mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2025-04-29 20:04:50 +02:00
312 KiB
312 KiB
CHAMP Jastrow Factor Quad
- Context
- Set quad points
- Electron-electron and electron-nucleus distances for quad point
- Electron-electron-nucleus Jastrow
- Electron-electron rescaled distances
- Electron-nucleus rescaled distances
- $\delta P$ matrix
- Electron-electron-nucleus Jastrow value
- Electron-nucleus rescaled distance derivative
- Electron-electron rescaled distances derivative
- $\delta P$ matrix gradients and Laplacian
- Electron-electron-nucleus Jastrow gradients and Laplacian
- Electron-electron Jastrow
- Electron-nucleus Jastrow
- Force of quad en Jastrow
- Force of delta_p matrix
- Force of quad een Jastrow
todo –optimize een_gl –optimized delta_p_gl
Context
Data structure
typedef struct qmckl_jastrow_champ_quad_struct{
int64_t num;
int64_t* indices;
uint64_t date;
qmckl_matrix coord;
double * een_rescaled_quad_e;
uint64_t een_rescaled_quad_e_date;
uint64_t een_rescaled_quad_e_maxsize;
double * een_rescaled_quad_n;
uint64_t een_rescaled_quad_n_date;
uint64_t een_rescaled_quad_n_maxsize;
double* quad_ee_distance;
uint64_t quad_ee_distance_date;
uint64_t quad_ee_distance_maxsize;
double* quad_en_distance;
uint64_t quad_en_distance_date;
uint64_t quad_en_distance_maxsize;
double* delta_een;
uint64_t delta_een_date;
uint64_t delta_een_maxsize;
double* delta_p;
uint64_t delta_p_date;
uint64_t delta_p_maxsize;
double* ee_rescaled_quad;
uint64_t ee_rescaled_quad_date;
uint64_t ee_rescaled_quad_maxsize;
double* en_rescaled_quad;
uint64_t en_rescaled_quad_date;
uint64_t en_rescaled_quad_maxsize;
double* delta_en;
uint64_t delta_en_date;
uint64_t delta_en_maxsize;
double* delta_ee;
uint64_t delta_ee_date;
uint64_t delta_ee_maxsize;
double * een_rescaled_quad_e_gl;
uint64_t een_rescaled_quad_e_gl_date;
uint64_t een_rescaled_quad_e_gl_maxsize;
double * een_rescaled_quad_n_gl;
uint64_t een_rescaled_quad_n_gl_date;
uint64_t een_rescaled_quad_n_gl_maxsize;
double* delta_p_gl;
uint64_t delta_p_gl_date;
uint64_t delta_p_gl_maxsize;
double* delta_een_gl;
uint64_t delta_een_gl_date;
uint64_t delta_een_gl_maxsize;
double* delta_een_g;
uint64_t delta_een_g_date;
uint64_t delta_een_g_maxsize;
double* ee_rescaled_quad_gl;
uint64_t ee_rescaled_quad_gl_date;
uint64_t ee_rescaled_quad_gl_maxsize;
double* en_rescaled_quad_gl;
uint64_t en_rescaled_quad_gl_date;
uint64_t en_rescaled_quad_gl_maxsize;
double* delta_en_gl;
uint64_t delta_en_gl_date;
uint64_t delta_en_gl_maxsize;
double* delta_ee_gl;
uint64_t delta_ee_gl_date;
uint64_t delta_ee_gl_maxsize;
double * forces_jastrow_quad_en;
uint64_t forces_jastrow_quad_en_date;
uint64_t forces_jastrow_quad_en_maxsize;
double * forces_jastrow_quad_een;
uint64_t forces_jastrow_quad_een_date;
uint64_t forces_jastrow_quad_een_maxsize;
double * forces_delta_p;
uint64_t forces_delta_p_date;
uint64_t forces_delta_p_maxsize;
} qmckl_jastrow_champ_quad_struct;
Set quad points
Set
We set the coordinates of the num
-th electron for all walkers, where num
is the electron which has to be moved.
The dimension of coord
is
- [walk_num][3] if
transp
is'N'
- [3][walk_num] if
transp
is'T'
Internally, the coordinates are stored in 'N' format as opposed to elec_coord.
qmckl_exit_code qmckl_set_quad_points (qmckl_context context,
const char transp,
const int64_t num,
const int64_t* indices,
const double* coord,
const int64_t size_max);
The Fortran function shifts the num
by 1 because of 1-based
indexing.
qmckl_exit_code qmckl_set_quad_points_f (qmckl_context context,
const char transp,
const int64_t num,
const int64_t* indices,
const double* coord,
const int64_t size_max);
qmckl_exit_code
qmckl_set_quad_points (qmckl_context context,
const char transp,
const int64_t num,
const int64_t* indices,
const double* coord,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
if (num < 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_quad_points",
"Incorrect point number");
}
if (transp != 'N' && transp != 'T') {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_quad_points",
"transp should be 'N' or 'T'");
}
if (coord == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_4,
"qmckl_set_quad_points",
"coord is a NULL pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (ctx->electron.walker.num > 1) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_quad_points",
"Not implemented for multiple walkers");
}
if (size_max < 3*num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_4,
"qmckl_set_quad_points",
"Array too small");
}
qmckl_exit_code rc;
if (ctx->quad_point.coord.data != NULL) {
rc = qmckl_matrix_free(context, &(ctx->quad_point.coord));
assert (rc == QMCKL_SUCCESS);
}
ctx->quad_point.coord = qmckl_matrix_alloc(context, num, 3);
if (ctx->quad_point.coord.data == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_quad_points",
NULL);
}
if (ctx->quad_point.indices != NULL) {
rc = qmckl_free(context, ctx->quad_point.indices);
assert (rc == QMCKL_SUCCESS);
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = num * sizeof(int64_t);
ctx->quad_point.indices = qmckl_malloc(context, mem_info);
if (ctx->quad_point.indices == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_quad_points",
NULL);
}
ctx->quad_point.num = num;
int64_t *b = ctx->quad_point.indices;
for (int i = 0; i < num; i++){
b[i] = indices[i];
}
if (transp == 'N') {
double *a = ctx->quad_point.coord.data;
for (int64_t i=0 ; i<3*num ; ++i) {
a[i] = coord[i];
}
} else {
for (int64_t i=0 ; i<num ; ++i) {
qmckl_mat(ctx->quad_point.coord, i, 0) = coord[i*num + 0];
qmckl_mat(ctx->quad_point.coord, i, 1) = coord[i*num + 1];
qmckl_mat(ctx->quad_point.coord, i, 2) = coord[i*num + 2];
}
}
/* Increment the date of the quad point */
ctx->quad_point.date += 1UL;
return QMCKL_SUCCESS;
}
interface
integer(qmckl_exit_code) function qmckl_set_quad_points(context, &
transp, num, indices, coord, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
character(c_char) , intent(in) , value :: transp
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(*)
real (c_double ) , intent(in) :: coord(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function
end interface
Touch
qmckl_exit_code
qmckl_quad_touch (const qmckl_context context);
Electron-electron and electron-nucleus distances for quad point
In order to calculate the $\delta J$, we need to have to updated distances for the quad electron.
Electron-electron distances
Electron-electron distance between the quad electron and all
electrons for all walkers.
Dimension is [walk_num][elec_num]
.
Get
qmckl_exit_code qmckl_get_quad_electron_ee_distance(qmckl_context context,
double* const distance,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad electron |
elec_num |
int64_t |
in | Number of electrons |
walk_num |
int64_t |
in | Number of walkers |
coord |
double[3][walk_num][elec_num] |
in | Electron coordinates |
quad_coord |
double[num][3] |
in | quad electron coordinates |
quad_ee_distance |
double[num][elec_num] |
out | Electron-electron distances for quad electron |
integer(qmckl_exit_code) function qmckl_compute_quad_ee_distance(context, &
num, indices, elec_num, walk_num, coord, quad_coord, quad_ee_distance) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer (c_int64_t) , intent(in) , value :: elec_num, num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: coord(elec_num,walk_num,3)
real (c_double ) , intent(in) :: quad_coord(3,num)
real (c_double ) , intent(out) :: quad_ee_distance(elec_num,num)
integer*8 :: k, i, j
double precision :: x, y, z
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do k=1,num
info = qmckl_distance(context, 'T', 'N', elec_num, 1_8, &
coord(1,1,1), elec_num*walk_num, &
quad_coord(1,k), 3_8, &
quad_ee_distance(1,k), elec_num)
if (info /= QMCKL_SUCCESS) then
exit
endif
quad_ee_distance(indices(k)+1,k) = 0.0d0
end do
end function qmckl_compute_quad_ee_distance
Electron-nucleus distances
Get
Electron-nucleus distance between the quad electron and all
nuclei for all walkers.
Dimension is [num][nucl_num]
.
qmckl_exit_code
qmckl_get_quad_electron_en_distance(qmckl_context context,
double* distance,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Number of quad electrons |
indices |
int64_t[num] |
in | Indices of quad electron |
nucl_num |
int64_t |
in | Number of nuclei |
walk_num |
int64_t |
in | Number of walkers |
elec_coord |
double[num][3] |
in | Electron coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nuclear coordinates |
quad_en_distance |
double[num][nucl_num] |
out | Electron-nucleus distances for quad-electron |
integer function qmckl_compute_quad_en_distance(context, num, indices, nucl_num, walk_num, &
elec_coord, nucl_coord, quad_en_distance) result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: nucl_num, walk_num
real (c_double ) , intent(in) :: elec_coord(3,num)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
real (c_double ) , intent(out) :: quad_en_distance(nucl_num, num)
integer*8 :: k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
do k=1,num
info = qmckl_distance(context, 'T', 'N', nucl_num, 1_8, &
nucl_coord(:,:), nucl_num, &
elec_coord(:,k), 3_8, &
quad_en_distance(:,k), nucl_num)
end do
end function qmckl_compute_quad_en_distance
Electron-electron-nucleus Jastrow
Electron-electron rescaled distances
Get
qmckl_exit_code
qmckl_get_een_rescaled_quad_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Number of quad electron |
indices |
int64_t[num] |
in | Indices of quad electron |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
cord_num |
int64_t |
in | Order of polynomials |
rescale_factor_ee |
double |
in | Factor to rescale ee distances |
quad_ee_distance |
double[num][elec_num] |
in | quad electron-electron distances for each walker |
een_rescaled_e |
double[walk_num][0:cord_num][elec_num][elec_num] |
in | Rescaled electron-electron distances for each walker |
een_rescaled_quad_e |
double[num][0:cord_num][elec_num] |
out | quad electron-electron rescaled distances for each walker |
integer function qmckl_compute_een_rescaled_quad_e_doc( &
context, num, indices, walk_num, elec_num, cord_num, rescale_factor_ee, &
quad_ee_distance, een_rescaled_e, een_rescaled_quad_e) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in), value :: walk_num
integer(c_int64_t) , intent(in), value :: elec_num
integer(c_int64_t) , intent(in), value :: cord_num
real(c_double) , intent(in), value :: rescale_factor_ee
real(c_double) , intent(in) :: quad_ee_distance(elec_num,num)
real(c_double) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real(c_double) , intent(out) :: een_rescaled_quad_e(elec_num,0:cord_num,num)
double precision,allocatable :: een_rescaled_quad_e_ij(:,:)
double precision :: x
integer*8 :: i, j, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
allocate(een_rescaled_quad_e_ij(elec_num, cord_num + 1))
! Prepare table of exponentiated distances raised to appropriate power
do nw = 1, num
een_rescaled_quad_e_ij(:, 1) = 1.0d0
do j = 1, elec_num
een_rescaled_quad_e_ij(j, 2) = dexp(-rescale_factor_ee * quad_ee_distance(j, nw))
end do
do l = 2, cord_num
do k = 1, elec_num
een_rescaled_quad_e_ij(k, l + 1) = een_rescaled_quad_e_ij(k, l) * een_rescaled_quad_e_ij(k, 2)
end do
end do
! prepare the actual een table
een_rescaled_quad_e(:,0,nw) = 1.0d0
do l = 1, cord_num
do j = 1, elec_num
x = een_rescaled_quad_e_ij(j, l + 1)
een_rescaled_quad_e(j, l, nw) = x
end do
end do
een_rescaled_quad_e(indices(nw)+1, :, nw) = 0.0d0
end do
end function qmckl_compute_een_rescaled_quad_e_doc
qmckl_exit_code qmckl_compute_een_rescaled_quad_e_doc (
const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* quad_ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_quad_e );
qmckl_exit_code
qmckl_compute_een_rescaled_quad_e (const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* quad_ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_quad_e )
{
#ifdef HAVE_HPC
return qmckl_compute_een_rescaled_quad_e_doc
#else
return qmckl_compute_een_rescaled_quad_e_doc
#endif
(context, num, indices, walk_num, elec_num, cord_num, rescale_factor_ee, quad_ee_distance, een_rescaled_e, een_rescaled_quad_e);
}
Electron-nucleus rescaled distances
Get
qmckl_exit_code
qmckl_get_een_rescaled_quad_n(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Number of quad electron |
indices |
int64_t[num] |
in | Indices of quad electron |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of atoms |
nucl_num |
int64_t |
in | Number of atoms |
type_nucl_num |
int64_t |
in | Number of atom types |
type_nucl_vector |
int64_t[nucl_num] |
in | Types of atoms |
cord_num |
int64_t |
in | Order of polynomials |
rescale_factor_en |
double[nucl_num] |
in | Factor to rescale ee distances |
quad_en_distance |
double[num][nucl_num] |
in | Electron-nucleus distances |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
out | quad electron-nucleus rescaled distances |
integer function qmckl_compute_een_rescaled_quad_n( &
context, num, indices, walk_num, elec_num, nucl_num, &
type_nucl_num, type_nucl_vector, cord_num, rescale_factor_en, &
quad_en_distance, een_rescaled_n, een_rescaled_quad_n) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in), value :: walk_num
integer(c_int64_t) , intent(in), value :: elec_num
integer(c_int64_t) , intent(in), value :: nucl_num
integer(c_int64_t) , intent(in), value :: type_nucl_num
integer(c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer(c_int64_t) , intent(in), value :: cord_num
real(c_double) , intent(in) :: rescale_factor_en(type_nucl_num)
real(c_double) , intent(in) :: quad_en_distance(nucl_num,num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real(c_double) , intent(out) :: een_rescaled_quad_n(nucl_num,0:cord_num,num)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do nw = 1, num
! prepare the actual een table
een_rescaled_quad_n(:, 0, nw) = 1.0d0
do a = 1, nucl_num
een_rescaled_quad_n(a, 1, nw) = dexp(-rescale_factor_en(type_nucl_vector(a)+1) * quad_en_distance(a, nw))
end do
do l = 2, cord_num
do a = 1, nucl_num
een_rescaled_quad_n(a, l, nw) = een_rescaled_quad_n(a, l - 1, nw) * een_rescaled_quad_n(a, 1, nw)
end do
end do
end do
end function qmckl_compute_een_rescaled_quad_n
$\delta P$ matrix
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_delta_p(qmckl_context context,
double* const delta_p,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | quad point index |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
cord_num |
int64_t |
in | order of polynomials |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_e |
double[walk_num][0:cord_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances |
een_rescaled_quad_e |
double[num][0:cord_num][elec_num] |
in | Electron-electron quad rescaled distances |
delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
out | quad point matrix P |
integer function qmckl_compute_jastrow_champ_quad_delta_p_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
een_rescaled_n, een_rescaled_e, een_rescaled_quad_n, een_rescaled_quad_e, delta_p) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t), intent(in), value :: num, walk_num, elec_num, cord_num, nucl_num
integer(c_int64_t) , intent(in) :: indices(num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_quad_e(elec_num, 0:cord_num, num)
real(c_double) , intent(out) :: delta_p(elec_num, nucl_num,0:cord_num, 0:cord_num-1, num)
double precision :: een_rescaled_delta_e(elec_num)
integer*8 :: i, a, c, j, l, k, p, m, n, nw, idx
double precision :: dn, dn2
integer*8 :: LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
if (cord_num == 0) return
do nw=1, num
idx = indices(nw)+1
do i=0, cord_num-1
een_rescaled_delta_e(:) = een_rescaled_quad_e(:,i,nw) - een_rescaled_e(:,idx,i,1)
do c=0,cord_num
do a=1,nucl_num
dn = een_rescaled_quad_n(a,c,nw) - een_rescaled_n(idx,a,c,1)
dn2 = een_rescaled_quad_n(a,c,nw)
do j=1,elec_num
delta_p(j,a,c,i,nw) = een_rescaled_e(j,idx,i,1)*dn + een_rescaled_delta_e(j) * dn2
enddo
end do
end do
info = qmckl_dgemm(context, 'T', 'N', 1_8, nucl_num * (cord_num+1_8), elec_num, 1.0d0, &
een_rescaled_delta_e,elec_num, &
een_rescaled_n(1,1,0,1),elec_num, &
1.0d0, &
delta_p(idx,1,0,i,nw),elec_num)
enddo
end do
end function qmckl_compute_jastrow_champ_quad_delta_p_doc
Electron-electron-nucleus Jastrow value
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_een(qmckl_context context,
double* const delta_een,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_een (context, &
delta_een, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_een(size_max)
end function
end interface
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | quad point number |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
cord_num |
int64_t |
in | order of polynomials |
dim_c_vector |
int64_t |
in | dimension of full coefficient vector |
c_vector_full |
double[dim_c_vector][nucl_num] |
in | full coefficient vector |
lkpm_combined_index |
int64_t[4][dim_c_vector] |
in | combined indices |
tmp_c |
double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | P matrix |
delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | quad electron P matrix |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_e |
double[walk_num][0:cord_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances |
een_rescaled_quad_e |
double[wnum][0:cord_num][elec_num] |
in | Electron-electron quad rescaled distances |
delta_een |
double[num] |
out | Electron-nucleus jastrow |
integer function qmckl_compute_jastrow_champ_factor_quad_een_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
dim_c_vector, c_vector_full, lkpm_combined_index, &
tmp_c, delta_p, een_rescaled_n, een_rescaled_e, een_rescaled_quad_n, &
een_rescaled_quad_e, delta_een) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num, walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real(c_double) , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
real(c_double) , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
real(c_double) , intent(in) :: delta_p(elec_num, nucl_num,0:cord_num, 0:cord_num-1, num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_quad_e(elec_num, 0:cord_num, num)
real(c_double) , intent(out) :: delta_een(num)
double precision :: een_rescaled_delta_n(nucl_num, 0:cord_num)
integer*8 :: i, a, j, l, k, p, m, n, nw, idx
double precision :: accu, accu2, cn
integer*8 :: LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
delta_een = 0.0d0
if (cord_num == 0) return
do nw =1, num
idx= indices(nw)+1
een_rescaled_delta_n(:,:) = een_rescaled_quad_n(:,:,nw) - een_rescaled_n(idx,:,:,1)
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = c_vector_full(a, n)
if(cn == 0.d0) cycle
accu = 0.0d0
do j = 1, elec_num
accu = accu + een_rescaled_n(j,a,m,1) * delta_p(j,a,m+l,k,nw)
end do
accu = accu + een_rescaled_delta_n(a,m) * (tmp_c(idx,a,m+l,k,1) + delta_p(idx,a,m+l,k,nw))
delta_een(nw) = delta_een(nw) + accu * cn
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_quad_een_doc
Electron-nucleus rescaled distance derivative
Get
qmckl_exit_code
qmckl_get_een_rescaled_quad_n_gl(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Number of quad points |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
nucl_num |
int64_t |
in | Number of atoms |
type_nucl_num |
int64_t |
in | Number of atom types |
type_nucl_vector |
int64_t[nucl_num] |
in | Types of atoms |
cord_num |
int64_t |
in | Order of polynomials |
rescale_factor_en |
double[nucl_num] |
in | Factor to rescale ee distances |
coord_ee |
double[num][3] |
in | Electron coordinates |
coord_n |
double[3][nucl_num] |
in | Nuclear coordinates |
quad_en_distance |
double[num][nucl_num] |
in | Electron-nucleus quad distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus rescaled quad distances |
een_rescaled_quad_n_gl |
double[num][0:cord_num][nucl_num][3] |
out | Electron-nucleus rescaled quad distances derivative |
integer function qmckl_compute_een_rescaled_quad_n_gl( &
context, num, indices, walk_num, nucl_num, type_nucl_num, type_nucl_vector, &
cord_num, rescale_factor_en, coord_ee, coord_n, quad_en_distance, &
een_rescaled_quad_n, een_rescaled_quad_n_gl) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer(c_int64_t) , intent(in), value :: num
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in), value :: walk_num
integer(c_int64_t) , intent(in), value :: nucl_num
integer(c_int64_t) , intent(in), value :: type_nucl_num
integer(c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer(c_int64_t) , intent(in), value :: cord_num
real(c_double) , intent(in) :: rescale_factor_en(type_nucl_num)
real(c_double) , intent(in) :: coord_ee(3,num)
real(c_double) , intent(in) :: coord_n(nucl_num,3)
real(c_double) , intent(in) :: quad_en_distance(nucl_num,num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num,0:cord_num,num)
real(c_double) , intent(out) :: een_rescaled_quad_n_gl(3,nucl_num,0:cord_num,num)
double precision,allocatable :: elnuc_dist_gl(:,:)
double precision :: x, ria_inv, kappa_l
integer*8 :: i, a, k, l, nw, ii
allocate(elnuc_dist_gl(3, nucl_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_quad_n_gl = 0.0d0
do nw = 1, num
! prepare the actual een table
do a = 1, nucl_num
ria_inv = 1.0d0 / quad_en_distance(a, nw)
do ii = 1, 3
elnuc_dist_gl(ii, a) = (coord_ee(ii,nw) - coord_n(a, ii)) * ria_inv
end do
end do
do l = 0, cord_num
do a = 1, nucl_num
kappa_l = - dble(l) * rescale_factor_en(type_nucl_vector(a)+1)
een_rescaled_quad_n_gl(1, a, l, nw) = kappa_l * elnuc_dist_gl(1, a)
een_rescaled_quad_n_gl(2, a, l, nw) = kappa_l * elnuc_dist_gl(2, a)
een_rescaled_quad_n_gl(3, a, l, nw) = kappa_l * elnuc_dist_gl(3, a)
een_rescaled_quad_n_gl(1, a, l, nw) = een_rescaled_quad_n_gl(1, a, l, nw) * &
een_rescaled_quad_n(a, l, nw)
een_rescaled_quad_n_gl(2, a, l, nw) = een_rescaled_quad_n_gl(2, a, l, nw) * &
een_rescaled_quad_n(a, l, nw)
een_rescaled_quad_n_gl(3, a, l, nw) = een_rescaled_quad_n_gl(3, a, l, nw) * &
een_rescaled_quad_n(a, l, nw)
end do
end do
end do
end function qmckl_compute_een_rescaled_quad_n_gl
Electron-electron rescaled distances derivative
Get
qmckl_exit_code
qmckl_get_een_rescaled_quad_e_gl(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
cord_num |
int64_t |
in | Order of polynomials |
rescale_factor_ee |
double |
in | Factor to rescale ee distances |
coord |
double[num][3] |
in | quad electron coordinates |
coord_ee |
double[3][walk_num][elec_num] |
in | Electron coordinates |
quad_ee_distance |
double[num][elec_num] |
in | Electron-electron quad distances |
een_rescaled_quad_e |
double[num][0:cord_num][elec_num] |
in | Electron-electron rescaled quad distances |
een_rescaled_quad_e_gl |
double[num][0:cord_num][elec_num][3] |
out | Electron-electron rescaled quad distances derivative |
integer function qmckl_compute_een_rescaled_quad_e_gl_doc( &
context, num, indices, walk_num, elec_num, cord_num, rescale_factor_ee, &
coord, coord_ee, quad_ee_distance, een_rescaled_quad_e, een_rescaled_quad_e_gl) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in), value :: walk_num
integer(c_int64_t) , intent(in), value :: elec_num
integer(c_int64_t) , intent(in), value :: cord_num
real(c_double) , intent(in), value :: rescale_factor_ee
real(c_double) , intent(in) :: coord(3,num)
real(c_double) , intent(in) :: coord_ee(elec_num,walk_num,3)
real(c_double) , intent(in) :: quad_ee_distance(elec_num,num)
real(c_double) , intent(in) :: een_rescaled_quad_e(elec_num,0:cord_num,num)
real(c_double) , intent(out) :: een_rescaled_quad_e_gl(3,elec_num,0:cord_num,num)
double precision,allocatable :: elec_dist_gl(:,:)
double precision :: x, rij_inv, kappa_l
integer*8 :: i, j, k, l, nw, ii
allocate(elec_dist_gl(4, elec_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num < 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Not necessary: should be set to zero by qmckl_malloc
! een_rescaled_quad_e_gl = 0.0d0
! Prepare table of exponentiated distances raised to appropriate power
do nw = 1, num
do i = 1, elec_num
if (i == indices(nw)+1) cycle
rij_inv = 1.0d0 / quad_ee_distance(i, nw)
do ii = 1, 3
elec_dist_gl(ii, i) = (coord(ii, nw) - coord_ee(i, 1, ii)) * rij_inv
end do
end do
elec_dist_gl(:, indices(nw)+1) = 0.0d0
do l = 1, cord_num
kappa_l = - dble(l) * rescale_factor_ee
do i = 1, elec_num
een_rescaled_quad_e_gl(1, i, l, nw) = kappa_l * elec_dist_gl(1, i)
een_rescaled_quad_e_gl(2, i, l, nw) = kappa_l * elec_dist_gl(2, i)
een_rescaled_quad_e_gl(3, i, l, nw) = kappa_l * elec_dist_gl(3, i)
een_rescaled_quad_e_gl(1,i,l,nw) = een_rescaled_quad_e_gl(1,i,l,nw) * een_rescaled_quad_e(i,l,nw)
een_rescaled_quad_e_gl(2,i,l,nw) = een_rescaled_quad_e_gl(2,i,l,nw) * een_rescaled_quad_e(i,l,nw)
een_rescaled_quad_e_gl(3,i,l,nw) = een_rescaled_quad_e_gl(3,i,l,nw) * een_rescaled_quad_e(i,l,nw)
end do
end do
end do
end function qmckl_compute_een_rescaled_quad_e_gl_doc
qmckl_exit_code qmckl_compute_een_rescaled_quad_e_gl (
const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_ee,
const double* coord,
const double* coord_ee,
const double* quad_ee_distance,
const double* een_rescaled_quad_e,
double* const een_rescaled_quad_e_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_een_rescaled_quad_e_gl_doc
#else
return qmckl_compute_een_rescaled_quad_e_gl_doc
#endif
(context, num, indices, walk_num, elec_num, cord_num, rescale_factor_ee, coord,
coord_ee, quad_ee_distance, een_rescaled_quad_e, een_rescaled_quad_e_gl );
}
$\delta P$ matrix gradients and Laplacian
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_delta_p_gl(qmckl_context context,
double* const delta_p_gl,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
cord_num |
int64_t |
in | order of polynomials |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_e |
double[walk_num][0:cord_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances |
een_rescaled_quad_e |
double[num][0:cord_num][elec_num] |
in | Electron-electron quad rescaled distances |
een_rescaled_n_gl |
double[walk_num][0:cord_num][nucl_num][4][elec_num] |
in | Electron-nucleus rescaled distances derivatives |
een_rescaled_e_gl |
double[walk_num][0:cord_num][elec_num][4][elec_num] |
in | Electron-electron rescaled distances derivatives |
een_rescaled_quad_n_gl |
double[num][0:cord_num][nucl_num][3] |
in | Electron-nucleus quad rescaled distances derivatives |
een_rescaled_quad_e_gl |
double[num][0:cord_num][elec_num][3] |
in | Electron-electron quad rescaled distances derivatives |
delta_p_gl |
double[num][0:cord_num-1][0:cord_num][3][nucl_num] |
out | Delta P matrix gradient and Laplacian |
integer(qmckl_exit_code) function qmckl_compute_jastrow_champ_quad_delta_p_gl_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
een_rescaled_n, een_rescaled_e, een_rescaled_quad_n, een_rescaled_quad_e, &
een_rescaled_n_gl, een_rescaled_e_gl, een_rescaled_quad_n_gl, een_rescaled_quad_e_gl, delta_p_gl) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num, walk_num, elec_num, cord_num, nucl_num
integer(c_int64_t) , intent(in) :: indices(num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_quad_e(elec_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_e_gl(elec_num, 4, elec_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n_gl(3, nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_quad_e_gl(3,elec_num, 0:cord_num, num)
real(c_double) , intent(out) :: delta_p_gl(nucl_num,3,0:cord_num, 0:cord_num-1, num)
double precision :: delta_e_gl(elec_num,3)
integer*8 :: i, a, j, l, k, p, m, n, nw, idx
double precision :: tmp, accu
integer*8 :: LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
if (cord_num == 0) then
delta_p_gl = 0.d0
return
endif
do nw=1, num
idx = indices(nw)+1
do m=0, cord_num-1
do k = 1, 3
do j = 1, elec_num
delta_e_gl(j,k) = een_rescaled_quad_e_gl(k,j,m,nw) - een_rescaled_e_gl(idx, k, j, m, 1)
end do
delta_e_gl(idx,k) = 0.0d0
end do
do l=0, cord_num
do k = 1, 3
do a = 1, nucl_num
accu = 0.0d0
do j = 1, elec_num
accu = accu + delta_e_gl(j,k) * een_rescaled_n(j,a,l,1)
end do
delta_p_gl(a,k,l,m,nw) = accu
end do
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_quad_delta_p_gl_doc
Electron-electron-nucleus Jastrow gradients and Laplacian
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_een_gl(qmckl_context context,
double* const delta_een_gl,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_een_gl (context, &
delta_een_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_een_gl(size_max)
end function
end interface
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad points |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
cord_num |
int64_t |
in | order of polynomials |
dim_c_vector |
int64_t |
in | dimension of full coefficient vector |
c_vector_full |
double[dim_c_vector][nucl_num] |
in | full coefficient vector |
lkpm_combined_index |
int64_t[4][dim_c_vector] |
in | combined indices |
tmp_c |
double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | P matrix |
dtmp_c |
double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num] |
in | P matrix derivative |
delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | Delta P matrix |
delta_p_gl |
double[num][0:cord_num-1][0:cord_num][3][nucl_num] |
in | Delta P matrix derivative |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances |
een_rescaled_n_gl |
double[walk_num][0:cord_num][nucl_num][4][elec_num] |
in | Electron-nucleus rescaled distances derivatives |
een_rescaled_quad_n_gl |
double[num][0:cord_num][nucl_num][3] |
in | Electron-nucleus quad rescaled distances derivatives |
delta_een_gl |
double[num][3][elec_num] |
out | Delta electron-electron-nucleus jastrow gradient and Laplacian |
integer(qmckl_exit_code) function qmckl_compute_jastrow_champ_factor_quad_een_gl_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
dim_c_vector, c_vector_full, lkpm_combined_index, &
tmp_c, dtmp_c, delta_p, delta_p_gl, een_rescaled_n, een_rescaled_quad_n, &
een_rescaled_n_gl, een_rescaled_quad_n_gl, delta_een_gl) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num, walk_num, elec_num, cord_num, nucl_num, dim_c_vector
integer(c_int64_t) , intent(in) :: indices(num)
integer(c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real(c_double) , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
real(c_double) , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
real(c_double) , intent(in) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
real(c_double) , intent(in) :: delta_p(elec_num, nucl_num,0:cord_num, 0:cord_num-1, num)
real(c_double) , intent(in) :: delta_p_gl(nucl_num, 3, 0:cord_num, 0:cord_num-1, num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n_gl(3, nucl_num, 0:cord_num, num)
real(c_double) , intent(out) :: delta_een_gl(3, num)
integer*8 :: i, a, j, l, k, p, m, n, nw, kk, idx
double precision :: accu, accu2, cn
integer*8 :: LDA, LDB, LDC
double precision :: een_rescaled_delta_n_gl(3, nucl_num, 0:cord_num)
double precision :: een_rescaled_delta_n(nucl_num, 0:cord_num)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
delta_een_gl = 0.0d0
if (cord_num == 0) return
do nw =1, num
idx = indices(nw)+1
een_rescaled_delta_n(:,:) = een_rescaled_quad_n(:,:,nw) - een_rescaled_n(idx, :, :, 1)
een_rescaled_delta_n_gl(:,:,:) = een_rescaled_quad_n_gl(:,:,:,nw) - een_rescaled_n_gl(idx, :,:,:,1)
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do kk = 1, 3
do a = 1, nucl_num
cn = c_vector_full(a, n)
if(cn == 0.d0) cycle
delta_een_gl(kk,nw) = delta_een_gl(kk,nw) + ( &
delta_p_gl(a,kk,m ,k,nw) * een_rescaled_n(idx,a,m+l,1) + &
delta_p_gl(a,kk,m+l,k,nw) * een_rescaled_n(idx,a,m ,1) + &
delta_p(idx,a,m ,k,nw) * een_rescaled_n_gl(idx,kk,a,m+l,1) + &
delta_p(idx,a,m+l,k,nw) * een_rescaled_n_gl(idx,kk,a,m ,1) ) * cn
delta_een_gl(kk,nw) = delta_een_gl(kk,nw) + ( &
(dtmp_c(idx,kk,a,m ,k,1) + delta_p_gl(a,kk,m ,k,nw)) * een_rescaled_delta_n(a,m+l) + &
(dtmp_c(idx,kk,a,m+l,k,1) + delta_p_gl(a,kk,m+l,k,nw)) * een_rescaled_delta_n(a,m) + &
(tmp_c(idx,a,m ,k,1) + delta_p(idx,a,m ,k,nw)) * een_rescaled_delta_n_gl(kk,a,m+l) + &
(tmp_c(idx,a,m+l,k,1) + delta_p(indices(nw)+1,a,m+l,k,nw)) * een_rescaled_delta_n_gl(kk,a,m) )* cn
end do
end do
end do
end do
end function qmckl_compute_jastrow_champ_factor_quad_een_gl_doc
Electron-electron Jastrow
Electron-electron rescaled distance
Get
qmckl_exit_code
qmckl_get_ee_rescaled_quad(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
elec_num |
int64_t |
in | Number of electrons |
rescale_factor_ee |
double |
in | Factor to rescale ee distances |
walk_num |
int64_t |
in | Number of walkers |
quad_ee_distance |
double[num][elec_num] |
in | quad electron-electron distances |
ee_rescaled_quad |
double[num][elec_num] |
out | Electron-electron rescaled distances |
function qmckl_compute_ee_rescaled_quad_doc(context, num,&
elec_num, rescale_factor_ee, walk_num, &
quad_ee_distance, ee_rescaled_quad) &
bind(C) result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer(c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: quad_ee_distance(elec_num,num)
real (c_double ) , intent(out) :: ee_rescaled_quad(elec_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: k, i
real (c_double) :: inverse_rescale_factor_ee
inverse_rescale_factor_ee = 1.0d0 / rescale_factor_ee
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
do k=1,num
do i=1,elec_num
ee_rescaled_quad(i,k) = (1.0d0 - dexp(-rescale_factor_ee * quad_ee_distance(i,k))) * inverse_rescale_factor_ee
enddo
end do
end function qmckl_compute_ee_rescaled_quad_doc
Electron-electron Jastrow value
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_ee(qmckl_context context,
double* const delta_ee,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_ee (context, &
delta_ee, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_ee(size_max)
end function qmckl_get_jastrow_champ_quad_ee
end interface
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad point |
num |
int64_t |
in | Index of quad point |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
up_num |
int64_t |
in | Number of alpha electrons |
bord_num |
int64_t |
in | Number of coefficients |
b_vector |
double[bord_num+1] |
in | List of coefficients |
ee_distance_rescaled |
double[walk_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
ee_rescaled_quad |
double[num][elec_num] |
in | Electron-electron rescaled quad distances |
delta_ee |
double[num] |
out | quad electron-electron Jastrow |
function qmckl_compute_jastrow_champ_quad_ee_doc(context, &
num, indices, walk_num, elec_num, up_num, bord_num, b_vector, &
ee_distance_rescaled, ee_rescaled_quad, spin_independent, delta_ee) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in), value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in), value :: walk_num
integer (c_int64_t) , intent(in), value :: elec_num
integer (c_int64_t) , intent(in), value :: up_num
integer (c_int64_t) , intent(in), value :: bord_num
real (c_double ) , intent(in) :: b_vector(bord_num+1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_rescaled_quad(elec_num,num)
integer (c_int32_t) , intent(in), value :: spin_independent
real (c_double ) , intent(out) :: delta_ee(num)
integer(qmckl_exit_code) :: info
integer*8 :: i, j, k, nw
double precision :: x, xk, y, yk
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (bord_num < 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do nw =1, num
delta_ee(nw) = 0.0d0
do i=1,elec_num
if (i.ne.(indices(nw)+1)) then
x = ee_distance_rescaled(i,indices(nw)+1,1)
y = ee_rescaled_quad(i,nw)
if (spin_independent == 1) then
delta_ee(nw) = delta_ee(nw) - (b_vector(1) * x / (1.d0 + b_vector(2) * x)) &
+ (b_vector(1) * y / (1.d0 + b_vector(2) * y))
else
if ((i <= up_num .and. (indices(nw)+1) <= up_num ) .or. (i > up_num .and. (indices(nw)+1) > up_num)) then
delta_ee(nw) = delta_ee(nw) - (0.5d0 * b_vector(1) * x / (1.d0 + b_vector(2) * x)) &
+ (0.5d0 * b_vector(1) * y / (1.d0 + b_vector(2) * y))
else
delta_ee(nw) = delta_ee(nw) - (b_vector(1) * x / (1.d0 + b_vector(2) * x)) &
+ (b_vector(1) * y / (1.d0 + b_vector(2) * y))
endif
endif
xk = x
yk = y
do k=2,bord_num
xk = xk * x
yk = yk * y
delta_ee(nw) = delta_ee(nw) - (b_vector(k+1) * xk) + (b_vector(k+1) * yk)
end do
endif
end do
end do
end function qmckl_compute_jastrow_champ_quad_ee_doc
qmckl_exit_code
qmckl_compute_jastrow_champ_quad_ee (const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_rescaled_quad,
const int32_t spin_independent,
double* const delta_ee )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_quad_ee_doc
#else
return qmckl_compute_jastrow_champ_quad_ee_doc
#endif
(context, num, indices, walk_num, elec_num, up_num, bord_num, b_vector,
ee_distance_rescaled, ee_rescaled_quad, spin_independent, delta_ee);
}
Electron-electron rescaled distances derivatives
Get
qmckl_exit_code qmckl_get_ee_rescaled_quad_gl(qmckl_context context,
double* const distance_rescaled_gl,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Index of quad electron |
elec_num |
int64_t |
in | Number of electrons |
rescale_factor_ee |
double |
in | Factor to rescale ee distances |
walk_num |
int64_t |
in | Number of walkers |
quad_ee_distance |
double[elec_num][num] |
in | quad electron-electron distances |
elec_coord |
double[3][walk_num][elec_num] |
in | Electron coordinates |
coord |
double[num][3] |
in | quad electron coordinates |
ee_rescaled_quad_gl |
double[num][elec_num][3] |
out | Electron-electron rescaled quad distance derivatives |
function qmckl_compute_ee_rescaled_quad_gl_doc(context, num, indices, &
elec_num, rescale_factor_ee, walk_num, quad_ee_distance, elec_coord, coord, ee_rescaled_quad_gl) &
bind(C) result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: elec_num
real (c_double ) , intent(in) , value :: rescale_factor_ee
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: quad_ee_distance(elec_num,num)
real (c_double ) , intent(in) :: elec_coord(elec_num,walk_num,3)
real (c_double ) , intent(in) :: coord(3,num)
real (c_double ) , intent(out) :: ee_rescaled_quad_gl(3,elec_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: nw, i, ii
double precision :: rij_inv, elel_dist_gl(3, elec_num), kappa_l
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
ee_rescaled_quad_gl = 0.0d0
do nw = 1, num
! prepare the actual een table
do i = 1, elec_num
rij_inv = 1.0d0 / quad_ee_distance(i, nw)
do ii = 1, 3
elel_dist_gl(ii, i) = (elec_coord(i,1, ii) - coord(ii,nw)) * rij_inv
end do
end do
do i = 1, elec_num
kappa_l = -1 * rescale_factor_ee
ee_rescaled_quad_gl(1, i, nw) = elel_dist_gl(1, i)
ee_rescaled_quad_gl(2, i, nw) = elel_dist_gl(2, i)
ee_rescaled_quad_gl(3, i, nw) = elel_dist_gl(3, i)
ee_rescaled_quad_gl(4, i, nw) = elel_dist_gl(4, i)
ee_rescaled_quad_gl(1, i, nw) = ee_rescaled_quad_gl(1, i, nw) * dexp(kappa_l * quad_ee_distance(i,nw))
ee_rescaled_quad_gl(2, i, nw) = ee_rescaled_quad_gl(2, i, nw) * dexp(kappa_l * quad_ee_distance(i,nw))
ee_rescaled_quad_gl(3, i, nw) = ee_rescaled_quad_gl(3, i, nw) * dexp(kappa_l * quad_ee_distance(i,nw))
end do
ee_rescaled_quad_gl(1, indices(nw)+1, nw) = 0.0d0
ee_rescaled_quad_gl(2, indices(nw)+1, nw) = 0.0d0
ee_rescaled_quad_gl(3, indices(nw)+1, nw) = 0.0d0
end do
end function qmckl_compute_ee_rescaled_quad_gl_doc
Electron-electron Jastrow gradients and Laplacian
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_ee_gl(qmckl_context context,
double* const delta_ee_gl,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_ee_gl (context, &
delta_ee_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_ee_gl(size_max)
end function qmckl_get_jastrow_champ_quad_ee_gl
end interface
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Index of quad electron |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
up_num |
int64_t |
in | Number of alpha electrons |
bord_num |
int64_t |
in | Number of coefficients |
b_vector |
double[bord_num+1] |
in | List of coefficients |
ee_distance_rescaled |
double[walk_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
ee_distance_rescaled_gl |
double[walk_num][4][elec_num][elec_num] |
in | Electron-electron rescaled distances derivatives |
ee_rescaled_quad |
double[num][elec_num] |
in | Electron-electron rescaled quad distances |
ee_rescaled_quad_gl |
double[num][3][elec_num] |
in | Electron-electron rescaled quad distances derivatives |
spin_independent |
int32_t |
in | If 1, same parameters for parallel and antiparallel spins |
delta_ee_gl |
double[num][elec_num][3] |
out | quad electron-electron jastrow gradients and Laplacian |
function qmckl_compute_jastrow_champ_quad_ee_gl_doc( &
context, num, indices, walk_num, elec_num, up_num, bord_num, &
b_vector, ee_distance_rescaled, ee_distance_rescaled_gl, &
ee_rescaled_quad, ee_rescaled_quad_gl, &
spin_independent, delta_ee_gl) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: up_num
integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: b_vector(bord_num+1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_distance_rescaled_gl(4,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_rescaled_quad(elec_num,num)
real (c_double ) , intent(in) :: ee_rescaled_quad_gl(3,elec_num,num)
integer (c_int32_t) , intent(in) , value :: spin_independent
real (c_double ) , intent(out) :: delta_ee_gl(3,elec_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: i, j, k, nw, ii
double precision :: x, x1, kf, x_old, x1_old
double precision :: denom, invdenom, invdenom2, f
double precision :: denom_old, invdenom_old, invdenom2_old, f_old
double precision :: grad_c2, grad_c2_old
double precision :: dx(3), dx_old(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (bord_num < 0) then
info = QMCKL_INVALID_ARG_5
return
endif
if ((spin_independent < 0).or.(spin_independent > 1)) then
info = QMCKL_INVALID_ARG_8
return
endif
do nw =1, num
delta_ee_gl(:,:,nw) = 0.0d0
do i = 1, elec_num
if (i == (indices(nw)+1)) cycle
x = ee_rescaled_quad(i,nw)
x_old = ee_distance_rescaled(i,indices(nw)+1,1)
denom = 1.0d0 + b_vector(2) * x
invdenom = 1.0d0 / denom
invdenom2 = invdenom * invdenom
denom_old = 1.0d0 + b_vector(2) * x_old
invdenom_old = 1.0d0 / denom_old
invdenom2_old = invdenom_old * invdenom_old
dx(1) = ee_rescaled_quad_gl(1, i, nw)
dx(2) = ee_rescaled_quad_gl(2, i, nw)
dx(3) = ee_rescaled_quad_gl(3, i, nw)
dx_old(1) = ee_distance_rescaled_gl(1, i, indices(nw)+1, 1)
dx_old(2) = ee_distance_rescaled_gl(2, i, indices(nw)+1, 1)
dx_old(3) = ee_distance_rescaled_gl(3, i, indices(nw)+1, 1)
grad_c2 = dx(1)*dx(1) + dx(2)*dx(2) + dx(3)*dx(3)
grad_c2_old = dx_old(1)*dx_old(1) + dx_old(2)*dx_old(2) + dx_old(3)*dx_old(3)
if (spin_independent == 1) then
f = b_vector(1) * invdenom2
f_old = b_vector(1) * invdenom2_old
else
if((i <= up_num .and. (indices(nw)+1) <= up_num ) .or. (i > up_num .and. (indices(nw)+1) > up_num)) then
f = 0.5d0 * b_vector(1) * invdenom2
f_old = 0.5d0 * b_vector(1) * invdenom2_old
else
f = b_vector(1) * invdenom2
f_old = b_vector(1) * invdenom2_old
end if
end if
delta_ee_gl(1,i,nw) = delta_ee_gl(1,i,nw) + f * dx(1) - f_old * dx_old(1)
delta_ee_gl(2,i,nw) = delta_ee_gl(2,i,nw) + f * dx(2) - f_old * dx_old(2)
delta_ee_gl(3,i,nw) = delta_ee_gl(3,i,nw) + f * dx(3) - f_old * dx_old(3)
delta_ee_gl(1,indices(nw)+1,nw) = delta_ee_gl(1,indices(nw)+1,nw) - f * dx(1) + f_old * dx_old(1)
delta_ee_gl(2,indices(nw)+1,nw) = delta_ee_gl(2,indices(nw)+1,nw) - f * dx(2) + f_old * dx_old(2)
delta_ee_gl(3,indices(nw)+1,nw) = delta_ee_gl(3,indices(nw)+1,nw) - f * dx(3) + f_old * dx_old(3)
kf = 2.d0
x1 = x
x1_old = x_old
x = 1.d0
x_old = 1.d0
do k=2, bord_num
f = b_vector(k+1) * kf * x
f_old = b_vector(k+1) * kf * x_old
delta_ee_gl(1,i,nw) = delta_ee_gl(1,i,nw) + f * x1 * dx(1) - f_old * x1_old * dx_old(1)
delta_ee_gl(2,i,nw) = delta_ee_gl(2,i,nw) + f * x1 * dx(2) - f_old * x1_old * dx_old(2)
delta_ee_gl(3,i,nw) = delta_ee_gl(3,i,nw) + f * x1 * dx(3) - f_old * x1_old * dx_old(3)
delta_ee_gl(1,indices(nw)+1,nw) = delta_ee_gl(1,indices(nw)+1,nw) - f * x1 * dx(1) + f_old * x1_old * dx_old(1)
delta_ee_gl(2,indices(nw)+1,nw) = delta_ee_gl(2,indices(nw)+1,nw) - f * x1 * dx(2) + f_old * x1_old * dx_old(2)
delta_ee_gl(3,indices(nw)+1,nw) = delta_ee_gl(3,indices(nw)+1,nw) - f * x1 * dx(3) + f_old * x1_old * dx_old(3)
x = x*x1
x_old = x_old*x1_old
kf = kf + 1.d0
end do
end do
end do
end function qmckl_compute_jastrow_champ_quad_ee_gl_doc
qmckl_exit_code
qmckl_compute_jastrow_champ_quad_ee_gl_doc (const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const double* ee_rescaled_quad,
const double* ee_rescaled_quad_gl,
const int32_t spin_independent,
double* const delta_ee_gl );
qmckl_exit_code
qmckl_compute_jastrow_champ_quad_ee_gl (const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* b_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_gl,
const double* ee_rescaled_quad,
const double* ee_rescaled_quad_gl,
const int32_t spin_independent,
double* const delta_ee_gl )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_quad_ee_gl_doc
#else
return qmckl_compute_jastrow_champ_quad_ee_gl_doc
#endif
(context, num, indices, walk_num, elec_num, up_num, bord_num, b_vector,
ee_distance_rescaled, ee_distance_rescaled_gl, ee_rescaled_quad, ee_rescaled_quad_gl, spin_independent, delta_ee_gl );
}
Electron-nucleus Jastrow
Electron-nucleus rescaled distance
Get
qmckl_exit_code
qmckl_get_en_rescaled_quad(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
nucl_num |
int64_t |
in | Number of nuclei |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
type_nucl_num |
int64_t |
in | Number of types of nuclei |
type_nucl_vector |
int64_t[nucl_num] |
in | Number of types of nuclei |
rescale_factor_en |
double[type_nucl_num] |
in | The factor for rescaled distances |
walk_num |
int64_t |
in | Number of walkers |
quad_en_distance |
double[num][nucl_num] |
in | quad electron-nucleus distances |
en_rescaled_quad |
double[num][nucl_num] |
out | Electron-nucleus rescaled distances |
function qmckl_compute_en_rescaled_quad_doc(context, num,&
nucl_num, type_nucl_num, type_nucl_vector, rescale_factor_en, &
walk_num, quad_en_distance, en_rescaled_quad) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: rescale_factor_en(type_nucl_num)
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: quad_en_distance(nucl_num,num)
real (c_double ) , intent(out) :: en_rescaled_quad(nucl_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: i, k
double precision :: coord(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do k=1,num
do i=1, nucl_num
en_rescaled_quad(i,k) = (1.0d0 - dexp(-rescale_factor_en(type_nucl_vector(i)+1) * &
quad_en_distance(i,k))) / rescale_factor_en(type_nucl_vector(i)+1)
end do
end do
end function qmckl_compute_en_rescaled_quad_doc
quad electron-nucleus Jastrow value
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_en(qmckl_context context,
double* const delta_en,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_en (context, &
delta_en, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_en(size_max)
end function qmckl_get_jastrow_champ_quad_en
end interface
Compute
Variable | Type | In/Out | Description |
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad point |
indices |
int64_t[num] |
in | Indices of electrons |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
type_nucl_num |
int64_t |
in | Number of unique nuclei |
type_nucl_vector |
int64_t[nucl_num] |
in | IDs of unique nuclei |
aord_num |
int64_t |
in | Number of coefficients |
a_vector |
double[type_nucl_num][aord_num+1] |
in | List of coefficients |
en_distance_rescaled |
double[walk_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
~en_rescaled_quad ~ | double[num][nucl_num] |
in | Electron-nucleus rescaled quad distances |
delta_en |
double[num] |
out | quad electron-nucleus jastrow |
function qmckl_compute_jastrow_champ_quad_en_doc( &
context, num, indices, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, a_vector, &
en_distance_rescaled, en_rescaled_quad, delta_en) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_rescaled_quad(nucl_num,num)
real (c_double ) , intent(out) :: delta_en(num)
integer(qmckl_exit_code) :: info
integer*8 :: i, a, p, nw
double precision :: x, power_ser, y
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_7
return
endif
do nw =1, num
delta_en(nw) = 0.0d0
do a = 1, nucl_num
x = en_distance_rescaled(indices(nw)+1, a, 1)
y = en_rescaled_quad(a, nw)
delta_en(nw) = delta_en(nw) - a_vector(1, type_nucl_vector(a)+1) * x / (1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x)
delta_en(nw) = delta_en(nw) + a_vector(1, type_nucl_vector(a)+1) * y / (1.0d0 + a_vector(2, type_nucl_vector(a)+1) * y)
do p = 2, aord_num
x = x * en_distance_rescaled(indices(nw)+1, a, 1)
y = y * en_rescaled_quad(a, nw)
delta_en(nw) = delta_en(nw) - a_vector(p + 1, type_nucl_vector(a)+1) * x + a_vector(p + 1, type_nucl_vector(a)+1) * y
end do
end do
end do
end function qmckl_compute_jastrow_champ_quad_en_doc
qmckl_exit_code qmckl_compute_jastrow_champ_quad_en (
const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_rescaled_quad,
double* const delta_en );
qmckl_exit_code qmckl_compute_jastrow_champ_quad_en_doc (
const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_rescaled_quad,
double* const delta_en );
qmckl_exit_code qmckl_compute_jastrow_champ_quad_en (
const qmckl_context context,
const int64_t num,
const int64_t* indices,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* a_vector,
const double* en_distance_rescaled,
const double* en_rescaled_quad,
double* const delta_en )
{
#ifdef HAVE_HPC
return qmckl_compute_jastrow_champ_quad_en_doc
#else
return qmckl_compute_jastrow_champ_quad_en_doc
#endif
(context, num, indices, walk_num, elec_num, nucl_num, type_nucl_num,
type_nucl_vector, aord_num, a_vector, en_distance_rescaled,
en_rescaled_quad, delta_en );
}
Electron-nucleus rescaled distances derivatives
Get
qmckl_exit_code qmckl_get_en_rescaled_quad_gl(qmckl_context context,
double* distance_rescaled_gl,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Number of quad points |
nucl_num |
int64_t |
in | Number of nuclei |
type_nucl_num |
int64_t |
in | Number of nucleus types |
type_nucl_vector |
int64_t[nucl_num] |
in | Array of nucleus types |
rescale_factor_en |
double[nucl_num] |
in | The factors for rescaled distances |
walk_num |
int64_t |
in | Number of walkers |
quad_en_distance |
double[num][nucl_num] |
in | quad electorn distances |
coord |
double[num][3] |
in | quad electron coordinates |
nucl_coord |
double[3][nucl_num] |
in | Nucleus coordinates |
en_rescaled_quad_gl |
double[num][nucl_num][3] |
out | Electron-nucleus rescaled quad distance derivatives |
integer function qmckl_compute_en_rescaled_quad_gl_doc_f(context, num, nucl_num, &
type_nucl_num, type_nucl_vector, rescale_factor_en, walk_num, &
quad_en_distance, coord, nucl_coord, en_rescaled_quad_gl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: rescale_factor_en(nucl_num)
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: quad_en_distance(nucl_num, num)
double precision , intent(in) :: coord(3,num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(out) :: en_rescaled_quad_gl(3,nucl_num,num)
integer*8 :: nw, a, ii
double precision :: ria_inv, elnuc_dist_gl(3, nucl_num), kappa_l
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
en_rescaled_quad_gl = 0.0d0
do nw = 1, num
! prepare the actual een table
do a = 1, nucl_num
ria_inv = 1.0d0 / quad_en_distance(a, nw)
do ii = 1, 3
elnuc_dist_gl(ii, a) = (coord(ii,nw) - nucl_coord(a, ii)) * ria_inv
end do
end do
do a = 1, nucl_num
kappa_l = -1 * rescale_factor_en(type_nucl_vector(a)+1)
en_rescaled_quad_gl(1, a, nw) = elnuc_dist_gl(1, a)
en_rescaled_quad_gl(2, a, nw) = elnuc_dist_gl(2, a)
en_rescaled_quad_gl(3, a, nw) = elnuc_dist_gl(3, a)
en_rescaled_quad_gl(1, a, nw) = en_rescaled_quad_gl(1, a, nw) * dexp(kappa_l * quad_en_distance(a,nw))
en_rescaled_quad_gl(2, a, nw) = en_rescaled_quad_gl(2, a, nw) * dexp(kappa_l * quad_en_distance(a,nw))
en_rescaled_quad_gl(3, a, nw) = en_rescaled_quad_gl(3, a, nw) * dexp(kappa_l * quad_en_distance(a,nw))
end do
end do
end function qmckl_compute_en_rescaled_quad_gl_doc_f
Electron-nucleus Jastrow gradients and Laplacian
Get
qmckl_exit_code
qmckl_get_jastrow_champ_quad_en_gl(qmckl_context context,
double* const delta_en_gl,
const int64_t size_max);
interface
integer(qmckl_exit_code) function qmckl_get_jastrow_champ_quad_en_gl (context, &
delta_en_gl, size_max) bind(C)
use, intrinsic :: iso_c_binding
import
implicit none
integer (qmckl_context) , intent(in), value :: context
integer(c_int64_t), intent(in), value :: size_max
real(c_double), intent(out) :: delta_en_gl(size_max)
end function qmckl_get_jastrow_champ_quad_en_gl
end interface
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad electrons |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
type_nucl_num |
int64_t |
in | Number of unique nuclei |
type_nucl_vector |
int64_t[nucl_num] |
in | IDs of unique nuclei |
aord_num |
int64_t |
in | Number of coefficients |
a_vector |
double[type_nucl_num][aord_num+1] |
in | List of coefficients |
en_distance_rescaled |
double[walk_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
en_distance_rescaled_gl |
double[walk_num][nucl_num][elec_num][4] |
in | Electron-nucleus rescaled distance derivatives |
en_rescaled_quad |
double[num][nucl_num] |
in | Electron-nucleus rescaled quad distances |
en_rescaled_quad_gl |
double[num][nucl_num][3] |
in | Electron-nucleus rescaled quad distance derivatives |
delta_en_gl |
double[num][elec_num][3] |
out | quad electron-nucleus Jastrow gradients and Laplacian |
function qmckl_compute_jastrow_champ_quad_en_gl_doc( &
context, num, indices, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, a_vector, &
en_distance_rescaled, en_distance_rescaled_gl, en_rescaled_quad, en_rescaled_quad_gl, delta_en_gl) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_distance_rescaled_gl(4, elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_rescaled_quad(nucl_num,num)
real (c_double ) , intent(in) :: en_rescaled_quad_gl(3, nucl_num,num)
real (c_double ) , intent(out) :: delta_en_gl(3,elec_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: i, a, k, nw, ii
double precision :: x, x1, kf, x_old, x1_old
double precision :: denom, invdenom, invdenom2, f
double precision :: denom_old, invdenom_old, invdenom2_old, f_old
double precision :: grad_c2, grad_c2_old
double precision :: dx(3), dx_old(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_8
return
endif
do nw =1, num
delta_en_gl(:,:,nw) = 0.0d0
do a = 1, nucl_num
x_old = en_distance_rescaled(indices(nw)+1,a,1)
x = en_rescaled_quad(a,nw)
denom = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x
invdenom = 1.0d0 / denom
invdenom2 = invdenom*invdenom
denom_old = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x_old
invdenom_old = 1.0d0 / denom_old
invdenom2_old = invdenom_old*invdenom_old
dx(1) = en_rescaled_quad_gl(1,a,nw)
dx(2) = en_rescaled_quad_gl(2,a,nw)
dx(3) = en_rescaled_quad_gl(3,a,nw)
dx_old(1) = en_distance_rescaled_gl(1,indices(nw)+1,a,1)
dx_old(2) = en_distance_rescaled_gl(2,indices(nw)+1,a,1)
dx_old(3) = en_distance_rescaled_gl(3,indices(nw)+1,a,1)
f = a_vector(1, type_nucl_vector(a)+1) * invdenom2
grad_c2 = dx(1)*dx(1) + dx(2)*dx(2) + dx(3)*dx(3)
f_old = a_vector(1, type_nucl_vector(a)+1) * invdenom2_old
grad_c2_old = dx_old(1)*dx_old(1) + dx_old(2)*dx_old(2) + dx_old(3)*dx_old(3)
delta_en_gl(1,indices(nw)+1,nw) = delta_en_gl(1,indices(nw)+1,nw) + f * dx(1) - f_old * dx_old(1)
delta_en_gl(2,indices(nw)+1,nw) = delta_en_gl(2,indices(nw)+1,nw) + f * dx(2) - f_old * dx_old(2)
delta_en_gl(3,indices(nw)+1,nw) = delta_en_gl(3,indices(nw)+1,nw) + f * dx(3) - f_old * dx_old(3)
kf = 2.d0
x1 = x
x = 1.d0
x1_old = x_old
x_old = 1.d0
do k=2, aord_num
f = a_vector(k+1,type_nucl_vector(a)+1) * kf * x
f_old = a_vector(k+1,type_nucl_vector(a)+1) * kf * x_old
delta_en_gl(1,indices(nw)+1,nw) = delta_en_gl(1,indices(nw)+1,nw) + f * x1 * dx(1) - f_old * x1_old * dx_old(1)
delta_en_gl(2,indices(nw)+1,nw) = delta_en_gl(2,indices(nw)+1,nw) + f * x1 * dx(2) - f_old * x1_old * dx_old(2)
delta_en_gl(3,indices(nw)+1,nw) = delta_en_gl(3,indices(nw)+1,nw) + f * x1 * dx(3) - f_old * x1_old * dx_old(3)
x = x*x1
x_old = x_old*x1_old
kf = kf + 1.d0
end do
end do
end do
end function qmckl_compute_jastrow_champ_quad_en_gl_doc
Force of quad en Jastrow
Get
qmckl_exit_code
qmckl_get_forces_jastrow_quad_en(qmckl_context context,
double* const forces_jastrow_quad_en,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad electrons |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
type_nucl_num |
int64_t |
in | Number of unique nuclei |
type_nucl_vector |
int64_t[nucl_num] |
in | IDs of unique nuclei |
aord_num |
int64_t |
in | Number of coefficients |
a_vector |
double[type_nucl_num][aord_num+1] |
in | List of coefficients |
en_distance_rescaled |
double[walk_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
en_distance_rescaled_gl |
double[walk_num][nucl_num][elec_num][4] |
in | Electron-nucleus rescaled distance derivatives |
en_rescaled_quad |
double[num][nucl_num] |
in | Electron-nucleus rescaled quad distances |
en_rescaled_quad_gl |
double[num][nucl_num][3] |
in | Electron-nucleus rescaled quad distance derivatives |
forces_jastrow_quad_en |
double[num][nucl_num][3] |
out | quad electron-nucleus forces |
function qmckl_compute_forces_jastrow_quad_en_doc( &
context, num, indices, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, a_vector, &
en_distance_rescaled, en_distance_rescaled_gl, en_rescaled_quad, en_rescaled_quad_gl, forces_jastrow_quad_en) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: a_vector(aord_num+1,type_nucl_num)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_distance_rescaled_gl(4, elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_rescaled_quad(nucl_num,num)
real (c_double ) , intent(in) :: en_rescaled_quad_gl(3, nucl_num,num)
real (c_double ) , intent(out) :: forces_jastrow_quad_en(3,nucl_num,num)
integer(qmckl_exit_code) :: info
integer*8 :: i, a, k, nw, ii
double precision :: x, x1, kf, x_old, x1_old
double precision :: denom, invdenom, invdenom2, f
double precision :: denom_old, invdenom_old, invdenom2_old, f_old
double precision :: dx(3), dx_old(3)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
if (aord_num < 0) then
info = QMCKL_INVALID_ARG_8
return
endif
do nw =1, num
forces_jastrow_quad_en(:,:,nw) = 0.0d0
do a = 1, nucl_num
x_old = en_distance_rescaled(indices(nw)+1,a,1)
x = en_rescaled_quad(a,nw)
denom = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x
invdenom = 1.0d0 / denom
invdenom2 = invdenom*invdenom
denom_old = 1.0d0 + a_vector(2, type_nucl_vector(a)+1) * x_old
invdenom_old = 1.0d0 / denom_old
invdenom2_old = invdenom_old*invdenom_old
dx(1) = -en_rescaled_quad_gl(1,a,nw)
dx(2) = -en_rescaled_quad_gl(2,a,nw)
dx(3) = -en_rescaled_quad_gl(3,a,nw)
dx_old(1) = -en_distance_rescaled_gl(1,indices(nw)+1,a,1)
dx_old(2) = -en_distance_rescaled_gl(2,indices(nw)+1,a,1)
dx_old(3) = -en_distance_rescaled_gl(3,indices(nw)+1,a,1)
f = a_vector(1, type_nucl_vector(a)+1) * invdenom2
f_old = a_vector(1, type_nucl_vector(a)+1) * invdenom2_old
forces_jastrow_quad_en(1,a,nw) = forces_jastrow_quad_en(1,a,nw) + f * dx(1) - f_old * dx_old(1)
forces_jastrow_quad_en(2,a,nw) = forces_jastrow_quad_en(2,a,nw) + f * dx(2) - f_old * dx_old(2)
forces_jastrow_quad_en(3,a,nw) = forces_jastrow_quad_en(3,a,nw) + f * dx(3) - f_old * dx_old(3)
kf = 2.d0
x1 = x
x = 1.d0
x1_old = x_old
x_old = 1.d0
do k=2, aord_num
f = a_vector(k+1,type_nucl_vector(a)+1) * kf * x
f_old = a_vector(k+1,type_nucl_vector(a)+1) * kf * x_old
forces_jastrow_quad_en(1,a,nw) = forces_jastrow_quad_en(1,a,nw) + f * x1 * dx(1) - f_old * x1_old * dx_old(1)
forces_jastrow_quad_en(2,a,nw) = forces_jastrow_quad_en(2,a,nw) + f * x1 * dx(2) - f_old * x1_old * dx_old(2)
forces_jastrow_quad_en(3,a,nw) = forces_jastrow_quad_en(3,a,nw) + f * x1 * dx(3) - f_old * x1_old * dx_old(3)
x = x*x1
x_old = x_old*x1_old
kf = kf + 1.d0
end do
end do
end do
end function qmckl_compute_forces_jastrow_quad_en_doc
Test
Force of delta_p matrix
Get
qmckl_exit_code
qmckl_get_forces_jastrow_quad_delta_p(qmckl_context context,
double* const forces_delta_p,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description |
---|---|---|---|
context |
qmckl_context |
in | Global state |
num |
int64_t |
in | Index of quad electron |
indices |
int64_t[num] |
in | Indices of quad electrons |
walk_num |
int64_t |
in | Number of walkers |
elec_num |
int64_t |
in | Number of electrons |
nucl_num |
int64_t |
in | Number of nuclei |
cord_num |
int64_t |
in | order of polynomials |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances |
een_rescaled_e |
double[walk_num][0:cord_num][elec_num][elec_num] |
in | Electron-electron rescaled distances |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances |
een_rescaled_quad_e |
double[num][0:cord_num][elec_num] |
in | Electron-electron quad rescaled distances |
een_rescaled_n_gl |
double[walk_num][0:cord_num][nucl_num][4][elec_num] |
in | Electron-nucleus rescaled distances derivatives |
een_rescaled_quad_n_gl |
double[num][0:cord_num][nucl_num][3] |
in | Electron-nucleus quad rescaled distances derivatives |
forces_delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][3][elec_num] |
out | Delta P matrix gradient and Laplacian |
integer(qmckl_exit_code) function qmckl_compute_forces_jastrow_quad_delta_p_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
een_rescaled_n, een_rescaled_e, een_rescaled_quad_n, een_rescaled_quad_e, &
een_rescaled_n_gl, een_rescaled_quad_n_gl, forces_delta_p) &
result(info) bind(C)
use, intrinsic :: iso_c_binding
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer(c_int64_t) , intent(in), value :: num, walk_num, elec_num, cord_num, nucl_num
integer(c_int64_t) , intent(in) :: indices(num)
real(c_double) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_quad_e(elec_num, 0:cord_num, num)
real(c_double) , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
real(c_double) , intent(in) :: een_rescaled_quad_n_gl(3, nucl_num, 0:cord_num, num)
real(c_double) , intent(out) :: forces_delta_p(elec_num,3,nucl_num,0:cord_num, 0:cord_num-1, num)
double precision :: delta_n_gl, accu
double precision :: delta_e(elec_num)
integer*8 :: i, a, j, l, k, p, m, n, nw, idx
double precision :: tmp
integer*8 :: LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
if (cord_num == 0) then
forces_delta_p = 0.d0
return
endif
do nw=1, num
idx = indices(nw)+1
do m=1, cord_num-1
do j = 1, elec_num
delta_e(j) = een_rescaled_quad_e(j,m,nw) - een_rescaled_e(j,idx,m,1)
end do
do l=0, cord_num
do a = 1, nucl_num
do k = 1, 3
delta_n_gl = een_rescaled_quad_n_gl(k,a,l,nw) - een_rescaled_n_gl(idx, k, a, l, 1)
tmp = -een_rescaled_quad_n_gl(k,a,l,nw)
do j = 1, elec_num
forces_delta_p(j,k,a,l,m,nw) = delta_e(j) * tmp + &
een_rescaled_e(idx,j,m,1) * delta_n_gl
end do
accu = 0.0d0
do j = 1, elec_num
accu = accu - delta_e(j) * een_rescaled_n_gl(j,k,a,l,1)
end do
forces_delta_p(idx,k,a,l,m,nw) = forces_delta_p(idx,k,a,l,m,nw) + accu
end do
end do
end do
end do
end do
end function qmckl_compute_forces_jastrow_quad_delta_p_doc
** Test
Force of quad een Jastrow
Get
qmckl_exit_code
qmckl_get_forces_jastrow_quad_een(qmckl_context context,
double* const forces_jastrow_quad_een,
const int64_t size_max);
Compute
Variable | Type | In/Out | Description | |
---|---|---|---|---|
context |
qmckl_context |
in | Global state | |
num |
int64_t |
in | Index of quad electron | |
indices |
int64_t[num] |
in | Indices of quad electrons | |
walk_num |
int64_t |
in | Number of walkers | |
elec_num |
int64_t |
in | Number of electrons | |
nucl_num |
int64_t |
in | Number of nuclei | |
cord_num |
int64_t |
in | order of polynomials | |
dim_c_vector |
int64_t |
in | dimension of full coefficient vector | |
c_vector_full |
double[dim_c_vector][nucl_num] |
in | full coefficient vector | |
lkpm_combined_index |
int64_t[4][dim_c_vector] |
in | combined indices | |
delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | quad electron P matrix | |
forces_delta_p |
double[num][0:cord_num-1][0:cord_num][nucl_num][3][elec_num] |
in | quad electron P matrix | |
tmp_c |
double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num] |
in | quad electron P matrix | |
forces_tmp_c |
double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num] |
in | quad electron P matrix | |
een_rescaled_n |
double[walk_num][0:cord_num][nucl_num][elec_num] |
in | Electron-nucleus rescaled distances | |
een_rescaled_quad_n |
double[num][0:cord_num][nucl_num] |
in | Electron-nucleus quad rescaled distances | |
een_rescaled_n_gl |
double[walk_num][0:cord_num][nucl_num][4][elec_num] |
in | Electron-nucleus rescaled distances derivatives | |
een_rescaled_quad_n_gl |
double[num][0:cord_num][nucl_num][3] |
in | Electron-nucleus quad rescaled distances derivatives | |
forces_jastrow_quad_een |
double[num][nucl_num][3] |
out | quad electron-nucleus forces |
function qmckl_compute_forces_jastrow_quad_een_doc( &
context, num, indices, walk_num, elec_num, nucl_num, cord_num, &
dim_c_vector, c_vector_full, lkpm_combined_index, &
delta_p, forces_delta_p, tmp_c, forces_tmp_c, &
een_rescaled_n, een_rescaled_quad_n, een_rescaled_n_gl, een_rescaled_quad_n_gl, forces_jastrow_quad_een) &
bind(C) result(info)
use qmckl
implicit none
integer (qmckl_context), intent(in), value :: context
integer (c_int64_t) , intent(in) , value :: num
integer (c_int64_t) , intent(in) :: indices(num)
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: dim_c_vector
integer (c_int64_t) , intent(in) , value :: cord_num
integer(c_int64_t) , intent(in) :: lkpm_combined_index(dim_c_vector,4)
real(c_double) , intent(in) :: c_vector_full(nucl_num, dim_c_vector)
real (c_double ) , intent(in) :: delta_p(elec_num, nucl_num,0:cord_num, 0:cord_num-1, num)
real (c_double ) , intent(in) :: forces_delta_p(elec_num, 3, nucl_num,0:cord_num, 0:cord_num-1, num)
real (c_double ) , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
real (c_double ) , intent(in) :: forces_tmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
real (c_double ) , intent(in) :: een_rescaled_quad_n(nucl_num, 0:cord_num, num)
real (c_double ) , intent(in) :: een_rescaled_n_gl(elec_num, 4, nucl_num, 0:cord_num, walk_num)
real (c_double ) , intent(in) :: een_rescaled_quad_n_gl(3, nucl_num, 0:cord_num, num)
real (c_double ) , intent(out) :: forces_jastrow_quad_een(3,nucl_num,num)
integer(qmckl_exit_code) :: info
double precision :: een_rescaled_delta_n(nucl_num, 0:cord_num), een_rescaled_delta_n_gl(nucl_num, 0:cord_num)
integer*8 :: i, a, j, l, k, p, m, n, nw, kk, idx
double precision :: accu, accu2, cn
integer*8 :: LDA, LDB, LDC
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) info = QMCKL_INVALID_CONTEXT
if (walk_num <= 0) info = QMCKL_INVALID_ARG_3
if (elec_num <= 0) info = QMCKL_INVALID_ARG_4
if (nucl_num <= 0) info = QMCKL_INVALID_ARG_5
if (cord_num < 0) info = QMCKL_INVALID_ARG_6
if (info /= QMCKL_SUCCESS) return
forces_jastrow_quad_een = 0.0d0
if (cord_num == 0) return
do nw = 1, num
idx = indices(nw)+1
do kk = 1, 3
een_rescaled_delta_n(:,:) = een_rescaled_quad_n(:,:,nw) - een_rescaled_n(idx,:,:,1)
een_rescaled_delta_n_gl(:,:) = een_rescaled_quad_n_gl(kk,:,:,nw) - een_rescaled_n_gl(idx,kk,:,:,1)
do n = 1, dim_c_vector
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = c_vector_full(a, n)
if(cn == 0.d0) cycle
accu = 0.0d0
do j = 1, elec_num
accu = accu - een_rescaled_n_gl(j,kk,a,m,1) * delta_p(j,a,m+l,k,nw) + &
een_rescaled_n(j,a,m,1) * forces_delta_p(j,kk,a,m+l,k,nw)
end do
accu = accu - een_rescaled_delta_n_gl(a,m) * (tmp_c(idx,a,m+l,k,1) + delta_p(idx,a,m+l,k,nw)) + &
een_rescaled_delta_n(a,m) * (forces_tmp_c(idx,kk,a,m+l,k,1) + forces_delta_p(idx,kk,a,m+l,k,nw))
forces_jastrow_quad_een(kk,a,nw) = forces_jastrow_quad_een(kk,a,nw) + accu * cn
end do
end do
end do
end do
end function qmckl_compute_forces_jastrow_quad_een_doc