1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-07-22 02:43:51 +02:00
qmckl/org/qmckl_distance.org
Aurélien Delval 145f4fba40
Add the qmckl_probes interface (#2)
* comment

* Update distance test code

The distance test has been updated to the latest version, with a first attempt at using vfc_probes inside it

* Functional implementation of vfc_probes in the distance tests

This commit has the first functional vfc_ci tests. Verificarlo tests
should be written over the existing tests, and they can be enabled with
the following configure command:

QMCKL_DEVEL=1 ./configure --prefix=$PWD/_install --enable-maintainer-mode --enable-vfc_ci CC="verificarlo-f -Mpreprocess -D VFC_CI" FC="verificarlo-f -Mpreprocess -D VFC_CI" --host=x86_64

The --enable-vfc_ci flag will trigger the linking of the vfc_ci
library. Moreover, as of now, the "-Mpreprocess" and "-D VFC_CI" flags
have to be specified directly here. There is probably an appropriate
macro to place those flags into but I couldn't find it yet, and could
only manage to build the tests this way.

When the VFC_CI preprocessor is defined, somme additional code to
register and export the test probes can be executed (see
qmckl_distance.org).

As of now, the tests are built as normal, even though they are expected
to fail :

make all
make check

From there, the test_qmckl_distance (and potentially the others)
executable can be called at will. This will typically be done
automatically by vfc_ci, but one could manually execute the executable
by defining the following env variables :

VFC_PROBES_OUTPUT="test.csv" VFC_BACKENDS="libinterflop_ieee.so"

depending on the export file and the Verificarlo backend to be used.

The next steps will be to define more tests such as this one, and to
integrate them into a Verificarlo CI workflow (by writing a
vfc_tests_config.json file and using the automatic CI setup
command).

* Error in FOrtran interface fixed

* Added missing Fortran interfaces

* Modify distance test and install process integration

All probes are now ignored using only the preprocessor (instead
of checking for a facultative argument) in the distance test.
Moreover,preprocessing can now be enabled correctly using FCFLAGS
(the issue seemed to come from the order of the arguments passed
to gfortran/verificarlo-f with the preprocessor arg having to come
first).

* Add vfc_probes to AO tests

vfc_probes have been added to qmckl_ao.org in the same way as
qmckl_distance.org, which means that it can be enabled or disabled at
compile time using the --enable-vfc_ci option.

qmckl_distance.org has been slightly modified with a better indentation,
and configure.ac now adds the "-D VFC_CI" flag to CFLAGS when vfc_ci is
enabled.

* Start work on the vfc tests config file and on a probes wrapper

The goal in the next few commits is to make the integration of
vfc_probes even easier by using a wrapper to vfc_probe dedicated to
qmckl. This will make it easier to create a call to vfc_probe that can be
ignored if VFC_CI is not defined in the preprocessor. Once this is done,
the integration will be completed by trying to create an actual workflow
to automatically build the library and execute CI tests.

* Moved qmckl_probes out of src

As of now, qmckl_probes have been moved to tools, and can be built via a
bash script. This approach seems to make more sense, as this should not
be a part of the library itself, but an additional tool to test it.

* Functional Makefile setup to enable qmckl_probes

The current setup builds qmck_probes by adding it to the main QMckl
libray (by adding it to the libtool sources). The Fortran interface's
module still need to be compiled separately.

TODO : Clean the build setup, improve integration in qmckl_tests and
update tests in qmckl_ao with the new syntax.

* New probes syntax in AO tests

* Clean the probes/Makefile setup

The Fortran module is now built a the same time than the main library.
The commit also adds a few fixes in the tests and probes wrapper.

Co-authored-by: Anthony Scemama <scemama@irsamc.ups-tlse.fr>
2021-07-23 12:01:14 +02:00

44 KiB

Inter-particle distances

Functions for the computation of distances between particles.

Squared distance

qmckl_distance_sq

qmckl_distance_sq computes the matrix of the squared distances between all pairs of points in two sets, one point within each set:

\[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \]

qmckl_context context in Global state
char transa in Array A is 'N': Normal, 'T': Transposed
char transb in Array B is 'N': Normal, 'T': Transposed
int64_t m in Number of points in the first set
int64_t n in Number of points in the second set
double A[][lda] in Array containing the $m \times 3$ matrix $A$
int64_t lda in Leading dimension of array A
double B[][ldb] in Array containing the $n \times 3$ matrix $B$
int64_t ldb in Leading dimension of array B
double C[n][ldc] out Array containing the $m \times n$ matrix $C$
int64_t ldc in Leading dimension of array C

Requirements

  • context is not QMCKL_NULL_CONTEXT
  • m > 0
  • n > 0
  • lda >= 3 if transa == 'N'
  • lda >= m if transa == 'T'
  • ldb >= 3 if transb == 'N'
  • ldb >= n if transb == 'T'
  • ldc >= m
  • A is allocated with at least $3 \times m \times 8$ bytes
  • B is allocated with at least $3 \times n \times 8$ bytes
  • C is allocated with at least $m \times n \times 8$ bytes

C header

qmckl_exit_code qmckl_distance_sq (
      const qmckl_context context,
      const char transa,
      const char transb,
      const int64_t m,
      const int64_t n,
      const double* A,
      const int64_t lda,
      const double* B,
      const int64_t ldb,
      double* const C,
      const int64_t ldc );

Source

integer function qmckl_distance_sq_f(context, transa, transb, m, n, &
 A, LDA, B, LDB, C, LDC) &
 result(info)
use qmckl
implicit none
integer(qmckl_context)  , intent(in)  :: context
character  , intent(in)  :: transa, transb
integer*8  , intent(in)  :: m, n
integer*8  , intent(in)  :: lda
real*8     , intent(in)  :: A(lda,*)
integer*8  , intent(in)  :: ldb
real*8     , intent(in)  :: B(ldb,*)
integer*8  , intent(in)  :: ldc
real*8     , intent(out) :: C(ldc,*)

integer*8 :: i,j
real*8    :: x, y, z
integer   :: transab

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (m <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (n <= 0_8) then
 info = QMCKL_INVALID_ARG_5
 return
endif

if (transa == 'N' .or. transa == 'n') then
 transab = 0
else if (transa == 'T' .or. transa == 't') then
 transab = 1
else
 transab = -100
endif

if (transb == 'N' .or. transb == 'n') then
 continue
else if (transa == 'T' .or. transa == 't') then
 transab = transab + 2
else
 transab = -100
endif

if (transab < 0) then
 info = QMCKL_INVALID_ARG_1
 return
endif

if (iand(transab,1) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,1) == 1 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 2 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif


select case (transab)

case(0)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(1,j)
       y = A(2,i) - B(2,j)
       z = A(3,i) - B(3,j)
       C(i,j) = x*x + y*y + z*z
    end do
 end do

case(1)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(1,j)
       y = A(i,2) - B(2,j)
       z = A(i,3) - B(3,j)
       C(i,j) = x*x + y*y + z*z
    end do
 end do

case(2)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(j,1)
       y = A(2,i) - B(j,2)
       z = A(3,i) - B(j,3)
       C(i,j) = x*x + y*y + z*z
    end do
 end do

case(3)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(j,1)
       y = A(i,2) - B(j,2)
       z = A(i,3) - B(j,3)
       C(i,j) = x*x + y*y + z*z
    end do
 end do

end select

end function qmckl_distance_sq_f

Performance

This function is more efficient when A and B are transposed.

Distance

qmckl_distance

qmckl_distance computes the matrix of the distances between all pairs of points in two sets, one point within each set:

\[ C_{ij} = \sqrt{\sum_{k=1}^3 (A_{k,i}-B_{k,j})^2} \]

If the input array is normal ('N'), the xyz coordinates are in the leading dimension: [n][3] in C and (3,n) in Fortran.

qmckl_context context in Global state
char transa in Array A is 'N': Normal, 'T': Transposed
char transb in Array B is 'N': Normal, 'T': Transposed
int64_t m in Number of points in the first set
int64_t n in Number of points in the second set
double A[][lda] in Array containing the $m \times 3$ matrix $A$
int64_t lda in Leading dimension of array A
double B[][ldb] in Array containing the $n \times 3$ matrix $B$
int64_t ldb in Leading dimension of array B
double C[n][ldc] out Array containing the $m \times n$ matrix $C$
int64_t ldc in Leading dimension of array C

Requirements

  • context is not QMCKL_NULL_CONTEXT
  • m > 0
  • n > 0
  • lda >= 3 if transa == 'N'
  • lda >= m if transa == 'T'
  • ldb >= 3 if transb == 'N'
  • ldb >= n if transb == 'T'
  • ldc >= m
  • A is allocated with at least $3 \times m \times 8$ bytes
  • B is allocated with at least $3 \times n \times 8$ bytes
  • C is allocated with at least $m \times n \times 8$ bytes

C header

qmckl_exit_code qmckl_distance (
      const qmckl_context context,
      const char transa,
      const char transb,
      const int64_t m,
      const int64_t n,
      const double* A,
      const int64_t lda,
      const double* B,
      const int64_t ldb,
      double* const C,
      const int64_t ldc );

Source

integer function qmckl_distance_f(context, transa, transb, m, n, &
 A, LDA, B, LDB, C, LDC) &
 result(info)
use qmckl
implicit none
integer(qmckl_context)  , intent(in)  :: context
character  , intent(in)  :: transa, transb
integer*8  , intent(in)  :: m, n
integer*8  , intent(in)  :: lda
real*8     , intent(in)  :: A(lda,*)
integer*8  , intent(in)  :: ldb
real*8     , intent(in)  :: B(ldb,*)
integer*8  , intent(in)  :: ldc
real*8     , intent(out) :: C(ldc,*)

integer*8 :: i,j
real*8    :: x, y, z
integer   :: transab

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (m <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (n <= 0_8) then
 info = QMCKL_INVALID_ARG_5
 return
endif

if (transa == 'N' .or. transa == 'n') then
 transab = 0
else if (transa == 'T' .or. transa == 't') then
 transab = 1
else
 transab = -100
endif

if (transb == 'N' .or. transb == 'n') then
 continue
else if (transa == 'T' .or. transa == 't') then
 transab = transab + 2
else
 transab = -100
endif

if (transab < 0) then
 info = QMCKL_INVALID_ARG_1
 return
endif

! check for LDA
if (iand(transab,1) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,1) == 1 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 2 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

! check for LDB
if (iand(transab,1) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,1) == 1 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 2 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

! check for LDC
if (LDC < m) then
 info = QMCKL_INVALID_ARG_11
 return
endif


select case (transab)

case(0)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(1,j)
       y = A(2,i) - B(2,j)
       z = A(3,i) - B(3,j)
       C(i,j) = x*x + y*y + z*z
    end do
    C(:,j) = dsqrt(C(:,j))
 end do

case(1)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(1,j)
       y = A(i,2) - B(2,j)
       z = A(i,3) - B(3,j)
       C(i,j) = x*x + y*y + z*z
    end do
    C(:,j) = dsqrt(C(:,j))
 end do

case(2)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(j,1)
       y = A(2,i) - B(j,2)
       z = A(3,i) - B(j,3)
       C(i,j) = x*x + y*y + z*z
    end do
    C(:,j) = dsqrt(C(:,j))
 end do

case(3)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(j,1)
       y = A(i,2) - B(j,2)
       z = A(i,3) - B(j,3)
       C(i,j) = x*x + y*y + z*z
    end do
    C(:,j) = dsqrt(C(:,j))
 end do

end select

end function qmckl_distance_f

Performance

This function is more efficient when A and B are transposed.

Rescaled Distance

qmckl_distance_rescaled

qmckl_distance_rescaled computes the matrix of the rescaled distances between all pairs of points in two sets, one point within each set:

\[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \]

If the input array is normal ('N'), the xyz coordinates are in the leading dimension: [n][3] in C and (3,n) in Fortran.

qmckl_context context in Global state
char transa in Array A is 'N': Normal, 'T': Transposed
char transb in Array B is 'N': Normal, 'T': Transposed
int64_t m in Number of points in the first set
int64_t n in Number of points in the second set
double A[][lda] in Array containing the $m \times 3$ matrix $A$
int64_t lda in Leading dimension of array A
double B[][ldb] in Array containing the $n \times 3$ matrix $B$
int64_t ldb in Leading dimension of array B
double C[n][ldc] out Array containing the $m \times n$ matrix $C$
int64_t ldc in Leading dimension of array C
double rescale_factor_kappa in Factor for calculating rescaled distances

Requirements

  • context is not QMCKL_NULL_CONTEXT
  • m > 0
  • n > 0
  • lda >= 3 if transa == 'N'
  • lda >= m if transa == 'T'
  • ldb >= 3 if transb == 'N'
  • ldb >= n if transb == 'T'
  • ldc >= m
  • A is allocated with at least $3 \times m \times 8$ bytes
  • B is allocated with at least $3 \times n \times 8$ bytes
  • C is allocated with at least $m \times n \times 8$ bytes

C header

qmckl_exit_code qmckl_distance_rescaled (
      const qmckl_context context,
      const char transa,
      const char transb,
      const int64_t m,
      const int64_t n,
      const double* A,
      const int64_t lda,
      const double* B,
      const int64_t ldb,
      double* const C,
      const int64_t ldc,
      const double  rescale_factor_kappa);

Source

integer function qmckl_distance_rescaled_f(context, transa, transb, m, n, &
 A, LDA, B, LDB, C, LDC, rescale_factor_kappa) &
 result(info)
use qmckl
implicit none
integer(qmckl_context)  , intent(in)  :: context
character  , intent(in)  :: transa, transb
integer*8  , intent(in)  :: m, n
integer*8  , intent(in)  :: lda
real*8     , intent(in)  :: A(lda,*)
integer*8  , intent(in)  :: ldb
real*8     , intent(in)  :: B(ldb,*)
integer*8  , intent(in)  :: ldc
real*8     , intent(out) :: C(ldc,*)
real*8     , intent(in)  :: rescale_factor_kappa

integer*8 :: i,j
real*8    :: x, y, z, dist, rescale_factor_kappa_inv
integer   :: transab

rescale_factor_kappa_inv = 1.0d0/rescale_factor_kappa;

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (m <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (n <= 0_8) then
 info = QMCKL_INVALID_ARG_5
 return
endif

if (transa == 'N' .or. transa == 'n') then
 transab = 0
else if (transa == 'T' .or. transa == 't') then
 transab = 1
else
 transab = -100
endif

if (transb == 'N' .or. transb == 'n') then
 continue
else if (transa == 'T' .or. transa == 't') then
 transab = transab + 2
else
 transab = -100
endif

! check for LDA
if (transab < 0) then
 info = QMCKL_INVALID_ARG_1
 return
endif

if (iand(transab,1) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,1) == 1 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 2 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

! check for LDB
if (iand(transab,1) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,1) == 1 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 2 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

! check for LDC
if (LDC < m) then
 info = QMCKL_INVALID_ARG_11
 return
endif


select case (transab)

case(0)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(1,j)
       y = A(2,i) - B(2,j)
       z = A(3,i) - B(3,j)
       dist = dsqrt(x*x + y*y + z*z)
       C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
    end do
 end do

case(1)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(1,j)
       y = A(i,2) - B(2,j)
       z = A(i,3) - B(3,j)
       dist = dsqrt(x*x + y*y + z*z)
       C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
    end do
 end do

case(2)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(j,1)
       y = A(2,i) - B(j,2)
       z = A(3,i) - B(j,3)
       dist = dsqrt(x*x + y*y + z*z)
       C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
    end do
 end do

case(3)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(j,1)
       y = A(i,2) - B(j,2)
       z = A(i,3) - B(j,3)
       dist = dsqrt(x*x + y*y + z*z)
       C(i,j) = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
    end do
 end do

end select

end function qmckl_distance_rescaled_f

Performance

This function is more efficient when A and B are transposed.

Rescaled Distance Derivatives

qmckl_distance_rescaled_deriv_e

qmckl_distance_rescaled_deriv_e computes the matrix of the gradient and laplacian of the rescaled distance with respect to the electron coordinates. The derivative is a rank 3 tensor. The first dimension has a dimension of 4 of which the first three coordinates contains the gradient vector and the last index is the laplacian.

\[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \]

Here the gradient is defined as follows:

\[ \nabla (C_{ij}(\mathbf{r}_{ee})) = \left(\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta x},\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta y},\frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta z} \right) \] and the laplacian is defined as follows:

\[ \triangle (C_{ij}(r_{ee})) = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \]

Using the above three formulae, the expression for the gradient and laplacian is as follows:

\[ \frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta x} = \frac{|(x_i - x_j)|}{r_{ij}} (1 - \kappa R_{ij}) \]

\[ \frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta y} = \frac{|(y_i - y_j)|}{r_{ij}} (1 - \kappa R_{ij}) \]

\[ \frac{\delta C_{ij}(\mathbf{r}_{ee})}{\delta z} = \frac{|(z_i - z_j)|}{r_{ij}} (1 - \kappa R_{ij}) \]

\[ \Delta(C_{ij}(r_{ee}) = \left[ \frac{2}{r_{ij}} - \kappa \right] (1-\kappa R_{ij}) \]

If the input array is normal ('N'), the xyz coordinates are in the leading dimension: [n][3] in C and (3,n) in Fortran.

qmckl_context context in Global state
char transa in Array A is 'N': Normal, 'T': Transposed
char transb in Array B is 'N': Normal, 'T': Transposed
int64_t m in Number of points in the first set
int64_t n in Number of points in the second set
double A[][lda] in Array containing the $m \times 3$ matrix $A$
int64_t lda in Leading dimension of array A
double B[][ldb] in Array containing the $n \times 3$ matrix $B$
int64_t ldb in Leading dimension of array B
double C[4][n][ldc] out Array containing the $4 \times m \times n$ matrix $C$
int64_t ldc in Leading dimension of array C
double rescale_factor_kappa in Factor for calculating rescaled distances derivatives

Requirements

  • context is not QMCKL_NULL_CONTEXT
  • m > 0
  • n > 0
  • lda >= 3 if transa == 'N'
  • lda >= m if transa == 'T'
  • ldb >= 3 if transb == 'N'
  • ldb >= n if transb == 'T'
  • ldc >= m
  • A is allocated with at least $3 \times m \times 8$ bytes
  • B is allocated with at least $3 \times n \times 8$ bytes
  • C is allocated with at least $4 \times m \times n \times 8$ bytes

C header

qmckl_exit_code qmckl_distance_rescaled_deriv_e (
      const qmckl_context context,
      const char transa,
      const char transb,
      const int64_t m,
      const int64_t n,
      const double* A,
      const int64_t lda,
      const double* B,
      const int64_t ldb,
      double* const C,
      const int64_t ldc,
      const double  rescale_factor_kappa);

Source

integer function qmckl_distance_rescaled_deriv_e_f(context, transa, transb, m, n, &
 A, LDA, B, LDB, C, LDC, rescale_factor_kappa) &
 result(info)
use qmckl
implicit none
integer(qmckl_context)  , intent(in)  :: context
character  , intent(in)  :: transa, transb
integer*8  , intent(in)  :: m, n
integer*8  , intent(in)  :: lda
real*8     , intent(in)  :: A(lda,*)
integer*8  , intent(in)  :: ldb
real*8     , intent(in)  :: B(ldb,*)
integer*8  , intent(in)  :: ldc
real*8     , intent(out) :: C(4,ldc,*)
real*8     , intent(in)  :: rescale_factor_kappa

integer*8 :: i,j
real*8    :: x, y, z, dist, dist_inv
real*8    :: rescale_factor_kappa_inv, rij
integer   :: transab

rescale_factor_kappa_inv = 1.0d0/rescale_factor_kappa;

info = QMCKL_SUCCESS

if (context == QMCKL_NULL_CONTEXT) then
 info = QMCKL_INVALID_CONTEXT
 return
endif

if (m <= 0_8) then
 info = QMCKL_INVALID_ARG_4
 return
endif

if (n <= 0_8) then
 info = QMCKL_INVALID_ARG_5
 return
endif

if (transa == 'N' .or. transa == 'n') then
 transab = 0
else if (transa == 'T' .or. transa == 't') then
 transab = 1
else
 transab = -100
endif

if (transb == 'N' .or. transb == 'n') then
 continue
else if (transa == 'T' .or. transa == 't') then
 transab = transab + 2
else
 transab = -100
endif

! check for LDA
if (transab < 0) then
 info = QMCKL_INVALID_ARG_1
 return
endif

if (iand(transab,1) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,1) == 1 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 0 .and. LDA < 3) then
 info = QMCKL_INVALID_ARG_7
 return
endif

if (iand(transab,2) == 2 .and. LDA < m) then
 info = QMCKL_INVALID_ARG_7
 return
endif

! check for LDB
if (iand(transab,1) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,1) == 1 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 0 .and. LDB < 3) then
 info = QMCKL_INVALID_ARG_9
 return
endif

if (iand(transab,2) == 2 .and. LDB < n) then
 info = QMCKL_INVALID_ARG_9
 return
endif

! check for LDC
if (LDC < m) then
 info = QMCKL_INVALID_ARG_11
 return
endif


select case (transab)

case(0)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(1,j)
       y = A(2,i) - B(2,j)
       z = A(3,i) - B(3,j)
       dist = dsqrt(x*x + y*y + z*z)
       dist_inv = 1.0d0/dist
       rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
       C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
    end do
 end do

case(1)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(1,j)
       y = A(i,2) - B(2,j)
       z = A(i,3) - B(3,j)
       dist = dsqrt(x*x + y*y + z*z)
       dist_inv = 1.0d0/dist
       rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
       C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
    end do
 end do

case(2)

 do j=1,n
    do i=1,m
       x = A(1,i) - B(j,1)
       y = A(2,i) - B(j,2)
       z = A(3,i) - B(j,3)
       dist = dsqrt(x*x + y*y + z*z)
       dist_inv = 1.0d0/dist
       rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
       C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
    end do
 end do

case(3)

 do j=1,n
    do i=1,m
       x = A(i,1) - B(j,1)
       y = A(i,2) - B(j,2)
       z = A(i,3) - B(j,3)
       dist = dsqrt(x*x + y*y + z*z)
       dist_inv = 1.0d0/dist
       rij = (1.0d0 - dexp(-rescale_factor_kappa * dist)) * rescale_factor_kappa_inv
       C(1,i,j) = x * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(2,i,j) = y * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(3,i,j) = z * dist_inv * ( 1.0d0 - rescale_factor_kappa_inv * rij)
       C(4,i,j) = (2.0d0 * dist_inv - rescale_factor_kappa_inv) * ( 1.0d0 - rescale_factor_kappa_inv * rij)
    end do
 end do

end select

end function qmckl_distance_rescaled_deriv_e_f

Performance

This function is more efficient when A and B are transposed.