1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-06-30 00:44:52 +02:00
qmckl/org/qmckl_sherman_morrison_woodbury.org

546 lines
18 KiB
Org Mode

#+TITLE: Sherman-Morrison-Woodbury
#+SETUPFILE: ../tools/theme.setup
#+INCLUDE: ../tools/lib.org
Low- and high-level functions that use the Sherman-Morrison and Woodbury matrix inversion formulas to update the
inverse of a non-singualr matrix
* Headers
#+begin_src elisp :noexport :results none
(org-babel-lob-ingest "../tools/lib.org")
#+end_src
#+begin_src c :comments link :tangle (eval c_test) :noweb yes
#include "qmckl.h"
#include "assert.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#ifndef THRESHOLD
#define THRESHOLD 1e-3
#endif
int main() {
qmckl_context context;
context = qmckl_context_create();
qmckl_exit_code rc;
#+end_src
* Sherman-Morrison Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels. These functions should only be used in the context of these kernels.
** ~qmckl_sherman_morrison_threshold~
:PROPERTIES:
:Name: qmckl_sherman_morrison_threshold
:CRetType: double
:FRetType: double precision
:END:
This function is used to set the threshold value that is used in the kernels to determine if a matrix is invertable or not. In the Sherman-Morrison kernels this is determined by comparing the denominator in the Sherman-Morrison formula to the value set in threshold. If the value is smaller than the threshold value it means the matrix is not invertable. In the Woodbury kernels the threshold value is compared with the value of the determinant of the update matrix.
#+NAME: qmckl_sherman_morrison_threshold_args
| double | thresh | out | Threshold |
*** Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
*** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
// Sherman-Morrison-Woodbury break-down threshold
#ifndef THRESHOLD
#define THRESHOLD 1e-3
#endif
qmckl_exit_code qmckl_sherman_morrison_threshold_c (
double* const thresh );
#+end_src
*** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_sherman_morrison_threshold_f(thresh) result(info)
use qmckl
implicit none
real*8 , intent(inout) :: thresh
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_threshold(thresh)
end function qmckl_sherman_morrison_threshold_f
#+end_src
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
// Sherman-Morrison-Woodbury break-down threshold
qmckl_exit_code qmckl_sherman_morrison_threshold_c(double* const threshold) {
*threshold = THRESHOLD;
// #ifdef DEBUG
// std::cerr << "Break-down threshold set to: " << threshold << std::endl;
// #endif
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_sherman_morrison_threshold &
(thresh) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
real (c_double ) , intent(out) :: thresh
integer(c_int32_t), external :: qmckl_sherman_morrison_threshold_c
info = qmckl_sherman_morrison_threshold_c &
(thresh)
end function qmckl_sherman_morrison_threshold
#+end_src
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_threshold_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_sherman_morrison_threshold &
(thresh) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
real (c_double ) , intent(out) :: thresh
end function qmckl_sherman_morrison_threshold
end interface
#+end_src
*** Test :noexport:
[TODO: FMJC] Write tests for the Sherman-Morrison part.
* Naïve Sherman-Morrison
** ~qmckl_sherman_morrison~
:PROPERTIES:
:Name: qmckl_sherman_morrison
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
#+NAME: qmckl_sherman_morrison_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
| double | Updates[N_updates*Dim] | in | Array containing the updates |
| uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
*** Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
*** C header
#+CALL: generate_c_header(table=qmckl_sherman_morrison_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_sherman_morrison_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
double* Slater_inv );
#+end_src
*** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_sherman_morrison_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_f
#+end_src
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
double * Slater_inv) {
// #ifdef DEBUG
// std::cerr << "Called qmckl_sherman_morrison with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
double threshold = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&threshold);
unsigned int l = 0;
// For each update
while (l < N_updates) {
// C = A^{-1} x U_l
for (unsigned int i = 0; i < Dim; i++) {
C[i] = 0;
for (unsigned int j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
double thresh = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&thresh);
if (fabs(den) < thresh) {
return QMCKL_FAILURE;
}
double iden = 1 / den;
// D = v^T x A^{-1}
for (unsigned int j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// A^{-1} = A^{-1} - C x D / den
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_sherman_morrison_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_sherman_morrison &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
integer(c_int32_t), external :: qmckl_sherman_morrison_c
info = qmckl_sherman_morrison_c &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison
#+end_src
#+CALL: generate_f_interface(table=qmckl_sherman_morrison_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_sherman_morrison &
(context, Dim, N_updates, Updates, Updates_index, Slater_inv) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
integer (c_int64_t) , intent(in) , value :: N_updates
real (c_double ) , intent(in) :: Updates(N_updates*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(N_updates)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
end function qmckl_sherman_morrison
end interface
#+end_src
*** Test :noexport:
[TODO: FMJC] Write tests for the Sherman-Morrison part.
#+begin_src c :tangle (eval c_test)
const uint64_t Dim = 2;
const uint64_t N_updates = 2;
const uint64_t Updates_index[2] = {0, 0};
const double Updates[4] = {0.0, 0.0, 0.0, 0.0};
double Slater_inv[4] = {0.0, 0.0, 0.0, 0.0};
rc = qmckl_sherman_morrison_c(context, Dim, N_updates, Updates, Updates_index, Slater_inv);
assert(rc == QMCKL_SUCCESS);
#+end_src
* Woodbury 2x2
** ~qmckl_woodbury_2~
:PROPERTIES:
:Name: qmckl_woodbury_2
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
This is the simplest of the available Sherman-Morrison-Woodbury kernels in QMCkl. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero (and exit with an error if it does) during the application of an update.
#+NAME: qmckl_woodbury_2_args
| qmckl_context | context | in | Global state |
| uint64_t | Dim | in | Leading dimension of Slater_inv |
| double | Updates[2*Dim] | in | Array containing the updates |
| uint64_t | Updates_index[2] | in | Array containing the rank-1 updates |
| double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
*** Requirements
Add description of the input variables. (see for e.g. qmckl_distance.org)
*** C header
#+CALL: generate_c_header(table=qmckl_woodbury_2_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_woodbury_2_c (
const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
double* Slater_inv );
#+end_src
*** Source Fortran
#+begin_src f90 :tangle (eval f)
integer function qmckl_woodbury_2_f(context, Slater_inv, Dim, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim
integer*8 , intent(in) :: Updates_index(2)
real*8 , intent(in) :: Updates(2*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_woodbury_2_f
info = qmckl_woodbury_2(context, Dim, Updates, Updates_index, Slater_inv)
end function qmckl_woodbury_2_f
#+end_src
*** Source C
#+begin_src c :tangle (eval c) :comments org
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_woodbury_2_c(const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
double * Slater_inv) {
/*
C := S^{-1} * U, dim x 2
B := 1 + V * C, 2 x 2
D := V * S^{-1}, 2 x dim
*/
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called Woodbury 2x2 kernel" << std::endl;
// #endif
const unsigned int row1 = (Updates_index[0] - 1);
const unsigned int row2 = (Updates_index[1] - 1);
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[2 * Dim];
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < 2; j++) {
C[i * 2 + j] = 0;
for (unsigned int k = 0; k < Dim; k++) {
C[i * 2 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute B = 1 + V * C
const double B0 = C[row1 * 2] + 1;
const double B1 = C[row1 * 2 + 1];
const double B2 = C[row2 * 2];
const double B3 = C[row2 * 2 + 1] + 1;
// Check if determinant of inverted matrix is not zero
double det = B0 * B3 - B1 * B2;
double thresh = 0.0;
qmckl_exit_code rc = qmckl_sherman_morrison_threshold_c(&thresh);
if (fabs(det) < thresh) {
return QMCKL_FAILURE;
}
// Compute B^{-1} with explicit formula for 2x2 inversion
double Binv[4], idet = 1.0 / det;
Binv[0] = idet * B3;
Binv[1] = -1.0 * idet * B1;
Binv[2] = -1.0 * idet * B2;
Binv[3] = idet * B0;
// Compute tmp = B^{-1} x (V.S^{-1})
double tmp[2 * Dim];
for (unsigned int i = 0; i < 2; i++) {
for (unsigned int j = 0; j < Dim; j++) {
tmp[i * Dim + j] = Binv[i * 2] * Slater_inv[row1 * Dim + j];
tmp[i * Dim + j] += Binv[i * 2 + 1] * Slater_inv[row2 * Dim + j];
}
}
// Compute (S + U V)^{-1} = S^{-1} - C x tmp
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
Slater_inv[i * Dim + j] -= C[i * 2] * tmp[j];
Slater_inv[i * Dim + j] -= C[i * 2 + 1] * tmp[Dim + j];
}
}
return QMCKL_SUCCESS;
}
#+end_src
*** Performance
** C interface :noexport:
#+CALL: generate_c_interface(table=qmckl_woodbury_2_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_woodbury_2 &
(context, Dim, Updates, Updates_index, Slater_inv) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
real (c_double ) , intent(in) :: Updates(2*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(2)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
integer(c_int32_t), external :: qmckl_woodbury_2_c
info = qmckl_woodbury_2_c &
(context, Dim, Updates, Updates_index, Slater_inv)
end function qmckl_woodbury_2
#+end_src
#+CALL: generate_f_interface(table=qmckl_woodbury_2_args,rettyp=get_value("FRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_woodbury_2 &
(context, Dim, Updates, Updates_index, Slater_inv) &
bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: Dim
real (c_double ) , intent(in) :: Updates(2*Dim)
integer (c_int64_t) , intent(in) :: Updates_index(2)
real (c_double ) , intent(inout) :: Slater_inv(Dim*Dim)
end function qmckl_woodbury_2
end interface
#+end_src
*** Test :noexport:
[TODO: FMJC] Write tests for the Sherman-Morrison part.
#+begin_src c :tangle (eval c_test)
const uint64_t Dim2 = 2;
const uint64_t Updates_index2[2] = {0, 0};
const double Updates2[4] = {0.0, 0.0, 0.0, 0.0};
double Slater_inv2[4] = {0.0, 0.0, 0.0, 0.0};
rc = qmckl_woodbury_2_c(context, Dim, Updates, Updates_index, Slater_inv);
assert(rc == QMCKL_SUCCESS);
#+end_src
* End of files
#+begin_src c :comments link :tangle (eval c_test)
assert (qmckl_context_destroy(context) == QMCKL_SUCCESS);
return 0;
}
#+end_src
# -*- mode: org -*-
# vim: syntax=c