* Added chameleon support. * Fixed bug in adjugate4. * Better call to adjugate function. * Removed debug print.
47 KiB
BLAS functions
Matrix operations
qmckl_dgemm
Matrix multiplication:
\[ C_{ij} = \beta C_{ij} + \alpha \sum_{k} A_{ik} \cdot B_{kj} \]
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
TransA |
char |
in | 'T' is transposed |
TransB |
char |
in | 'T' is transposed |
m |
int64_t |
in | Number of rows of the input matrix |
n |
int64_t |
in | Number of columns of the input matrix |
k |
int64_t |
in | Number of columns of the input matrix |
alpha |
double |
in | Number of columns of the input matrix |
A |
double[][lda] |
in | Array containing the matrix $A$ |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
in | Array containing the matrix $B$ |
ldb |
int64_t |
in | Leading dimension of array B |
beta |
double |
in | Array containing the matrix $B$ |
C |
double[][ldc] |
out | Array containing the matrix $B$ |
ldc |
int64_t |
in | Leading dimension of array B |
Requirements:
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
k > 0
lda >= m
ldb >= n
ldc >= n
A
is allocated with at least $m \times k \times 8$ bytesB
is allocated with at least $k \times n \times 8$ bytesC
is allocated with at least $m \times n \times 8$ bytes
qmckl_exit_code qmckl_dgemm (
const qmckl_context context,
const char TransA,
const char TransB,
const int64_t m,
const int64_t n,
const int64_t k,
const double alpha,
const double* A,
const int64_t lda,
const double* B,
const int64_t ldb,
const double beta,
double* const C,
const int64_t ldc );
integer function qmckl_dgemm_f(context, TransA, TransB, &
m, n, k, alpha, A, LDA, B, LDB, beta, C, LDC) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
character , intent(in) :: TransA, TransB
integer*8 , intent(in) :: m, n, k
double precision , intent(in) :: alpha, beta
integer*8 , intent(in) :: lda
double precision , intent(in) :: A(lda,*)
integer*8 , intent(in) :: ldb
double precision , intent(in) :: B(ldb,*)
integer*8 , intent(in) :: ldc
double precision , intent(out) :: C(ldc,*)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (m <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (n <= 0_8) then
info = QMCKL_INVALID_ARG_5
return
endif
if (k <= 0_8) then
info = QMCKL_INVALID_ARG_6
return
endif
if (LDA <= 0) then
info = QMCKL_INVALID_ARG_9
return
endif
if (LDB <= 0) then
info = QMCKL_INVALID_ARG_11
return
endif
if (LDC <= 0) then
info = QMCKL_INVALID_ARG_14
return
endif
call dgemm(transA, transB, int(m,4), int(n,4), int(k,4), &
alpha, A, int(LDA,4), B, int(LDB,4), beta, C, int(LDC,4))
end function qmckl_dgemm_f
qmckl_adjugate
Given a matrix $\mathbf{A}$, the adjugate matrix $\text{adj}(\mathbf{A})$ is the transpose of the cofactors matrix of $\mathbf{A}$.
\[ \mathbf{B} = \text{adj}(\mathbf{A}) = \text{det}(\mathbf{A}) \, \mathbf{A}^{-1} \]
See also: https://en.wikipedia.org/wiki/Adjugate_matrix
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
n |
int64_t |
in | Number of rows and columns of the input matrix |
A |
double[][lda] |
in | Array containing the $n \times n$ matrix $A$ |
lda |
int64_t |
in | Leading dimension of array A |
B |
double[][ldb] |
out | Adjugate of $A$ |
ldb |
int64_t |
in | Leading dimension of array B |
det_l |
double |
inout | determinant of $A$ |
Requirements:
context
is notQMCKL_NULL_CONTEXT
n > 0
lda >= m
A
is allocated with at least $m \times m \times 8$ bytesldb >= m
B
is allocated with at least $m \times m \times 8$ bytes
qmckl_exit_code qmckl_adjugate (
const qmckl_context context,
const int64_t n,
const double* A,
const int64_t lda,
double* const B,
const int64_t ldb,
double* det_l );
For small matrices (≤ 5× 5), we use specialized routines for performance motivations. For larger sizes, we rely on the LAPACK library.
integer function qmckl_adjugate_f(context, na, A, LDA, B, ldb, det_l) &
result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
double precision, intent(in) :: A (LDA,*)
integer*8, intent(in) :: LDA
double precision, intent(out) :: B (LDB,*)
integer*8, intent(in) :: LDB
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
integer :: i,j
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (na <= 0_8) then
info = QMCKL_INVALID_ARG_2
return
endif
if (LDA <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (LDA < na) then
info = QMCKL_INVALID_ARG_4
return
endif
select case (na)
case (5)
call adjugate5(A,LDA,B,LDB,na,det_l)
case (4)
call adjugate4(A,LDA,B,LDB,na,det_l)
case (3)
call adjugate3(A,LDA,B,LDB,na,det_l)
case (2)
call adjugate2(A,LDA,B,LDB,na,det_l)
case (1)
det_l = a(1,1)
b(1,1) = 1.d0
case default
call adjugate_general(context, na, A, LDA, B, LDB, det_l)
end select
end function qmckl_adjugate_f
subroutine adjugate_general(context, na, A, LDA, B, LDB, det_l)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
double precision, intent(in) :: A (LDA,na)
integer*8, intent(in) :: LDA
double precision, intent(out) :: B (LDB,na)
integer*8, intent(in) :: LDB
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: work(LDA*max(na,64))
integer :: inf
integer :: ipiv(LDA)
integer :: lwork
integer(8) :: i, j
We first copy the array A
into array B
.
B(1:na,1:na) = A(1:na,1:na)
Then, we compute the LU factorization $LU=A$
using the dgetrf
routine.
call dgetrf(na, na, B, LDB, ipiv, inf )
By convention, the determinant of $L$ is equal to one, so the determinant of $A$ is equal to the determinant of $U$, which is simply computed as the product of its diagonal elements.
det_l = 1.d0
j=0_8
do i=1,na
j = j+min(abs(ipiv(i)-i),1)
det_l = det_l*B(i,i)
enddo
As dgetrf
returns $PLU=A$ where $P$ is a permutation matrix, the
sign of the determinant is computed as $-1^m$ where $m$ is the
number of permutations.
if (iand(j,1_8) /= 0_8) then
det_l = -det_l
endif
Then, the inverse of $A$ is computed using dgetri
:
lwork = SIZE(work)
call dgetri(na, B, LDB, ipiv, work, lwork, inf )
and the adjugate matrix is computed as the product of the determinant with the inverse:
B(:,:) = B(:,:)*det_l
end subroutine adjugate_general