 -0.000000 0.006880 0.000000 -0.001851 -0.000000 -0.000000 0.000000 -0.007464 0.000000 0.010298 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.000540 0.000000 -0.006616 -0.000000 0.000000 -0.002927 -0.000000 0.000000 0.010352 0.000000 -0.003103 -0.000000 -0.007640 -0.000000 -0.000000 0.005302 0.000000 0.000000 -0.000000 -0.000000 -0.010181 0.000000 -0.001108 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.000998 -0.009754 0.013562 0.000000 -0.000000 0.887510
|
|
#+end_example
|
|
|
|
* Fortran
|
|
** Checking errors
|
|
|
|
All QMCkl functions return an error code. A convenient way to handle
|
|
errors is to write an error-checking function that displays the
|
|
error in text format and exits the program.
|
|
|
|
#+NAME: qmckl_check_error
|
|
#+begin_src f90
|
|
subroutine qmckl_check_error(rc, message)
|
|
use qmckl
|
|
implicit none
|
|
integer(qmckl_exit_code), intent(in) :: rc
|
|
character(len=*) , intent(in) :: message
|
|
character(len=128) :: str_buffer
|
|
if (rc /= QMCKL_SUCCESS) then
|
|
print *, message
|
|
call qmckl_string_of_error(rc, str_buffer)
|
|
print *, str_buffer
|
|
call exit(rc)
|
|
end if
|
|
end subroutine qmckl_check_error
|
|
#+end_src
|
|
|
|
** Computing an atomic orbital on a grid
|
|
:PROPERTIES:
|
|
:header-args: :tangle ao_grid.f90
|
|
:END:
|
|
|
|
The following program, in Fortran, computes the values of an atomic
|
|
orbital on a regular 3-dimensional grid. The 100^3 grid points are
|
|
automatically defined, such that the molecule fits in a box with 5
|
|
atomic units in the borders.
|
|
|
|
This program uses the ~qmckl_check_error~ function defined above.
|
|
|
|
To use this program, run
|
|
|
|
#+begin_src bash :tangle no :exports code
|
|
$ ao_grid <trexio_file> <AO_id> <point_num>
|
|
#+end_src
|
|
|
|
|
|
#+begin_src f90 :noweb yes
|
|
<<qmckl_check_error>>
|
|
|
|
program ao_grid
|
|
use qmckl
|
|
implicit none
|
|
|
|
integer(qmckl_context) :: qmckl_ctx ! QMCkl context
|
|
integer(qmckl_exit_code) :: rc ! Exit code of QMCkl functions
|
|
|
|
character(len=128) :: trexio_filename
|
|
character(len=128) :: str_buffer
|
|
integer :: ao_id
|
|
integer :: point_num_x
|
|
|
|
integer(c_int64_t) :: nucl_num
|
|
double precision, allocatable :: nucl_coord(:,:)
|
|
|
|
integer(c_int64_t) :: point_num
|
|
integer(c_int64_t) :: ao_num
|
|
integer(c_int64_t) :: ipoint, i, j, k
|
|
double precision :: x, y, z, dr(3)
|
|
double precision :: rmin(3), rmax(3)
|
|
double precision, allocatable :: points(:,:)
|
|
double precision, allocatable :: ao_vgl(:,:,:)
|
|
#+end_src
|
|
|
|
Start by fetching the command-line arguments:
|
|
|
|
#+begin_src f90
|
|
if (iargc() /= 3) then
|
|
print *, 'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'
|
|
call exit(-1)
|
|
end if
|
|
call getarg(1, trexio_filename)
|
|
call getarg(2, str_buffer)
|
|
read(str_buffer, *) ao_id
|
|
call getarg(3, str_buffer)
|
|
read(str_buffer, *) point_num_x
|
|
|
|
if (point_num_x < 0 .or. point_num_x > 300) then
|
|
print *, 'Error: 0 < point_num < 300'
|
|
call exit(-1)
|
|
end if
|
|
#+end_src
|
|
|
|
Create the QMCkl context and initialize it with the wave function
|
|
present in the TREXIO file:
|
|
|
|
#+begin_src f90
|
|
qmckl_ctx = qmckl_context_create()
|
|
rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename)))
|
|
call qmckl_check_error(rc, 'Read TREXIO')
|
|
#+end_src
|
|
|
|
We need to check that ~ao_id~ is in the range, so we get the total
|
|
number of AOs from QMCkl:
|
|
|
|
#+begin_src f90
|
|
rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
|
|
call qmckl_check_error(rc, 'Getting ao_num')
|
|
|
|
if (ao_id < 0 .or. ao_id > ao_num) then
|
|
print *, 'Error: 0 < ao_id < ', ao_num
|
|
call exit(-1)
|
|
end if
|
|
#+end_src
|
|
|
|
Now we will compute the limits of the box in which the molecule fits.
|
|
For that, we first need to ask QMCkl the coordinates of nuclei.
|
|
|
|
#+begin_src f90
|
|
rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
|
|
call qmckl_check_error(rc, 'Get nucleus num')
|
|
|
|
allocate( nucl_coord(3, nucl_num) )
|
|
rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num)
|
|
call qmckl_check_error(rc, 'Get nucleus coord')
|
|
#+end_src
|
|
|
|
We now compute the coordinates of opposite points of the box, and
|
|
the distance between points along the 3 directions:
|
|
|
|
#+begin_src f90
|
|
rmin(1) = minval( nucl_coord(1,:) ) - 5.d0
|
|
rmin(2) = minval( nucl_coord(2,:) ) - 5.d0
|
|
rmin(3) = minval( nucl_coord(3,:) ) - 5.d0
|
|
|
|
rmax(1) = maxval( nucl_coord(1,:) ) + 5.d0
|
|
rmax(2) = maxval( nucl_coord(2,:) ) + 5.d0
|
|
rmax(3) = maxval( nucl_coord(3,:) ) + 5.d0
|
|
|
|
dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1)
|
|
#+end_src
|
|
|
|
We now produce the list of point coordinates where the AO will be
|
|
evaluated:
|
|
|
|
#+begin_src f90
|
|
point_num = point_num_x**3
|
|
allocate( points(point_num, 3) )
|
|
ipoint=0
|
|
z = rmin(3)
|
|
do k=1,point_num_x
|
|
y = rmin(2)
|
|
do j=1,point_num_x
|
|
x = rmin(1)
|
|
do i=1,point_num_x
|
|
ipoint = ipoint+1
|
|
points(ipoint,1) = x
|
|
points(ipoint,2) = y
|
|
points(ipoint,3) = z
|
|
x = x + dr(1)
|
|
end do
|
|
y = y + dr(2)
|
|
end do
|
|
z = z + dr(3)
|
|
end do
|
|
#+end_src
|
|
|
|
We give the points to QMCkl:
|
|
|
|
#+begin_src f90
|
|
rc = qmckl_set_point(qmckl_ctx, 'T', point_num, points, size(points)*1_8 )
|
|
call qmckl_check_error(rc, 'Setting points')
|
|
#+end_src
|
|
|
|
We allocate the space required to retrieve the values, gradients and
|
|
Laplacian of all AOs, and ask to retrieve the values of the
|
|
AOs computed at the point positions.
|
|
|
|
#+begin_src f90
|
|
allocate( ao_vgl(ao_num, 5, point_num) )
|
|
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
|
|
call qmckl_check_error(rc, 'Setting points')
|
|
#+end_src
|
|
|
|
We finally print the value and Laplacian of the AO:
|
|
|
|
#+begin_src f90
|
|
do ipoint=1, point_num
|
|
print '(3(F10.6,X),2(E20.10,X))', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint), ao_vgl(ao_id,5,ipoint)
|
|
end do
|
|
#+end_src
|
|
|
|
#+begin_src f90
|
|
deallocate( nucl_coord, points, ao_vgl )
|
|
end program ao_grid
|
|
#+end_src
|
|
|