1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-11-20 04:52:47 +01:00
qmckl/org/qmckl_blas.org

60 KiB
Raw Blame History

BLAS functions

Data types

Vector

Variable Type Description
size int64_t Dimension of the vector
data double* Elements
typedef struct qmckl_vector {
int64_t size;
double* data;
} qmckl_vector;
qmckl_vector
qmckl_vector_alloc( qmckl_context context, 
                 const int64_t size);

Allocates a new vector. If the allocation failed the size is zero.

qmckl_vector
qmckl_vector_alloc( qmckl_context context, 
                 const int64_t size)
{
/* Should always be true by contruction */
assert (size > (int64_t) 0);

qmckl_vector result;
result.size = size;

qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = size * sizeof(double);
result.data = (double*) qmckl_malloc (context, mem_info);

if (result.data == NULL) {
 result.size = (int64_t) 0;
}

return result;
}
qmckl_exit_code
qmckl_vector_free( qmckl_context context, 
                qmckl_vector vector);
qmckl_exit_code
qmckl_vector_free( qmckl_context context, 
                qmckl_vector vector)
{
/* Always true */
assert (vector.data != NULL);

qmckl_exit_code rc;

rc = qmckl_free(context, vector.data);
if (rc != QMCKL_SUCCESS) {
 return rc;
}

vector.size = (int64_t) 0;
vector.data = NULL;
return QMCKL_SUCCESS;
}

Matrix

Variable Type Description
size int64_t[2] Dimension of each component
data double* Elements

The dimensions use Fortran ordering: two elements differing by one in the first dimension are consecutive in memory.

typedef struct qmckl_matrix {
int64_t size[2];
double* data;
} qmckl_matrix;
qmckl_matrix
qmckl_matrix_alloc( qmckl_context context, 
                 const int64_t size1,
                 const int64_t size2);

Allocates a new matrix. If the allocation failed the sizes are zero.

qmckl_matrix
qmckl_matrix_alloc( qmckl_context context, 
                 const int64_t size1,
                 const int64_t size2)
{
/* Should always be true by contruction */
assert (size1 * size2 > (int64_t) 0);

qmckl_matrix result;

result.size[0] = size1;
result.size[1] = size2;

qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = size1 * size2 * sizeof(double);
result.data = (double*) qmckl_malloc (context, mem_info);

if (result.data == NULL) {
 result.size[0] = (int64_t) 0;
 result.size[1] = (int64_t) 0;
}

return result;
}
qmckl_exit_code
qmckl_matrix_free( qmckl_context context, 
                qmckl_matrix matrix);
qmckl_exit_code
qmckl_matrix_free( qmckl_context context, 
                qmckl_matrix matrix)
{
/* Always true */
assert (matrix.data != NULL);

qmckl_exit_code rc;

rc = qmckl_free(context, matrix.data);
if (rc != QMCKL_SUCCESS) {
 return rc;
}
matrix.data = NULL;
matrix.size[0] = (int64_t) 0;
matrix.size[1] = (int64_t) 0;

return QMCKL_SUCCESS;
}

Tensor

Variable Type Description
order int64_t Order of the tensor
size int64_t[QMCKL_TENSOR_ORDER_MAX] Dimension of each component
data double* Elements

The dimensions use Fortran ordering: two elements differing by one in the first dimension are consecutive in memory.

#define QMCKL_TENSOR_ORDER_MAX 16

typedef struct qmckl_tensor {
int64_t order;
int64_t size[QMCKL_TENSOR_ORDER_MAX];
double* data;
} qmckl_tensor;
qmckl_tensor
qmckl_tensor_alloc( qmckl_context context, 
                 const int64_t order,
                 const int64_t* size);

Allocates memory for a tensor. If the allocation failed, the size is zero.

qmckl_tensor
qmckl_tensor_alloc( qmckl_context context, 
                 const int64_t  order,
                 const int64_t* size)
{
/* Should always be true by contruction */
assert (order > 0);
assert (order <= QMCKL_TENSOR_ORDER_MAX);
assert (size  != NULL);

qmckl_tensor result;
result.order = order;

int64_t prod_size = (int64_t) 1;
for (int64_t i=0 ; i<order ; ++i) {
 assert (size[i] > (int64_t) 0);
 result.size[i] = size[i];
 prod_size *= size[i];
}

qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = prod_size * sizeof(double);

result.data = (double*) qmckl_malloc (context, mem_info);

if (result.data == NULL) {
 memset(&result, 0, sizeof(qmckl_tensor));
}

return result;
}
qmckl_exit_code
qmckl_tensor_free( qmckl_context context, 
                qmckl_tensor tensor);
qmckl_exit_code
qmckl_tensor_free( qmckl_context context, 
                qmckl_tensor tensor)
{
/* Always true */
assert (tensor.data != NULL);

qmckl_exit_code rc;

rc = qmckl_free(context, tensor.data);
if (rc != QMCKL_SUCCESS) {
 return rc;
}

memset(&tensor, 0, sizeof(qmckl_tensor));

return QMCKL_SUCCESS;
}

Reshaping

Reshaping occurs in-place and the pointer to the data is copied.

Vector -> Matrix

qmckl_matrix
qmckl_matrix_of_vector(const qmckl_vector vector,
                   const int64_t size1,
                   const int64_t size2);

Reshapes a vector into a matrix.

qmckl_matrix
qmckl_matrix_of_vector(const qmckl_vector vector,
                   const int64_t size1,
                   const int64_t size2)
{ 
/* Always true */
assert (size1 * size2 == vector.size);

qmckl_matrix result;

result.size[0] = size1;
result.size[1] = size2;
result.data    = vector.data;

return result;
}

Vector -> Tensor

qmckl_tensor
qmckl_tensor_of_vector(const qmckl_vector vector,
                   const int64_t order,
                   const int64_t* size);

Reshapes a vector into a tensor.

qmckl_tensor
qmckl_tensor_of_vector(const qmckl_vector vector,
                   const int64_t order,
                   const int64_t* size)
{ 
qmckl_tensor result;

int64_t prod_size = 1;
for (int64_t i=0 ; i<order ; ++i) {
result.size[i] = size[i];
prod_size *= size[i];
}
assert (prod_size == vector.size);

result.data = vector.data;

return result;
}

Matrix -> Vector

qmckl_vector
qmckl_vector_of_matrix(const qmckl_matrix matrix,
                   const int64_t size);

Reshapes a matrix into a vector.

qmckl_vector
qmckl_vector_of_matrix(const qmckl_matrix matrix,
                   const int64_t size)
{ 
/* Always true */
assert (matrix.size[0] * matrix.size[1] == size);

qmckl_vector result;

result.size = size;
result.data = matrix.data;

return result;
}

Matrix -> Tensor

qmckl_tensor
qmckl_tensor_of_matrix(const qmckl_matrix matrix,
                   const int64_t order,
                   const int64_t* size);

Reshapes a matrix into a tensor.

qmckl_tensor
qmckl_tensor_of_matrix(const qmckl_matrix matrix,
                   const int64_t order,
                   const int64_t* size)
{ 
qmckl_tensor result;

int64_t prod_size = 1;
for (int64_t i=0 ; i<order ; ++i) {
result.size[i] = size[i];
prod_size *= size[i];
}
assert (prod_size == matrix.size[0] * matrix.size[1]);

result.data = matrix.data;

return result;
}

Tensor -> Vector

qmckl_vector
qmckl_vector_of_tensor(const qmckl_tensor tensor,
                   const int64_t size);

Reshapes a tensor into a vector.

qmckl_vector
qmckl_vector_of_tensor(const qmckl_tensor tensor,
                   const int64_t size)
{ 
/* Always true */
int64_t prod_size = (int64_t) 1;
for (int64_t i=0 ; i<tensor.order ; i++) {
prod_size *= tensor.size[i];
}
assert (prod_size == size);

qmckl_vector result;

result.size = size;
result.data = tensor.data;

return result;
}

Tensor -> Matrix

qmckl_matrix
qmckl_matrix_of_tensor(const qmckl_tensor tensor,
                   const int64_t size1,
                   const int64_t size2);

Reshapes a tensor into a vector.

qmckl_matrix
qmckl_matrix_of_tensor(const qmckl_tensor tensor,
                   const int64_t size1,
                   const int64_t size2)
{ 
/* Always true */
int64_t prod_size = (int64_t) 1;
for (int64_t i=0 ; i<tensor.order ; i++) {
prod_size *= tensor.size[i];
}
assert (prod_size == size1 * size2);

qmckl_matrix result;

result.size[0] = size1;
result.size[1] = size2;
result.data = tensor.data;

return result;
}

Access macros

#define qmckl_vec(v, i) v.data[i]
#define qmckl_mat(m, i, j) m.data[(i) + (j)*m.size[0]]

#define qmckl_ten3(t, i, j, k) t.data[(i) + m.size[0]*((j) + size[1]*(k))]
#define qmckl_ten4(t, i, j, k, l) t.data[(i) + m.size[0]*((j) + size[1]*((k) + size[2]*(l)))]
#define qmckl_ten5(t, i, j, k, l, m) t.data[(i) + m.size[0]*((j) + size[1]*((k) + size[2]*((l) + size[3]*(m))))]

Tests

{
int64_t m = 3;
int64_t n = 4;
int64_t p = m*n;
qmckl_vector vec = qmckl_vector_alloc(context, p);

for (int64_t i=0 ; i<p ; ++i) 
qmckl_vec(vec, i) = (double) i;

for (int64_t i=0 ; i<p ; ++i) 
assert( vec.data[i] == (double) i );

qmckl_matrix mat = qmckl_matrix_of_vector(vec, m, n);
assert (mat.size[0] == m);
assert (mat.size[1] == n);
assert (mat.data == vec.data);

for (int64_t j=0 ; j<n ; ++j)
for (int64_t i=0 ; i<m ; ++i)
  assert ( qmckl_mat(mat, i, j) == qmckl_vec(vec, i+j*m)) ;

qmckl_vector vec2 = qmckl_vector_of_matrix(mat, p);
assert (vec2.size == p);
assert (vec2.data == vec.data);
for (int64_t i=0 ; i<p ; ++i) 
  assert ( qmckl_vec(vec2, i) == qmckl_vec(vec, i) ) ;

qmckl_vector_free(context, vec);

}

Matrix operations

qmckl_dgemm

Matrix multiplication:

\[ C_{ij} = \beta C_{ij} + \alpha \sum_{k} A_{ik} \cdot B_{kj} \]

Variable Type In/Out Description
context qmckl_context in Global state
TransA char in 'T' is transposed
TransB char in 'T' is transposed
m int64_t in Number of rows of the input matrix
n int64_t in Number of columns of the input matrix
k int64_t in Number of columns of the input matrix
alpha double in Number of columns of the input matrix
A double[][lda] in Array containing the matrix $A$
lda int64_t in Leading dimension of array A
B double[][ldb] in Array containing the matrix $B$
ldb int64_t in Leading dimension of array B
beta double in Array containing the matrix $B$
C double[][ldc] out Array containing the matrix $B$
ldc int64_t in Leading dimension of array B

Requirements:

  • context is not QMCKL_NULL_CONTEXT
  • m > 0
  • n > 0
  • k > 0
  • lda >= m
  • ldb >= n
  • ldc >= n
  • A is allocated with at least $m \times k \times 8$ bytes
  • B is allocated with at least $k \times n \times 8$ bytes
  • C is allocated with at least $m \times n \times 8$ bytes
qmckl_exit_code qmckl_dgemm (
      const qmckl_context context,
      const char TransA,
      const char TransB,
      const int64_t m,
      const int64_t n,
      const int64_t k,
      const double alpha,
      const double* A,
      const int64_t lda,
      const double* B,
      const int64_t ldb,
      const double beta,
      double* const C,
      const int64_t ldc );
integer function qmckl_dgemm_f(context, TransA, TransB, &
 m, n, k, alpha, A, LDA, B, LDB, beta, C, LDC) &
 result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in)  :: context
character             , intent(in)  :: TransA, TransB
integer*8             , intent(in)  :: m, n, k
double precision      , intent(in)  :: alpha, beta
integer*8             , intent(in)  :: lda
double precision      , intent(in)  :: A(lda,*)
integer*8             , intent(in)  :: ldb
double precision      , intent(in)  :: B(ldb,*)
integer*8             , intent(in)  :: ldc
double precision      , intent(out) :: C(ldc,*)

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (m <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (n <= 0_8) then
 info = QMCKL_INVALID_ARG_5
 return
endif

if (k <= 0_8) then
 info = QMCKL_INVALID_ARG_6
 return
endif

if (LDA <= 0) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (LDB <= 0) then
 info = QMCKL_INVALID_ARG_11
 return
endif

if (LDC <= 0) then
 info = QMCKL_INVALID_ARG_14
 return
endif

call dgemm(transA, transB, int(m,4), int(n,4), int(k,4), &
   alpha, A, int(LDA,4), B, int(LDB,4), beta, C, int(LDC,4))

end function qmckl_dgemm_f

qmckl_adjugate

Given a matrix $\mathbf{A}$, the adjugate matrix $\text{adj}(\mathbf{A})$ is the transpose of the cofactors matrix of $\mathbf{A}$.

\[ \mathbf{B} = \text{adj}(\mathbf{A}) = \text{det}(\mathbf{A}) \, \mathbf{A}^{-1} \]

See also: https://en.wikipedia.org/wiki/Adjugate_matrix

Variable Type In/Out Description
context qmckl_context in Global state
n int64_t in Number of rows and columns of the input matrix
A double[][lda] in Array containing the $n \times n$ matrix $A$
lda int64_t in Leading dimension of array A
B double[][ldb] out Adjugate of $A$
ldb int64_t in Leading dimension of array B
det_l double inout determinant of $A$

Requirements:

  • context is not QMCKL_NULL_CONTEXT
  • n > 0
  • lda >= m
  • A is allocated with at least $m \times m \times 8$ bytes
  • ldb >= m
  • B is allocated with at least $m \times m \times 8$ bytes
qmckl_exit_code qmckl_adjugate (
      const qmckl_context context,
      const int64_t n,
      const double* A,
      const int64_t lda,
      double* const B,
      const int64_t ldb,
      double* det_l );

For small matrices (≤ 5× 5), we use specialized routines for performance motivations. For larger sizes, we rely on the LAPACK library.

integer function qmckl_adjugate_f(context, na, A, LDA, B, ldb, det_l) &
 result(info)
use qmckl
implicit none
integer(qmckl_context)  , intent(in)  :: context
double precision, intent(in)          :: A (LDA,*)
integer*8, intent(in)                 :: LDA
double precision, intent(out)         :: B (LDB,*)
integer*8, intent(in)                 :: LDB
integer*8, intent(in)                 :: na
double precision, intent(inout)       :: det_l

integer    :: i,j

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (na <= 0_8) then
 info = QMCKL_INVALID_ARG_2
 return
endif

if (LDA <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (LDA < na) then
 info = QMCKL_INVALID_ARG_4
 return
endif

select case (na)
case (5)
 call adjugate5(A,LDA,B,LDB,na,det_l)
case (4)
 call adjugate4(A,LDA,B,LDB,na,det_l)
case (3)
 call adjugate3(A,LDA,B,LDB,na,det_l)
case (2)
 call adjugate2(A,LDA,B,LDB,na,det_l)
case (1)
det_l = a(1,1)
b(1,1) = 1.d0
case default
 call adjugate_general(context, na, A, LDA, B, LDB, det_l)
end select

end function qmckl_adjugate_f
subroutine adjugate_general(context, na, A, LDA, B, LDB, det_l)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
double precision, intent(in)       :: A (LDA,na)
integer*8, intent(in)              :: LDA
double precision, intent(out)      :: B (LDB,na)
integer*8, intent(in)              :: LDB
integer*8, intent(in)              :: na
double precision, intent(inout)    :: det_l

double precision :: work(LDA*max(na,64))
integer          :: inf
integer          :: ipiv(LDA)
integer          :: lwork
integer(8)       :: i, j

We first copy the array A into array B.

B(1:na,1:na) = A(1:na,1:na)

Then, we compute the LU factorization $LU=A$ using the dgetrf routine.

call dgetrf(na, na, B, LDB, ipiv, inf )

By convention, the determinant of $L$ is equal to one, so the determinant of $A$ is equal to the determinant of $U$, which is simply computed as the product of its diagonal elements.

det_l = 1.d0
j=0_8
do i=1,na
j = j+min(abs(ipiv(i)-i),1)
det_l = det_l*B(i,i)
enddo

As dgetrf returns $PLU=A$ where $P$ is a permutation matrix, the sign of the determinant is computed as $-1^m$ where $m$ is the number of permutations.

if (iand(j,1_8) /= 0_8)  then
det_l = -det_l
endif

Then, the inverse of $A$ is computed using dgetri:

lwork = SIZE(work)
call dgetri(na, B, LDB, ipiv, work, lwork, inf )

and the adjugate matrix is computed as the product of the determinant with the inverse:

B(:,:) = B(:,:)*det_l

end subroutine adjugate_general