62 KiB
Sherman-Morrison-Woodbury
- Headers
- Helper Functions
- Naïve Sherman-Morrison
- Woodbury 2x2
- Woodbury 3x3
- Sherman-Morrison with update splitting
- Woodbury 2x2 with Sherman-Morrison and update splitting
- Woodbury 3x3 with Sherman-Morrison and update splitting
- Woodbury 3x3 and 2x2 with Sherman-Morrison and update splitting
- End of files
Low- and high-level functions that use the Sherman-Morrison and Woodbury matrix inversion formulas to update the inverse of a non-singualr matrix
Headers
#include "qmckl.h"
#include "assert.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
int main() {
qmckl_context context;
context = qmckl_context_create();
qmckl_exit_code rc;
Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels. These functions should only be used in the context of these kernels.
qmckl_slagel_splitting
This function is used to set the threshold value that is used in the kernels to determine if a matrix is invertable or not. In the Sherman-Morrison kernels this is determined by comparing the denominator in the Sherman-Morrison formula to the value set in threshold. If the value is smaller than the threshold value it means the matrix is not invertable. In the Woodbury kernels the threshold value is compared with the value of the determinant of the update matrix.
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the rank-1 updates |
uint64_t | Updates_index[N_updates] | in | Array containing positions of the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse Slater-matrix |
double | later_updates[Dim * N_updates] | inout | Array containing the split updates for later |
uint64_t | later_index[N_updates] | inout | Array containing the positions of the split updates for later |
uint64_t | later | inout | Number of split updates for later |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_slagel_splitting_c (
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv,
double* later_updates,
uint64_t* later_index,
uint64_t* later );
Source Fortran
Source C
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
qmckl_exit_code qmckl_slagel_splitting_c(uint64_t Dim,
uint64_t N_updates,
const double *Updates,
const uint64_t *Updates_index,
const double breakdown,
double *Slater_inv,
double *later_updates,
uint64_t *later_index,
uint64_t *later) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called slagel_splitting with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = S^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
// U_l = U_l / 2 (do the split)
for (uint64_t i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x S^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
Performance
Naïve Sherman-Morrison
qmckl_sherman_morrison
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_sherman_morrison_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_f(context, Dim, N_updates, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison(context, Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_sherman_morrison_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG
// std::cerr << "Called qmckl_sherman_morrison with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = A^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
return QMCKL_FAILURE;
}
double iden = 1 / den;
// D = v^T x A^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// A^{-1} = A^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
Performance
Woodbury 2x2
This is the Woodbury 3x3 kernel.
qmckl_woodbury_2
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
double | Updates[2*Dim] | in | Array containing the updates |
uint64_t | Updates_index[2] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_woodbury_2_c (
const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_woodbury_2_f(context, Dim, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim
integer*8 , intent(in) :: Updates_index(2)
real*8 , intent(in) :: Updates(2*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_woodbury_2_f
info = qmckl_woodbury_2(context, Dim, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_woodbury_2_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_woodbury_2_c(const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
/*
C := S^{-1} * U, dim x 2
B := 1 + V * C, 2 x 2
D := V * S^{-1}, 2 x dim
*/
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called Woodbury 2x2 kernel" << std::endl;
// #endif
const uint64_t row1 = (Updates_index[0] - 1);
const uint64_t row2 = (Updates_index[1] - 1);
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[2 * Dim];
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < 2; j++) {
C[i * 2 + j] = 0;
for (uint64_t k = 0; k < Dim; k++) {
C[i * 2 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute B = 1 + V * C
const double B0 = C[row1 * 2] + 1;
const double B1 = C[row1 * 2 + 1];
const double B2 = C[row2 * 2];
const double B3 = C[row2 * 2 + 1] + 1;
// Check if determinant of inverted matrix is not zero
double det = B0 * B3 - B1 * B2;
if (fabs(det) < breakdown) {
return QMCKL_FAILURE;
}
// Compute B^{-1} with explicit formula for 2x2 inversion
double Binv[4], idet = 1.0 / det;
Binv[0] = idet * B3;
Binv[1] = -1.0 * idet * B1;
Binv[2] = -1.0 * idet * B2;
Binv[3] = idet * B0;
// Compute tmp = B^{-1} x (V.S^{-1})
double tmp[2 * Dim];
for (uint64_t i = 0; i < 2; i++) {
for (uint64_t j = 0; j < Dim; j++) {
tmp[i * Dim + j] = Binv[i * 2] * Slater_inv[row1 * Dim + j];
tmp[i * Dim + j] += Binv[i * 2 + 1] * Slater_inv[row2 * Dim + j];
}
}
// Compute (S + U V)^{-1} = S^{-1} - C x tmp
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
Slater_inv[i * Dim + j] -= C[i * 2] * tmp[j];
Slater_inv[i * Dim + j] -= C[i * 2 + 1] * tmp[Dim + j];
}
}
return QMCKL_SUCCESS;
}
Performance
Woodbury 3x3
This is the Woodbury 3x3 kernel.
qmckl_woodbury_3
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
double | Updates[3*Dim] | in | Array containing the updates |
uint64_t | Updates_index[3] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_woodbury_3_c (
const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_woodbury_3_f(context, Dim, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim
integer*8 , intent(in) :: Updates_index(3)
real*8 , intent(in) :: Updates(3*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_woodbury_3_f
info = qmckl_woodbury_3(context, Dim, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_woodbury_3_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_woodbury_3_c(const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
/*
C := S^{-1} * U, dim x 3
B := 1 + V * C, 3 x 3
D := V * S^{-1}, 3 x dim
,*/
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called Woodbury 3x3 kernel" << std::endl;
// #endif
const uint64_t row1 = (Updates_index[0] - 1);
const uint64_t row2 = (Updates_index[1] - 1);
const uint64_t row3 = (Updates_index[2] - 1);
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[3 * Dim];
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < 3; j++) {
C[i * 3 + j] = 0;
for (uint64_t k = 0; k < Dim; k++) {
C[i * 3 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute B = 1 + V.C
const double B0 = C[row1 * 3] + 1;
const double B1 = C[row1 * 3 + 1];
const double B2 = C[row1 * 3 + 2];
const double B3 = C[row2 * 3];
const double B4 = C[row2 * 3 + 1] + 1;
const double B5 = C[row2 * 3 + 2];
const double B6 = C[row3 * 3];
const double B7 = C[row3 * 3 + 1];
const double B8 = C[row3 * 3 + 2] + 1;
// Check if determinant of B is not too close to zero
double det;
det = B0 * (B4 * B8 - B5 * B7) - B1 * (B3 * B8 - B5 * B6) +
B2 * (B3 * B7 - B4 * B6);
if (fabs(det) < breakdown) {
return QMCKL_FAILURE;
}
// Compute B^{-1} with explicit formula for 3x3 inversion
double Binv[9], idet = 1.0 / det;
Binv[0] = (B4 * B8 - B7 * B5) * idet;
Binv[1] = -(B1 * B8 - B7 * B2) * idet;
Binv[2] = (B1 * B5 - B4 * B2) * idet;
Binv[3] = -(B3 * B8 - B6 * B5) * idet;
Binv[4] = (B0 * B8 - B6 * B2) * idet;
Binv[5] = -(B0 * B5 - B3 * B2) * idet;
Binv[6] = (B3 * B7 - B6 * B4) * idet;
Binv[7] = -(B0 * B7 - B6 * B1) * idet;
Binv[8] = (B0 * B4 - B3 * B1) * idet;
// Compute tmp = B^{-1} x (V.S^{-1})
double tmp[3 * Dim];
for (uint64_t i = 0; i < 3; i++) {
for (uint64_t j = 0; j < Dim; j++) {
tmp[i * Dim + j] = Binv[i * 3] * Slater_inv[row1 * Dim + j];
tmp[i * Dim + j] += Binv[i * 3 + 1] * Slater_inv[row2 * Dim + j];
tmp[i * Dim + j] += Binv[i * 3 + 2] * Slater_inv[row3 * Dim + j];
}
}
// Compute (S + U V)^{-1} = S^{-1} - C x tmp
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
Slater_inv[i * Dim + j] -= C[i * 3] * tmp[j];
Slater_inv[i * Dim + j] -= C[i * 3 + 1] * tmp[Dim + j];
Slater_inv[i * Dim + j] -= C[i * 3 + 2] * tmp[2 * Dim + j];
}
}
return QMCKL_SUCCESS;
}
Performance…
Sherman-Morrison with update splitting
This is like naïve Sherman-Morrising, but whenever a denominator is found that is too close to zero the update is split in half. Then one half is applied immediately and the other have is ket for later. When all the updates have been processed, the list of split updates that have been kept for later are processed. If again applying an update results in a denominator that is too close to zero, it is split in half again. One half is applied immediately and one half is kept for later. The algorithm is done when no more updates have been kept for later. This recursion will always end in a finite number of steps, unless the last original update causes a singular Slater-matrix.
qmckl_sherman_morrison_splitting
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_sherman_morrison_splitting_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_splitting_f(context, Dim, N_updates, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
info = qmckl_sherman_morrison_splitting(context, Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_sherman_morrison_splitting_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_splitting_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_splitting with " << N_updates << " updates" << std::endl;
// #endif
qmckl_context local_context;
local_context = qmckl_context_create();
qmckl_exit_code rc;
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
rc = qmckl_slagel_splitting_c(Dim, N_updates, Updates, Updates_index,
breakdown, Slater_inv, later_updates, later_index, &later);
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later,
later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
Woodbury 2x2 with Sherman-Morrison and update splitting
This is like naïve Sherman-Morrising, but whenever a denominator is found that is too close to zero the update is split in half. Then one half is applied immediately and the other have is ket for later. When all the updates have been processed, the list of split updates that have been kept for later are processed. If again applying an update results in a denominator that is too close to zero, it is split in half again. One half is applied immediately and one half is kept for later. The algorithm is done when no more updates have been kept for later. This recursion will always end in a finite number of steps, unless the last original update causes a singular Slater-matrix.
qmckl_sherman_morrison_smw2s
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_sherman_morrison_smw2s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw2s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
info = qmckl_sherman_morrison_smw2s (context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw2s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw2s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_2 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_context local_context;
local_context = qmckl_context_create();
qmckl_exit_code rc;
uint64_t n_of_2blocks = N_updates / 2;
uint64_t remainder = N_updates % 2;
uint64_t length_2block = 2 * Dim;
// Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with
// Woodbury 2x2 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_2blocks > 0) {
for (uint64_t i = 0; i < n_of_2blocks; i++) {
double *Updates_2block = &Updates[i * length_2block];
uint64_t *Updates_index_2block = &Updates_index[i * 2];
rc = qmckl_woodbury_2_c(local_context, Dim, Updates_2block, Updates_index_2block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder == 1) { // Apply last remaining update with slagel_splitting
double *Updates_1block = &Updates[n_of_2blocks * length_2block];
uint64_t *Updates_index_1block = &Updates_index[2 * n_of_2blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
Woodbury 3x3 with Sherman-Morrison and update splitting
This is like naïve Sherman-Morrising, but whenever a denominator is found that is too close to zero the update is split in half. Then one half is applied immediately and the other have is ket for later. When all the updates have been processed, the list of split updates that have been kept for later are processed. If again applying an update results in a denominator that is too close to zero, it is split in half again. One half is applied immediately and one half is kept for later. The algorithm is done when no more updates have been kept for later. This recursion will always end in a finite number of steps, unless the last original update causes a singular Slater-matrix.
qmckl_sherman_morrison_smw3s
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_sherman_morrison_smw3s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw3s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_smw3s(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw3s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw3s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_context local_context;
local_context = qmckl_context_create();
qmckl_exit_code rc;
uint64_t n_of_3blocks = N_updates / 3;
uint64_t remainder = N_updates % 3;
uint64_t length_3block = 3 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
// Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_3blocks > 0) {
for (uint64_t i = 0; i < n_of_3blocks; i++) {
double *Updates_3block = &Updates[i * length_3block];
uint64_t *Updates_index_3block = &Updates_index[i * 3];
rc = qmckl_woodbury_3_c(local_context, Dim, Updates_3block, Updates_index_3block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder != 0) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
double *Updates_remainder_block = &Updates[n_of_3blocks * length_3block];
uint64_t *Updates_index_remainder_block = &Updates_index[3 * n_of_3blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, remainder, Updates_remainder_block, Updates_index_remainder_block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
}
Performance…
Woodbury 3x3 and 2x2 with Sherman-Morrison and update splitting
This is like naïve Sherman-Morrising, but whenever a denominator is found that is too close to zero the update is split in half. Then one half is applied immediately and the other have is ket for later. When all the updates have been processed, the list of split updates that have been kept for later are processed. If again applying an update results in a denominator that is too close to zero, it is split in half again. One half is applied immediately and one half is kept for later. The algorithm is done when no more updates have been kept for later. This recursion will always end in a finite number of steps, unless the last original update causes a singular Slater-matrix.
qmckl_sherman_morrison_smw32s
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
C header
qmckl_exit_code qmckl_sherman_morrison_smw32s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw32s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_smw32s(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw32s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw32s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_context local_context;
local_context = qmckl_context_create();
qmckl_exit_code rc;
uint64_t n_of_3blocks = N_updates / 3;
uint64_t remainder = N_updates % 3;
uint64_t length_3block = 3 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
// Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_3blocks > 0) {
for (uint64_t i = 0; i < n_of_3blocks; i++) {
double *Updates_3block = &Updates[i * length_3block];
uint64_t *Updates_index_3block = &Updates_index[i * 3];
rc = qmckl_woodbury_3_c(local_context, Dim, Updates_3block, Updates_index_3block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
double *Updates_2block = &Updates[n_of_3blocks * length_3block];
uint64_t *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
rc = qmckl_woodbury_2_c(local_context, Dim, Updates_2block, Updates_index_2block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
else if (remainder == 1) { // Apply last remaining update with slagel_splitting
double *Updates_1block = &Updates[n_of_3blocks * length_3block];
uint64_t *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(local_context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
}
Performance…
End of files
assert (qmckl_context_destroy(context) == QMCKL_SUCCESS);
return 0;
}