1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-11-19 12:32:40 +01:00
qmckl/org/qmckl_jastrow.org
2021-07-05 14:37:09 +05:30

39 KiB

Jastrow Factor

Functions for the calculation of the Jastrow factor \(f_{ee}, f_{en}, f_{een}\). These are stored in the factor_ee, factor_en, and factor_een variables. The jastrow structure contains all the information required to build these factors along with their derivatives.

Context

The following data stored in the context:

int32_t uninitialized in Keeps bit set for uninitialized data
int64_t aord_num in The number of a coeffecients
int64_t bord_num in The number of b coeffecients
int64_t cord_num in The number of c coeffecients
uint64_t type_nucl_num in Number of Nucleii types
double aord_vector[aord_num + 1][type_nucl_num] in Order of a polynomial coefficients
double bord_vector[bord_num + 1] in Order of b polynomial coefficients
double cord_vector[cord_num][type_nucl_num] in Order of c polynomial coefficients
double factor_ee out Jastrow factor: electron-electron part
double factor_ee_date out Jastrow factor: electron-electron part
double factor_en out Jastrow factor: electron-nucleus part
double factor_en_date out Jastrow factor: electron-nucleus part
double factor_een out Jastrow factor: electron-electron-nucleus part
double factor_een_date out Jastrow factor: electron-electron-nucleus part
double factor_ee_deriv_e[4][nelec] out Derivative of the Jastrow factor: electron-electron-nucleus part
double factor_en_deriv_e[4][nelec] out Derivative of the Jastrow factor: electron-electron-nucleus part
double factor_een_deriv_e[4][nelec] out Derivative of the Jastrow factor: electron-electron-nucleus part

computed data:

int64_t dim_cord_vec Number of unique C coefficients
double asymp_jasb[2] Asymptotic component
int64_t asymp_jasb_date Asymptotic component
double coord_vect_full[dim_cord_vec][nucl_num] vector of non-zero coefficients
int64_t lkpm_of_cindex[4][dim_cord_vec] Transform l,k,p, and m into consecutive indices
double tmp_c[elec_num][nucl_num][ncord + 1][ncord] vector of non-zero coefficients
double dtmp_c[elec_num][4][nucl_num][ncord + 1][ncord] vector of non-zero coefficients

For H2O we have the following data:

import numpy as np

type_nucl_num = 1
aord_num     = 5
bord_num     = 5
cord_num     = 23
dim_cord_vec = 23
aord_vector = [ 0.000000000000000E+000,  0.000000000000000E+000, -0.380512000000000E+000,
-0.157996000000000E+000, -3.155800000000000E-002,  2.151200000000000E-002]
bord_vector = [ 0.500000000000000E-000,  0.153660000000000E-000,  6.722620000000000E-002,
2.157000000000000E-002,  7.309600000000000E-003,  2.866000000000000E-003]
cord_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 
9.486000000000000E-003, -4.205000000000000E-003,  0.426325800000000E-000,
8.288150000000000E-002,  5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002,  5.143510000000000E-002,  9.250000000000000E-004,
-4.099100000000000E-003,  4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002,  6.106710000000000E-003 ]
cord_vector_full = [
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 
9.486000000000000E-003, -4.205000000000000E-003,  0.426325800000000E-000,
8.288150000000000E-002,  5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002,  5.143510000000000E-002,  9.250000000000000E-004,
-4.099100000000000E-003,  4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002,  6.106710000000000E-003 ],
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000, 
9.486000000000000E-003, -4.205000000000000E-003,  0.426325800000000E-000,
8.288150000000000E-002,  5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002,  5.143510000000000E-002,  9.250000000000000E-004,
-4.099100000000000E-003,  4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002,  6.106710000000000E-003 ],
]
lkpm_of_cindex = [[1 , 1 , 2 , 0], 
       [0 , 0 , 2 , 1],
       [1 , 2 , 3 , 0],
       [2 , 1 , 3 , 0],
       [0 , 1 , 3 , 1],
       [1 , 0 , 3 , 1],
       [1 , 3 , 4 , 0],
       [2 , 2 , 4 , 0],
       [0 , 2 , 4 , 1],
       [3 , 1 , 4 , 0],
       [1 , 1 , 4 , 1],
       [2 , 0 , 4 , 1],
       [0 , 0 , 4 , 2],
       [1 , 4 , 5 , 0],
       [2 , 3 , 5 , 0],
       [0 , 3 , 5 , 1],
       [3 , 2 , 5 , 0],
       [1 , 2 , 5 , 1],
       [4 , 1 , 5 , 0],
       [2 , 1 , 5 , 1],
       [0 , 1 , 5 , 2],
       [3 , 0 , 5 , 1],
       [1 , 0 , 5 , 2]]

Data structure

typedef struct qmckl_jastrow_struct{
int32_t  uninitialized;
int64_t  aord_num;
int64_t  bord_num;
int64_t  cord_num;
int64_t  type_nucl_num;
int64_t  asymp_jasb_date;
int64_t  tmp_c_date;
int64_t  dtmp_c_date;
int64_t  factor_ee_date;
int64_t  factor_en_date;
int64_t  factor_een_date;
double * aord_vector;
double * bord_vector;
double * cord_vector;
double * asymp_jasb;
double * factor_ee;
double * factor_en;
double * factor_een;
double * factor_ee_deriv_e;
double * factor_en_deriv_e;
double * factor_een_deriv_e;
int64_t  dim_cord_vec;
double * coord_vect_full;
double * tmp_c;
double * dtmp_c;
bool     provided;
char *   type;
} qmckl_jastrow_struct;

The uninitialized integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and provided == true. Some values are initialized by default, and are not concerned by this mechanism.

qmckl_exit_code qmckl_init_jastrow(qmckl_context context);
qmckl_exit_code qmckl_init_jastrow(qmckl_context context) {

if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
 return false;
}

qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);

ctx->jastrow.uninitialized = (1 << 5) - 1;

/* Default values */

return QMCKL_SUCCESS;
}

Access functions

Along with these core functions, calculation of the jastrow factor requires the following additional information to be set:

When all the data for the AOs have been provided, the following function returns true.

bool      qmckl_jastrow_provided           (const qmckl_context context);

#+NAME:post

Initialization functions

To prepare for the Jastrow and its derivative, all the following functions need to be called.

qmckl_exit_code  qmckl_set_jastrow_ord_num       (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num);
qmckl_exit_code  qmckl_set_jastrow_type_nucl_num  (qmckl_context context, const int64_t type_nucl_num);
qmckl_exit_code  qmckl_set_jastrow_aord_vector   (qmckl_context context, const double * aord_vector);
qmckl_exit_code  qmckl_set_jastrow_bord_vector   (qmckl_context context, const double * bord_vector);
qmckl_exit_code  qmckl_set_jastrow_cord_vector   (qmckl_context context, const double * cord_vector);
qmckl_exit_code  qmckl_set_jastrow_dependencies  (qmckl_context context);

#+NAME:pre2

#+NAME:post2

When the required information is completely entered, other data structures are computed to accelerate the calculations. The intermediates factors are precontracted using BLAS LEVEL 3 operations for an optimal FLOP count.

Test

/* Reference input data */
int64_t walk_num      = n2_walk_num;
int64_t elec_num      = n2_elec_num;
int64_t elec_up_num   = n2_elec_up_num;
int64_t elec_dn_num   = n2_elec_dn_num;
double  rescale_factor_kappa_ee   = 1.0;
double  rescale_factor_kappa_en   = 1.0;
double  nucl_rescale_factor_kappa = 1.0;
double* elec_coord    = &(n2_elec_coord[0][0][0]);

const double*   nucl_charge   = n2_charge;
int64_t  nucl_num      = n2_nucl_num;
double*  charge        = n2_charge;
double*  nucl_coord    = &(n2_nucl_coord[0][0]);

/* Provide Electron data */

qmckl_exit_code rc;

assert(!qmckl_electron_provided(context));

int64_t n;
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);


rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_electron_provided(context));

rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_up_num);

rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_dn_num);

rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_num);

double k_ee = 0.;
double k_en = 0.;
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == 1.0);

rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == 1.0);

rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == rescale_factor_kappa_ee);

rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == rescale_factor_kappa_en);


int64_t w;
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_NOT_PROVIDED);


rc = qmckl_set_electron_walk_num (context, walk_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_SUCCESS);
assert(w == walk_num);

assert(qmckl_electron_provided(context));

rc = qmckl_set_electron_coord (context, 'N', elec_coord);
assert(rc == QMCKL_SUCCESS);

double elec_coord2[walk_num*3*elec_num];

rc = qmckl_get_electron_coord (context, 'N', elec_coord2);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*elec_num ; ++i) {
assert( elec_coord[i] == elec_coord2[i] );
}


/* Provide Nucleus data */

assert(!qmckl_nucleus_provided(context));

rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);


rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));

rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == nucl_num);

double k;
rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == 1.0);


rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == nucl_rescale_factor_kappa);

double nucl_coord2[3*nucl_num];

rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]));
assert(rc == QMCKL_SUCCESS);

assert(!qmckl_nucleus_provided(context));

rc = qmckl_get_nucleus_coord (context, 'N', nucl_coord2);
assert(rc == QMCKL_SUCCESS);
for (size_t k=0 ; k<3 ; ++k) {
for (size_t i=0 ; i<nucl_num ; ++i) {
 assert( nucl_coord[nucl_num*k+i] == nucl_coord2[3*i+k] );
}
}

rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2);
assert(rc == QMCKL_SUCCESS);
for (size_t i=0 ; i<3*nucl_num ; ++i) {
assert( nucl_coord[i] == nucl_coord2[i] );
}

double nucl_charge2[nucl_num];

rc = qmckl_get_nucleus_charge(context, nucl_charge2);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_set_nucleus_charge(context, nucl_charge);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_nucleus_charge(context, nucl_charge2);
assert(rc == QMCKL_SUCCESS);
for (size_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_charge[i] == nucl_charge2[i] );
}
assert(qmckl_nucleus_provided(context));

Computation

The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored.

Asymptotic component for \(J_{ee}\)

Calculate the asymptotic component asymp_jasb to be substracted from the final electron-electron jastrow factor \(f_{ee}\). The asymptotic componenet is calculated via the bord_vector and the electron-electron rescale factor rescale_factor_kappa.

\[ J_{asymp} = \frac{b_1 \kappa^-1}{1 + b_2 \kappa^-1} \]

Get

qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb);

Compute

qmckl_context context in Global state
int64_t bord_num in Number of electrons
double bord_vector[bord_num + 1] in Number of walkers
double rescale_factor_kappa_ee in Electron coordinates
double asymp_jasb[2] out Electron-electron distances
integer function qmckl_compute_asymp_jasb_f(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) &
 result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in)  :: context
integer*8             , intent(in)  :: bord_num
double precision      , intent(in)  :: bord_vector(bord_num)
double precision      , intent(in)  :: rescale_factor_kappa_ee
double precision      , intent(out) :: asymp_jasb(2)

integer*8 :: i, p
double precision   :: kappa_inv, x, asym_one
kappa_inv = 1.0d0 / rescale_factor_kappa_ee

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif
print *,"In Compute 1", asym_one

if (bord_num <= 0) then
 info = QMCKL_INVALID_ARG_2
 return
endif
print *,"In Compute 2", asym_one

asym_one = bord_vector(1) * kappa_inv / (1.0d0 + bord_vector(2) * kappa_inv)
asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/)

do i = 1, 2
 x = kappa_inv
 do p = 2, bord_num
    x = x * kappa_inv
    asymp_jasb(i) = asymp_jasb(i) + bord_vector(p + 1) * x 
 end do
end do

end function qmckl_compute_asymp_jasb_f
qmckl_exit_code qmckl_compute_asymp_jasb (
const qmckl_context context,
const int64_t bord_num,
const double* bord_vector,
const double rescale_factor_kappa_ee,
double* const asymp_jasb );

Test

assert(qmckl_electron_provided(context));

double* aord_vector = &(n2_aord_vector[0][0]);
double* bord_vector = &(n2_bord_vector[0]);
double* cord_vector = &(n2_cord_vector[0][0]);

/* Initialize the Jastrow data */
rc = qmckl_init_jastrow(context);
assert(!qmckl_jastrow_provided(context));

/* Set the data */
rc = qmckl_set_jastrow_ord_num(context, n2_aord_num, n2_bord_num, n2_cord_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_type_nucl_num(context, n2_type_nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_aord_vector(context, aord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_cord_vector(context, cord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_dependencies(context);
assert(rc == QMCKL_SUCCESS);

/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));

double asymp_jasb[2];
rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb);

// calculate asymp_jasb
assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12);
assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);