1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-11-03 20:54:09 +01:00
qmckl/org/qmckl_jastrow.org
2022-07-11 10:09:34 +02:00

8059 lines
285 KiB
Org Mode

#+TITLE: Jastrow Factor
#+SETUPFILE: ../tools/theme.setup
#+INCLUDE: ../tools/lib.org
* Introduction
The Jastrow factor depends on the electronic ($\mathbf{r}$) and
nuclear ($\mathbf{R}$) coordinates. Its defined as $\exp(J(\mathbf{r},\mathbf{R}))$, where
\[
J(\mathbf{r},\mathbf{R}) = J_{\text{eN}}(\mathbf{r},\mathbf{R}) + J_{\text{ee}}(\mathbf{r}) + J_{\text{eeN}}(\mathbf{r},\mathbf{R})
\]
In the following, we us the notations $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and
$R_{i\alpha} = |\mathbf{r}_i - \mathbf{R}_\alpha|$.
$J_{\text{eN}}$ contains electron-nucleus terms:
\[
J_{\text{eN}}(\mathbf{r},\mathbf{R}) = \sum_{i=1}^{N_\text{elec}} \sum_{\alpha=1}^{N_\text{nucl}}
\frac{a_1\, f(R_{i\alpha})}{1+a_2\, f(R_{i\alpha})} +
\sum_{p=2}^{N_\text{ord}^a} a_{p+1}\, [f(R_{i\alpha})]^p - J_{eN}^\infty
\]
$J_{\text{ee}}$ contains electron-electron terms:
\[
J_{\text{ee}}(\mathbf{r}) =
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1}
\frac{b_1\, f(r_{ij})}{1+b_2\, f(r_{ij})} +
\sum_{p=2}^{N_\text{ord}^b} a_{p+1}\, [f(r_{ij})]^p - J_{ee}^\infty
\]
and $J_{\text{eeN}}$ contains electron-electron-Nucleus terms:
\[
J_{\text{eeN}}(\mathbf{r},\mathbf{R}) =
\sum_{\alpha=1}^{N_{\text{nucl}}}
\sum_{i=1}^{N_{\text{elec}}}
\sum_{j=1}^{i-1}
\sum_{p=2}^{N_{\text{ord}}}
\sum_{k=0}^{p-1}
\sum_{l=0}^{p-k-2\delta_{k,0}}
c_{lkp\alpha} \left[ g({r}_{ij}) \right]^k
\left[ \left[ g({R}_{i\alpha}) \right]^l + \left[ g({R}_{j\alpha}) \right]^l \right]
\left[ g({R}_{i\,\alpha}) \, g({R}_{j\alpha}) \right]^{(p-k-l)/2}
\]
$c_{lkp\alpha}$ are non-zero only when $p-k-l$ is even.
$f$ and $g$ are scaling function defined as
\[
f(r) = \frac{1-e^{-\kappa\, r}}{\kappa} \text{ and }
g(r) = e^{-\kappa\, r}.
\]
The terms $J_{\text{ee}}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that
$J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero.
* Headers :noexport:
#+begin_src elisp :noexport :results none
(org-babel-lob-ingest "../tools/lib.org")
#+end_src
#+begin_src c :tangle (eval h_private_func)
#ifndef QMCKL_JASTROW_HPF
#define QMCKL_JASTROW_HPF
#+end_src
#+begin_src c :tangle (eval h_private_type)
#ifndef QMCKL_JASTROW_HPT
#define QMCKL_JASTROW_HPT
#include <stdbool.h>
#+end_src
#+begin_src c :tangle (eval c_test) :noweb yes
#include "qmckl.h"
#include <assert.h>
#include <math.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include "n2.h"
int main() {
qmckl_context context;
context = qmckl_context_create();
#+end_src
#+begin_src c :tangle (eval c)
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#elif HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "qmckl.h"
#include "qmckl_context_private_type.h"
#include "qmckl_memory_private_type.h"
#include "qmckl_memory_private_func.h"
#include "qmckl_jastrow_private_func.h"
#include "qmckl_jastrow_private_type.h"
#ifdef HAVE_CUBLAS_OFFLOAD
#include "cublas_v2.h"
#endif
#+end_src
* Context
:PROPERTIES:
:Name: qmckl_jastrow
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
The following data stored in the context:
#+NAME: qmckl_jastrow_args
| Variable | Type | In/Out | Description |
|---------------------------+---------------------------------------+--------+-------------------------------------------------------------------|
| ~uninitialized~ | ~int32_t~ | in | Keeps bits set for uninitialized data |
| ~aord_num~ | ~int64_t~ | in | The number of a coeffecients |
| ~bord_num~ | ~int64_t~ | in | The number of b coeffecients |
| ~cord_num~ | ~int64_t~ | in | The number of c coeffecients |
| ~type_nucl_num~ | ~int64_t~ | in | Number of Nucleii types |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of types of Nuclei |
| ~aord_vector~ | ~double[aord_num + 1][type_nucl_num]~ | in | Order of a polynomial coefficients |
| ~bord_vector~ | ~double[bord_num + 1]~ | in | Order of b polynomial coefficients |
| ~cord_vector~ | ~double[cord_num][type_nucl_num]~ | in | Order of c polynomial coefficients |
| ~factor_ee~ | ~double[walk_num]~ | out | Jastrow factor: electron-electron part |
| ~factor_ee_date~ | ~uint64_t~ | out | Jastrow factor: electron-electron part |
| ~factor_en~ | ~double[walk_num]~ | out | Jastrow factor: electron-nucleus part |
| ~factor_en_date~ | ~uint64_t~ | out | Jastrow factor: electron-nucleus part |
| ~factor_een~ | ~double[walk_num]~ | out | Jastrow factor: electron-electron-nucleus part |
| ~factor_een_date~ | ~uint64_t~ | out | Jastrow factor: electron-electron-nucleus part |
| ~factor_ee_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_ee_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the derivative |
| ~factor_en_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_en_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the en derivative |
| ~factor_een_deriv_e~ | ~double[4][nelec][walk_num]~ | out | Derivative of the Jastrow factor: electron-electron-nucleus part |
| ~factor_een_deriv_e_date~ | ~uint64_t~ | out | Keep track of the date for the een derivative |
computed data:
| Variable | Type | In/Out |
|----------------------------+-----------------------------------------------------------------+-------------------------------------------------|
| ~dim_cord_vect~ | ~int64_t~ | Number of unique C coefficients |
| ~dim_cord_vect_date~ | ~uint64_t~ | Number of unique C coefficients |
| ~asymp_jasb~ | ~double[2]~ | Asymptotic component |
| ~asymp_jasb_date~ | ~uint64_t~ | Asymptotic component |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | vector of non-zero coefficients |
| ~cord_vect_full_date~ | ~uint64_t~ | Keep track of changes here |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | Transform l,k,p, and m into consecutive indices |
| ~lkpm_combined_index_date~ | ~uint64_t~ | Transform l,k,p, and m into consecutive indices |
| ~tmp_c~ | ~double[walk_num][cord_num][cord_num+1][nucl_num][elec_num]~ | vector of non-zero coefficients |
| ~dtmp_c~ | ~double[walk_num][elec_num][4][nucl_num][cord_num+1][cord_num]~ | vector of non-zero coefficients |
| ~een_rescaled_n~ | ~double[walk_num][cord_num+1][nucl_num][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord |
| ~een_rescaled_n_date~ | ~uint64_t~ | Keep track of the date of creation |
| ~een_rescaled_e_deriv_e~ | ~double[walk_num][cord_num+1][elec_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
| ~een_rescaled_e_deriv_e_date~ | ~uint64_t~ | Keep track of the date of creation |
| ~een_rescaled_n_deriv_e~ | ~double[walk_num][cord_num+1][nucl_num][4][elec_num]~ | The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
| ~een_rescaled_n_deriv_e_date~ | ~uint64_t~ | Keep track of the date of creation |
#+NAME: jastrow_data
#+BEGIN_SRC python :results none :exports none
import numpy as np
# For H2O we have the following data:
elec_num = 10
nucl_num = 2
up_num = 5
down_num = 5
nucl_coord = np.array([ [0.000000, 0.000000 ],
[0.000000, 0.000000 ],
[0.000000, 2.059801 ] ])
elec_coord = [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303],
[-0.587812193472177 , -0.128751981129274 , 0.187773606533075],
[ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ],
[-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ],
[ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ],
[-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002],
[-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867],
[ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002],
[-0.108090166832043 , 0.189161729653261 , 2.15398313919894],
[ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]];
ee_distance_rescaled = [
[ 0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.550227800352402, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.919155060185168, 0.937695909123175, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.893325429242815, 0.851181978173561, 0.978501685226877,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.982457268305353, 0.976125002619471, 0.994349933143149,
0.844077311588328, 0.000000000000000, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.482407528408731, 0.414816073699124, 0.894716035479343,
0.876540187084407, 0.978921170036895, 0.000000000000000,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.459541909660400, 0.545007215761510, 0.883752955884551,
0.918958134888791, 0.986386936267237, 0.362209822236419,
0.000000000000000, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.763732576854455, 0.817282762358449, 0.801802919535959,
0.900089095449775, 0.975704636491453, 0.707836537586060,
0.755705808346586, 0.000000000000000, 0.000000000000000,
0.000000000000000 ],
[ 0.904249454052971, 0.871097965261373, 0.982717262706270,
0.239901207363622, 0.836519456769083, 0.896135326270534,
0.930694340243023, 0.917708540815567, 0.000000000000000,
0.000000000000000 ],
[ 0.944400908070716, 0.922589018494961, 0.984615718580670,
0.514328661540623, 0.692362267147064, 0.931894098453677,
0.956034127544344, 0.931221472309472, 0.540903688625053,
0.000000000000000 ]]
en_distance_rescaled = np.transpose(np.array([
[ 0.443570948411811 , 0.467602196999105 , 0.893870160799932 ,
0.864347190364447 , 0.976608182392358 , 0.187563183468210 ,
0.426404699872689 , 0.665107090128166 , 0.885246991424583 ,
0.924902909715270 ],
[ 0.899360150637444 , 0.860035135365386 , 0.979659405613798 ,
6.140678415933776E-002, 0.835118398056681 , 0.884071658981068 ,
0.923860000907362 , 0.905203414522289 , 0.211286300932359 ,
0.492104840907350 ]]))
# symmetrize it
for i in range(elec_num):
for j in range(elec_num):
ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i]
type_nucl_num = 1
aord_num = 5
bord_num = 5
cord_num = 5
dim_cord_vect= 23
type_nucl_vector = [ 1, 1]
aord_vector = [
[0.000000000000000E+000],
[0.000000000000000E+000],
[-0.380512000000000E+000],
[-0.157996000000000E+000],
[-3.155800000000000E-002],
[2.151200000000000E-002]]
bord_vector = [ 0.500000000000000E-000, 0.153660000000000E-000, 6.722620000000000E-002,
2.157000000000000E-002, 7.309600000000000E-003, 2.866000000000000E-003]
cord_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ]
cord_vector_full = [
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
]
lkpm_combined_index = [[1 , 1 , 2 , 0],
[0 , 0 , 2 , 1],
[1 , 2 , 3 , 0],
[2 , 1 , 3 , 0],
[0 , 1 , 3 , 1],
[1 , 0 , 3 , 1],
[1 , 3 , 4 , 0],
[2 , 2 , 4 , 0],
[0 , 2 , 4 , 1],
[3 , 1 , 4 , 0],
[1 , 1 , 4 , 1],
[2 , 0 , 4 , 1],
[0 , 0 , 4 , 2],
[1 , 4 , 5 , 0],
[2 , 3 , 5 , 0],
[0 , 3 , 5 , 1],
[3 , 2 , 5 , 0],
[1 , 2 , 5 , 1],
[4 , 1 , 5 , 0],
[2 , 1 , 5 , 1],
[0 , 1 , 5 , 2],
[3 , 0 , 5 , 1],
[1 , 0 , 5 , 2]]
kappa = 1.0
kappa_inv = 1.0/kappa
#+END_SRC
** Data structure
#+begin_src c :comments org :tangle (eval h_private_type)
typedef struct qmckl_jastrow_struct{
int32_t uninitialized;
int64_t aord_num;
int64_t bord_num;
int64_t cord_num;
int64_t type_nucl_num;
uint64_t asymp_jasb_date;
uint64_t tmp_c_date;
uint64_t dtmp_c_date;
uint64_t factor_ee_date;
uint64_t factor_en_date;
uint64_t factor_een_date;
uint64_t factor_ee_deriv_e_date;
uint64_t factor_en_deriv_e_date;
uint64_t factor_een_deriv_e_date;
int64_t* type_nucl_vector;
double * aord_vector;
double * bord_vector;
double * cord_vector;
double * asymp_jasb;
double * factor_ee;
double * factor_en;
double * factor_een;
double * factor_ee_deriv_e;
double * factor_en_deriv_e;
double * factor_een_deriv_e;
int64_t dim_cord_vect;
uint64_t dim_cord_vect_date;
double * cord_vect_full;
uint64_t cord_vect_full_date;
int64_t* lkpm_combined_index;
uint64_t lkpm_combined_index_date;
double * tmp_c;
double * dtmp_c;
double * een_rescaled_e;
double * een_rescaled_n;
uint64_t een_rescaled_e_date;
uint64_t een_rescaled_n_date;
double * een_rescaled_e_deriv_e;
double * een_rescaled_n_deriv_e;
uint64_t een_rescaled_e_deriv_e_date;
uint64_t een_rescaled_n_deriv_e_date;
bool provided;
char * type;
#ifdef HAVE_HPC
bool gpu_offload;
#endif
} qmckl_jastrow_struct;
#+end_src
The ~uninitialized~ integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and ~provided == true~.
Some values are initialized by default, and are not concerned by
this mechanism.
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code qmckl_init_jastrow(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c)
qmckl_exit_code qmckl_init_jastrow(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
ctx->jastrow.uninitialized = (1 << 6) - 1;
/* Default values */
return QMCKL_SUCCESS;
}
#+end_src
** Access functions
#+begin_src c :comments org :tangle (eval h_func) :exports none
qmckl_exit_code qmckl_get_jastrow_aord_num (qmckl_context context, int64_t* const aord_num);
qmckl_exit_code qmckl_get_jastrow_bord_num (qmckl_context context, int64_t* const bord_num);
qmckl_exit_code qmckl_get_jastrow_cord_num (qmckl_context context, int64_t* const bord_num);
qmckl_exit_code qmckl_get_jastrow_type_nucl_num (qmckl_context context, int64_t* const type_nucl_num);
qmckl_exit_code qmckl_get_jastrow_type_nucl_vector (qmckl_context context, int64_t* const type_nucl_num, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_aord_vector (qmckl_context context, double * const aord_vector, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_bord_vector (qmckl_context context, double * const bord_vector, const int64_t size_max);
qmckl_exit_code qmckl_get_jastrow_cord_vector (qmckl_context context, double * const cord_vector, const int64_t size_max);
#+end_src
Along with these core functions, calculation of the jastrow factor
requires the following additional information to be set:
When all the data for the AOs have been provided, the following
function returns ~true~.
#+begin_src c :comments org :tangle (eval h_func)
bool qmckl_jastrow_provided (const qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
bool qmckl_jastrow_provided(const qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
return ctx->jastrow.provided;
}
#+end_src
#+NAME:post
#+begin_src c :exports none
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return NULL;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_aord_num (const qmckl_context context, int64_t* const aord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (aord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_aord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 0;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.aord_num > 0);
,*aord_num = ctx->jastrow.aord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_bord_num (const qmckl_context context, int64_t* const bord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (bord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_bord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 0;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.bord_num > 0);
,*bord_num = ctx->jastrow.bord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_cord_num (const qmckl_context context, int64_t* const cord_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (cord_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_cord_num",
"aord_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 0;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.cord_num > 0);
,*cord_num = ctx->jastrow.cord_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_type_nucl_num (const qmckl_context context, int64_t* const type_nucl_num) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (type_nucl_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_type_nucl_num",
"type_nucl_num is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 1;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.type_nucl_num > 0);
,*type_nucl_num = ctx->jastrow.type_nucl_num;
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_type_nucl_vector (const qmckl_context context,
int64_t* const type_nucl_vector,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (type_nucl_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_type_nucl_vector",
"type_nucl_vector is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 2;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.type_nucl_vector != NULL);
if (size_max < ctx->jastrow.type_nucl_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_type_nucl_vector",
"Array too small. Expected jastrow.type_nucl_num");
}
memcpy(type_nucl_vector, ctx->jastrow.type_nucl_vector, ctx->jastrow.type_nucl_num*sizeof(int64_t));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_aord_vector (const qmckl_context context,
double * const aord_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (aord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_aord_vector",
"aord_vector is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 3;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.aord_vector != NULL);
int64_t sze = (ctx->jastrow.aord_num + 1)*ctx->jastrow.type_nucl_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_aord_vector",
"Array too small. Expected (ctx->jastrow.aord_num + 1)*ctx->jastrow.type_nucl_num");
}
memcpy(aord_vector, ctx->jastrow.aord_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_bord_vector (const qmckl_context context,
double * const bord_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (bord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_bord_vector",
"bord_vector is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 4;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.bord_vector != NULL);
int64_t sze=ctx->jastrow.bord_num +1;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_bord_vector",
"Array too small. Expected (ctx->jastrow.bord_num + 1)");
}
memcpy(bord_vector, ctx->jastrow.bord_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_get_jastrow_cord_vector (const qmckl_context context,
double * const cord_vector,
const int64_t size_max) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return (char) 0;
}
if (cord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_jastrow_cord_vector",
"cord_vector is a null pointer");
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 5;
if ( (ctx->jastrow.uninitialized & mask) != 0) {
return QMCKL_NOT_PROVIDED;
}
assert (ctx->jastrow.cord_vector != NULL);
int64_t dim_cord_vect;
qmckl_exit_code rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect);
if (rc != QMCKL_SUCCESS) return rc;
int64_t sze=dim_cord_vect * ctx->jastrow.type_nucl_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_cord_vector",
"Array too small. Expected dim_cord_vect * jastrow.type_nucl_num");
}
memcpy(cord_vector, ctx->jastrow.cord_vector, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
** Initialization functions
To prepare for the Jastrow and its derivative, all the following functions need to be
called.
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code qmckl_set_jastrow_ord_num (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num);
qmckl_exit_code qmckl_set_jastrow_type_nucl_num (qmckl_context context, const int64_t type_nucl_num);
qmckl_exit_code qmckl_set_jastrow_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t nucl_num);
qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector, const int64_t size_max);
qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector, const int64_t size_max);
#+end_src
#+NAME:pre2
#+begin_src c :exports none
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
if (mask != 0 && !(ctx->jastrow.uninitialized & mask)) {
printf("%d %d\n", mask, ctx->jastrow.uninitialized );
return qmckl_failwith( context,
QMCKL_ALREADY_SET,
"qmckl_set_jastrow_*",
NULL);
}
#+end_src
#+NAME:post2
#+begin_src c :exports none
ctx->jastrow.uninitialized &= ~mask;
ctx->jastrow.provided = (ctx->jastrow.uninitialized == 0);
if (ctx->jastrow.provided) {
qmckl_exit_code rc_ = qmckl_finalize_jastrow(context);
if (rc_ != QMCKL_SUCCESS) return rc_;
}
return QMCKL_SUCCESS;
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_jastrow_ord_num(qmckl_context context,
const int64_t aord_num,
const int64_t bord_num,
const int64_t cord_num)
{
int32_t mask = 1 << 0;
<<pre2>>
if (aord_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_ord_num",
"aord_num <= 0");
}
if (bord_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_ord_num",
"bord_num <= 0");
}
if (cord_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_ord_num",
"cord_num <= 0");
}
ctx->jastrow.aord_num = aord_num;
ctx->jastrow.bord_num = bord_num;
ctx->jastrow.cord_num = cord_num;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_type_nucl_num(qmckl_context context, const int64_t type_nucl_num)
{
int32_t mask = 1 << 1;
<<pre2>>
if (type_nucl_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_type_nucl_num",
"type_nucl_num < 0");
}
ctx->jastrow.type_nucl_num = type_nucl_num;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_type_nucl_vector(qmckl_context context,
int64_t const * type_nucl_vector,
const int64_t nucl_num)
{
int32_t mask = 1 << 2;
<<pre2>>
int64_t type_nucl_num;
qmckl_exit_code rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num);
if (rc != QMCKL_SUCCESS) return rc;
if (type_nucl_num == 0) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_jastrow_type_nucl_vector",
"type_nucl_num is not set");
}
if (type_nucl_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_type_nucl_vector",
"type_nucl_vector = NULL");
}
if (ctx->jastrow.type_nucl_vector != NULL) {
rc = qmckl_free(context, ctx->jastrow.type_nucl_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_type_nucl_vector",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = nucl_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_type_nucl_vector",
NULL);
}
memcpy(new_array, type_nucl_vector, mem_info.size);
ctx->jastrow.type_nucl_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_aord_vector(qmckl_context context,
double const * aord_vector,
const int64_t size_max)
{
int32_t mask = 1 << 3;
<<pre2>>
int64_t aord_num;
qmckl_exit_code rc = qmckl_get_jastrow_aord_num(context, &aord_num);
if (rc != QMCKL_SUCCESS) return rc;
int64_t type_nucl_num;
rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num);
if (rc != QMCKL_SUCCESS) return rc;
if (aord_num == 0) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_jastrow_coefficient",
"aord_num is not set");
}
if (aord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_aord_vector",
"aord_vector = NULL");
}
if (ctx->jastrow.aord_vector != NULL) {
rc = qmckl_free(context, ctx->jastrow.aord_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ord_vector",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (aord_num + 1) * type_nucl_num * sizeof(double);
if ((size_t) size_max < mem_info.size/sizeof(double)) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_aord_vector",
"Array too small. Expected (aord_num+1)*type_nucl_num");
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_coefficient",
NULL);
}
memcpy(new_array, aord_vector, mem_info.size);
ctx->jastrow.aord_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_bord_vector(qmckl_context context,
double const * bord_vector,
const int64_t size_max)
{
int32_t mask = 1 << 4;
<<pre2>>
int64_t bord_num;
qmckl_exit_code rc = qmckl_get_jastrow_bord_num(context, &bord_num);
if (rc != QMCKL_SUCCESS) return rc;
if (bord_num == 0) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_jastrow_coefficient",
"bord_num is not set");
}
if (bord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_bord_vector",
"bord_vector = NULL");
}
if (ctx->jastrow.bord_vector != NULL) {
rc = qmckl_free(context, ctx->jastrow.bord_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ord_vector",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (bord_num + 1) * sizeof(double);
if ((size_t) size_max < mem_info.size/sizeof(double)) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_bord_vector",
"Array too small. Expected (bord_num+1)");
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_coefficient",
NULL);
}
memcpy(new_array, bord_vector, mem_info.size);
ctx->jastrow.bord_vector = new_array;
<<post2>>
}
qmckl_exit_code
qmckl_set_jastrow_cord_vector(qmckl_context context,
double const * cord_vector,
const int64_t size_max)
{
int32_t mask = 1 << 5;
<<pre2>>
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
int64_t dim_cord_vect;
rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect);
if (rc != QMCKL_SUCCESS) return rc;
int64_t type_nucl_num;
rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num);
if (rc != QMCKL_SUCCESS) return rc;
if (dim_cord_vect == 0) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_jastrow_coefficient",
"dim_cord_vect is not set");
}
if (cord_vector == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_jastrow_cord_vector",
"cord_vector = NULL");
}
if (ctx->jastrow.cord_vector != NULL) {
rc = qmckl_free(context, ctx->jastrow.cord_vector);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_cord_vector",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double);
if ((size_t) size_max < mem_info.size/sizeof(double)) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_jastrow_cord_vector",
"Array too small. Expected dim_cord_vect * type_nucl_num");
}
double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_jastrow_coefficient",
NULL);
}
memcpy(new_array, cord_vector, mem_info.size);
ctx->jastrow.cord_vector = new_array;
<<post2>>
}
#+end_src
When the required information is completely entered, other data structures are
computed to accelerate the calculations. The intermediates factors
are precontracted using BLAS LEVEL 3 operations for an optimal flop count.
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_jastrow(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* ----------------------------------- */
/* Check for the necessary information */
/* ----------------------------------- */
/* Check for the electron data
1. elec_num
2. ee_distances_rescaled
,*/
if (!(ctx->electron.provided)) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_electron",
NULL);
}
/* Check for the nucleus data
1. nucl_num
2. en_distances_rescaled
,*/
if (!(ctx->nucleus.provided)) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_nucleus",
NULL);
}
/* Decide if the Jastrow if offloaded on GPU or not */
#if defined(HAVE_HPC) && (defined(HAVE_CUBLAS_OFFLOAD) || defined(HAVE_OPENACC_OFFLOAD) || defined(HAVE_OPENMP_OFFLOAD))
ctx->jastrow.gpu_offload = true; // ctx->electron.num > 100;
#endif
qmckl_exit_code rc = QMCKL_SUCCESS;
return rc;
}
#+end_src
** Test
#+begin_src c :tangle (eval c_test)
/* Reference input data */
int64_t walk_num = n2_walk_num;
int64_t elec_num = n2_elec_num;
int64_t elec_up_num = n2_elec_up_num;
int64_t elec_dn_num = n2_elec_dn_num;
double rescale_factor_kappa_ee = 1.0;
double rescale_factor_kappa_en = 1.0;
double nucl_rescale_factor_kappa = 1.0;
double* elec_coord = &(n2_elec_coord[0][0][0]);
const double* nucl_charge = n2_charge;
int64_t nucl_num = n2_nucl_num;
double* nucl_coord = &(n2_nucl_coord[0][0]);
int64_t size_max;
/* Provide Electron data */
qmckl_exit_code rc;
assert(!qmckl_electron_provided(context));
int64_t n;
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_electron_provided(context));
rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_up_num);
rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_dn_num);
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_num);
double k_ee = 0.;
double k_en = 0.;
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == 1.0);
rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == 1.0);
rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == rescale_factor_kappa_ee);
rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == rescale_factor_kappa_en);
int64_t w;
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_electron_walk_num (context, walk_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_SUCCESS);
assert(w == walk_num);
assert(qmckl_electron_provided(context));
rc = qmckl_set_electron_coord (context, 'N', elec_coord, walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
double elec_coord2[walk_num*3*elec_num];
rc = qmckl_get_electron_coord (context, 'N', elec_coord2, walk_num*3*elec_num);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*elec_num ; ++i) {
assert( elec_coord[i] == elec_coord2[i] );
}
/* Provide Nucleus data */
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == nucl_num);
double k;
rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == 1.0);
rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == nucl_rescale_factor_kappa);
double nucl_coord2[3*nucl_num];
rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2, 3*nucl_num);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]), 3*nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_coord (context, 'N', nucl_coord2, nucl_num*3);
assert(rc == QMCKL_SUCCESS);
for (int64_t k=0 ; k<3 ; ++k) {
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_coord[nucl_num*k+i] == nucl_coord2[3*i+k] );
}
}
rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2, nucl_num*3);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*nucl_num ; ++i) {
assert( nucl_coord[i] == nucl_coord2[i] );
}
double nucl_charge2[nucl_num];
rc = qmckl_get_nucleus_charge(context, nucl_charge2, nucl_num);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_charge(context, nucl_charge, nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_nucleus_charge(context, nucl_charge2, nucl_num);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_charge[i] == nucl_charge2[i] );
}
assert(qmckl_nucleus_provided(context));
#+end_src
* Computation
The computed data is stored in the context so that it can be reused
by different kernels. To ensure that the data is valid, for each
computed data the date of the context is stored when it is computed.
To know if some data needs to be recomputed, we check if the date of
the dependencies are more recent than the date of the data to
compute. If it is the case, then the data is recomputed and the
current date is stored.
** Asymptotic component for \(J_{ee}\)
Calculate the asymptotic component ~asymp_jasb~ to be substracted from the final
electron-electron jastrow factor \(J_{\text{ee}}\). The asymptotic component is calculated
via the ~bord_vector~ and the electron-electron rescale factor ~rescale_factor_kappa~.
\[
J_{\text{ee}}^{\infty} = \frac{b_1 \kappa^{-1}}{1 + b_2 \kappa^{-1}}
\]
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_asymp_jasb(qmckl_context context,
double* const asymp_jasb,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_asymp_jasb(qmckl_context context,
double* const asymp_jasb,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_asymp_jasb(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = 2;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_asymp_jasb",
"Array too small. Expected 2");
}
memcpy(asymp_jasb, ctx->jastrow.asymp_jasb, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_asymp_jasb(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee kappa is provided */
double rescale_factor_kappa_ee;
rc = qmckl_get_electron_rescale_factor_ee(context, &rescale_factor_kappa_ee);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.asymp_jasb_date) {
/* Allocate array */
if (ctx->jastrow.asymp_jasb == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 2 * sizeof(double);
double* asymp_jasb = (double*) qmckl_malloc(context, mem_info);
if (asymp_jasb == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_asymp_jasb",
NULL);
}
ctx->jastrow.asymp_jasb = asymp_jasb;
}
rc = qmckl_compute_asymp_jasb(context,
ctx->jastrow.bord_num,
ctx->jastrow.bord_vector,
rescale_factor_kappa_ee,
ctx->jastrow.asymp_jasb);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.asymp_jasb_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_asymp_jasb
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_asymp_jasb_args
| Variable | Type | In/Out | Description |
|---------------------------+----------------------+--------+-------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~bord_num~ | ~int64_t~ | in | Order of the polynomial |
| ~bord_vector~ | ~double[bord_num+1]~ | in | Values of b |
| ~rescale_factor_kappa_ee~ | ~double~ | in | Electron coordinates |
| ~asymp_jasb~ | ~double[2]~ | out | Asymptotic value |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_asymp_jasb_f(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: bord_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(out) :: asymp_jasb(2)
integer*8 :: i, p
double precision :: kappa_inv, x, asym_one
kappa_inv = 1.0d0 / rescale_factor_kappa_ee
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
asym_one = bord_vector(1) * kappa_inv / (1.0d0 + bord_vector(2) * kappa_inv)
asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/)
do i = 1, 2
x = kappa_inv
do p = 2, bord_num
x = x * kappa_inv
asymp_jasb(i) = asymp_jasb(i) + bord_vector(p + 1) * x
end do
end do
end function qmckl_compute_asymp_jasb_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_asymp_jasb (
const qmckl_context context,
const int64_t bord_num,
const double* bord_vector,
const double rescale_factor_kappa_ee,
double* const asymp_jasb ) {
if (context == QMCKL_NULL_CONTEXT){
return QMCKL_INVALID_CONTEXT;
}
if (bord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
const double kappa_inv = 1.0 / rescale_factor_kappa_ee;
const double asym_one = bord_vector[0] * kappa_inv / (1.0 + bord_vector[1] * kappa_inv);
asymp_jasb[0] = asym_one;
asymp_jasb[1] = 0.5 * asym_one;
for (int i = 0 ; i <= 1; ++i) {
double x = kappa_inv;
for (int p = 1; p < bord_num; ++p){
x *= kappa_inv;
asymp_jasb[i] = asymp_jasb[i] + bord_vector[p + 1] * x;
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_asymp_jasb (
const qmckl_context context,
const int64_t bord_num,
const double* bord_vector,
const double rescale_factor_kappa_ee,
double* const asymp_jasb );
#+end_src
*** Test
#+name: asymp_jasb
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
asym_one = bord_vector[0] * kappa_inv / (1.0 + bord_vector[1]*kappa_inv)
asymp_jasb = np.array([asym_one, 0.5 * asym_one])
for i in range(2):
x = kappa_inv
for p in range(1,bord_num):
x = x * kappa_inv
asymp_jasb[i] += bord_vector[p + 1] * x
print("asym_one : ", asym_one)
print("asymp_jasb[0] : ", asymp_jasb[0])
print("asymp_jasb[1] : ", asymp_jasb[1])
#+end_src
#+RESULTS: asymp_jasb
: asym_one : 0.43340325572525706
: asymp_jasb[0] : 0.5323750557252571
: asymp_jasb[1] : 0.31567342786262853
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
int64_t type_nucl_num = n2_type_nucl_num;
int64_t* type_nucl_vector = &(n2_type_nucl_vector[0]);
int64_t aord_num = n2_aord_num;
int64_t bord_num = n2_bord_num;
int64_t cord_num = n2_cord_num;
double* aord_vector = &(n2_aord_vector[0][0]);
double* bord_vector = &(n2_bord_vector[0]);
double* cord_vector = &(n2_cord_vector[0][0]);
int64_t dim_cord_vect=0;
/* Initialize the Jastrow data */
rc = qmckl_init_jastrow(context);
assert(!qmckl_jastrow_provided(context));
/* Set the data */
rc = qmckl_set_jastrow_ord_num(context, aord_num, bord_num, cord_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_type_nucl_num(context, type_nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_type_nucl_vector(context, type_nucl_vector, nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_aord_vector(context, aord_vector,(aord_num+1)*type_nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_bord_vector(context, bord_vector,(bord_num+1));
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_cord_vector(context, cord_vector,dim_cord_vect*type_nucl_num);
assert(rc == QMCKL_SUCCESS);
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double asymp_jasb[2];
rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb,2);
// calculate asymp_jasb
assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12);
assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);
#+end_src
** Electron-electron component \(f_{ee}\)
Calculate the electron-electron jastrow component ~factor_ee~ using the ~asymp_jasb~
componenet and the electron-electron rescaled distances ~ee_distance_rescaled~.
\[
f_{ee} = \sum_{i,j<i} \left\{ \frac{ \eta B_0 C_{ij}}{1 - B_1 C_{ij}} - J_{asymp} + \sum^{nord}_{k}B_k C_{ij}^k \right\}
\]
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_ee(qmckl_context context,
double* const factor_ee,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_ee(qmckl_context context,
double* const factor_ee,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_ee(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze=ctx->electron.walk_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_ee",
"Array too small. Expected walk_num");
}
memcpy(factor_ee, ctx->jastrow.factor_ee, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee rescaled distance is provided */
rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_ee_date) {
/* Allocate array */
if (ctx->jastrow.factor_ee == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_ee = (double*) qmckl_malloc(context, mem_info);
if (factor_ee == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_ee",
NULL);
}
ctx->jastrow.factor_ee = factor_ee;
}
rc = qmckl_compute_factor_ee(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->electron.up_num,
ctx->jastrow.bord_num,
ctx->jastrow.bord_vector,
ctx->electron.ee_distance_rescaled,
ctx->jastrow.asymp_jasb,
ctx->jastrow.factor_ee);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_ee_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_ee
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_ee_args
| Variable | Type | In/Out | Description |
|------------------------+----------------------------------------+--------+-----------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~up_num~ | ~int64_t~ | in | Number of alpha electrons |
| ~bord_num~ | ~int64_t~ | in | Number of coefficients |
| ~bord_vector~ | ~double[bord_num+1]~ | in | List of coefficients |
| ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~asymp_jasb~ | ~double[2]~ | in | Electron-electron distances |
| ~factor_ee~ | ~double[walk_num]~ | out | Electron-electron distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, bord_num, &
bord_vector, ee_distance_rescaled, asymp_jasb, factor_ee) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num, walk_num)
double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee(walk_num)
integer*8 :: i, j, p, ipar, nw
double precision :: x, power_ser, spin_fact
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
factor_ee = 0.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, j - 1
x = ee_distance_rescaled(i,j,nw)
power_ser = 0.0d0
spin_fact = 1.0d0
ipar = 1
do p = 2, bord_num
x = x * ee_distance_rescaled(i,j,nw)
power_ser = power_ser + bord_vector(p + 1) * x
end do
if(j <= up_num .OR. i > up_num) then
spin_fact = 0.5d0
ipar = 2
endif
factor_ee(nw) = factor_ee(nw) + spin_fact * bord_vector(1) * &
ee_distance_rescaled(i,j,nw) / &
(1.0d0 + bord_vector(2) * &
ee_distance_rescaled(i,j,nw)) &
-asymp_jasb(ipar) + power_ser
end do
end do
end do
end function qmckl_compute_factor_ee_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_factor_ee (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
double* const factor_ee ) {
int ipar; // can we use a smaller integer?
double x, x1, spin_fact, power_ser;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (bord_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
for (int nw = 0; nw < walk_num; ++nw) {
factor_ee[nw] = 0.0; // put init array here.
for (int i = 0; i < elec_num; ++i ) {
for (int j = 0; j < i; ++j) {
//x = ee_distance_rescaled[j * (walk_num * elec_num) + i * (walk_num) + nw];
x = ee_distance_rescaled[j + i * elec_num + nw*(elec_num * elec_num)];
x1 = x;
power_ser = 0.0;
spin_fact = 1.0;
ipar = 0; // index of asymp_jasb
for (int p = 1; p < bord_num; ++p) {
x = x * x1;
power_ser = power_ser + bord_vector[p + 1] * x;
}
if(i < up_num || j >= up_num) {
spin_fact = 0.5;
ipar = 1;
}
factor_ee[nw] = factor_ee[nw] + spin_fact * bord_vector[0] * \
x1 / \
(1.0 + bord_vector[1] * \
x1) \
-asymp_jasb[ipar] + power_ser;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_ee_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_ee (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
double* const factor_ee );
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasb>>
factor_ee = 0.0
for i in range(0,elec_num):
for j in range(0,i):
x = ee_distance_rescaled[i][j]
pow_ser = 0.0
spin_fact = 1.0
ipar = 0
for p in range(1,bord_num):
x = x * ee_distance_rescaled[i][j]
pow_ser = pow_ser + bord_vector[p + 1] * x
if(i < up_num or j >= up_num):
spin_fact = 0.5
ipar = 1
factor_ee = factor_ee + spin_fact * bord_vector[0] * ee_distance_rescaled[i][j] \
/ (1.0 + bord_vector[1] * ee_distance_rescaled[i][j]) \
- asymp_jasb[ipar] + pow_ser
print("factor_ee :",factor_ee)
#+end_src
#+RESULTS:
: asym_one : 0.43340325572525706
: asymp_jasb[0] : 0.5323750557252571
: asymp_jasb[1] : 0.31567342786262853
: factor_ee : -4.282760865958113
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_ee[walk_num];
rc = qmckl_get_jastrow_factor_ee(context, factor_ee, walk_num);
// calculate factor_ee
assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12);
#+end_src
** Electron-electron component derivative \(f'_{ee}\)
Calculate the derivative of the ~factor_ee~ using the ~ee_distance_rescaled~ and
the electron-electron rescaled distances derivatives ~ee_distance_rescaled_deriv_e~.
There are four components, the gradient which has 3 components in the \(x, y, z\)
directions and the laplacian as the last component.
TODO: Add equation
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context,
double* const factor_ee_deriv_e,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context,
double* const factor_ee_deriv_e,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_ee_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_ee_deriv_e",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_ee_deriv_e, ctx->jastrow.factor_ee_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_ee_deriv_e(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee rescaled distance is provided */
rc = qmckl_provide_ee_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if ee rescaled distance deriv e is provided */
rc = qmckl_provide_ee_distance_rescaled_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_ee_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.factor_ee_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double);
double* factor_ee_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_ee_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_ee_deriv_e",
NULL);
}
ctx->jastrow.factor_ee_deriv_e = factor_ee_deriv_e;
}
rc = qmckl_compute_factor_ee_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->electron.up_num,
ctx->jastrow.bord_num,
ctx->jastrow.bord_vector,
ctx->electron.ee_distance_rescaled,
ctx->electron.ee_distance_rescaled_deriv_e,
ctx->jastrow.factor_ee_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_ee_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_ee_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_ee_deriv_e_args
| Variable | Type | In/Out | Description |
|--------------------------------+-------------------------------------------+--------+-----------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~up_num~ | ~int64_t~ | in | Number of alpha electrons |
| ~bord_num~ | ~int64_t~ | in | Number of coefficients |
| ~bord_vector~ | ~double[bord_num+1]~ | in | List of coefficients |
| ~ee_distance_rescaled~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~ee_distance_rescaled_deriv_e~ | ~double[walk_num][4][elec_num][elec_num]~ | in | Electron-electron distances |
| ~factor_ee_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-electron distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_ee_deriv_e_doc_f( &
context, walk_num, elec_num, up_num, bord_num, &
bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, &
factor_ee_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: ee_distance_rescaled(elec_num, elec_num,walk_num)
double precision , intent(in) :: ee_distance_rescaled_deriv_e(4,elec_num, elec_num,walk_num) !TODO
double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num)
integer*8 :: i, j, p, nw, ii
double precision :: x, spin_fact, y
double precision :: den, invden, invden2, invden3, xinv
double precision :: lap1, lap2, lap3, third
double precision, dimension(3) :: pow_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
factor_ee_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, elec_num
x = ee_distance_rescaled(i,j,nw)
if(abs(x) < 1.0d-18) cycle
pow_ser_g = 0.0d0
spin_fact = 1.0d0
den = 1.0d0 + bord_vector(2) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / (x + 1.0d-18)
dx(1) = ee_distance_rescaled_deriv_e(1, i, j, nw)
dx(2) = ee_distance_rescaled_deriv_e(2, i, j, nw)
dx(3) = ee_distance_rescaled_deriv_e(3, i, j, nw)
dx(4) = ee_distance_rescaled_deriv_e(4, i, j, nw)
if((i .LE. up_num .AND. j .LE. up_num ) .OR. &
(i .GT. up_num .AND. j .GT. up_num)) then
spin_fact = 0.5d0
endif
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = ee_distance_rescaled(i, j, nw)
if(abs(x) < 1.0d-18) cycle
do p = 2, bord_num
y = p * bord_vector(p + 1) * x
pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * ee_distance_rescaled(i, j, nw)
end do
lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii)
factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + spin_fact * bord_vector(1) * &
dx(ii) * invden2 + pow_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * (spin_fact * bord_vector(1) * invden3)
factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_ee_deriv_e_doc_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_factor_ee_deriv_e_hpc(
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
double* const factor_ee_deriv_e ) {
int64_t ii;
double pow_ser_g[3];
double dx[4];
double x, spin_fact, y;
double den, invden, invden2, invden3, xinv;
double lap1, lap2, lap3, third;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (bord_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
for (int nw = 0; nw < walk_num; ++nw) {
for (int ii = 0; ii < 4; ++ii) {
for (int j = 0; j < elec_num; ++j) {
factor_ee_deriv_e[j + ii * elec_num + nw * elec_num * 4] = 0.0;
}
}
}
third = 1.0 / 3.0;
for (int nw = 0; nw < walk_num; ++nw) {
for (int i = 0; i < elec_num; ++i) {
for (int j = 0; j < elec_num; ++j) {
x = ee_distance_rescaled[j + i * elec_num + nw * elec_num * elec_num];
if (fabs(x) < 1.0e-18) continue;
for (int ii = 0; ii < 3; ++ii){
pow_ser_g[ii] = 0.0;
}
spin_fact = 1.0;
den = 1.0 + bord_vector[1] * x;
invden = 1.0 / den;
invden2 = invden * invden;
invden3 = invden2 * invden;
xinv = 1.0 / (x + 1.0e-18);
dx[0] = ee_distance_rescaled_deriv_e[0 \
+ j * 4 + i * 4 * elec_num \
+ nw * 4 * elec_num * elec_num];
dx[1] = ee_distance_rescaled_deriv_e[1 \
+ j * 4 + i * 4 * elec_num \
+ nw * 4 * elec_num * elec_num];
dx[2] = ee_distance_rescaled_deriv_e[2 \
+ j * 4 + i * 4 * elec_num \
+ nw * 4 * elec_num * elec_num];
dx[3] = ee_distance_rescaled_deriv_e[3 \
+ j * 4 + i * 4 * elec_num \
+ nw * 4 * elec_num * elec_num];
if((i <= (up_num-1) && j <= (up_num-1) ) || (i > (up_num-1) && j > (up_num-1))) {
spin_fact = 0.5;
}
lap1 = 0.0;
lap2 = 0.0;
lap3 = 0.0;
for (int ii = 0; ii < 3; ++ii) {
x = ee_distance_rescaled[j + i * elec_num + nw * elec_num * elec_num];
if (fabs(x) < 1.0e-18) continue;
for (int p = 2; p < bord_num+1; ++p) {
y = p * bord_vector[(p-1) + 1] * x;
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii];
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii];
lap2 = lap2 + y;
x = x * ee_distance_rescaled[j + i * elec_num + nw * elec_num * elec_num];
}
lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii];
factor_ee_deriv_e[i + ii * elec_num + nw * elec_num * 4 ] += \
+ spin_fact * bord_vector[0] * dx[ii] * invden2 \
+ pow_ser_g[ii] ;
}
ii = 3;
lap2 = lap2 * dx[ii] * third;
lap3 = lap3 + den * dx[ii];
lap3 = lap3 * (spin_fact * bord_vector[0] * invden3);
factor_ee_deriv_e[i + ii*elec_num + nw * elec_num * 4] += lap1 + lap2 + lap3;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_ee_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
double* const factor_ee_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_ee_deriv_e_args,rettyp=get_value("CRetType"),fname="qmckl_compute_factor_ee_deriv_e_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_ee_deriv_e_doc &
(context, &
walk_num, &
elec_num, &
up_num, &
bord_num, &
bord_vector, &
ee_distance_rescaled, &
ee_distance_rescaled_deriv_e, &
factor_ee_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: up_num
integer (c_int64_t) , intent(in) , value :: bord_num
real (c_double ) , intent(in) :: bord_vector(bord_num+1)
real (c_double ) , intent(in) :: ee_distance_rescaled(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: ee_distance_rescaled_deriv_e(elec_num,elec_num,4,walk_num)
real (c_double ) , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_ee_deriv_e_doc_f
info = qmckl_compute_factor_ee_deriv_e_doc_f &
(context, &
walk_num, &
elec_num, &
up_num, &
bord_num, &
bord_vector, &
ee_distance_rescaled, &
ee_distance_rescaled_deriv_e, &
factor_ee_deriv_e)
end function qmckl_compute_factor_ee_deriv_e_doc
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_factor_ee_deriv_e_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
double* const factor_ee_deriv_e );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_factor_ee_deriv_e_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
double* const factor_ee_deriv_e );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_factor_ee_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
double* const factor_ee_deriv_e ) {
#ifdef HAVE_HPC
return qmckl_compute_factor_ee_deriv_e_hpc(context, walk_num, elec_num, up_num, bord_num, bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, factor_ee_deriv_e );
#else
return qmckl_compute_factor_ee_deriv_e_doc(context, walk_num, elec_num, up_num, bord_num, bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, factor_ee_deriv_e );
#endif
}
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<asymp_jasb>>
kappa = 1.0
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_deriv_e[ii, i, j] = (elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
elec_dist_deriv_e[:, j, j] = 0.0
ee_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
f = 1.0 - kappa * ee_distance_rescaled[i][j]
for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = elec_dist_deriv_e[ii][i][j]
ee_distance_rescaled_deriv_e[3][i][j] = ee_distance_rescaled_deriv_e[3][i][j] + \
(-kappa * ee_distance_rescaled_deriv_e[0][i][j] * ee_distance_rescaled_deriv_e[0][i][j]) + \
(-kappa * ee_distance_rescaled_deriv_e[1][i][j] * ee_distance_rescaled_deriv_e[1][i][j]) + \
(-kappa * ee_distance_rescaled_deriv_e[2][i][j] * ee_distance_rescaled_deriv_e[2][i][j])
for ii in range(4):
ee_distance_rescaled_deriv_e[ii][i][j] = ee_distance_rescaled_deriv_e[ii][i][j] * f
third = 1.0 / 3.0
factor_ee_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(4),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
x = ee_distance_rescaled[j][i]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(4),dtype=float)
spin_fact = 1.0
den = 1.0 + bord_vector[1] * ee_distance_rescaled[j][i]
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (ee_distance_rescaled[j][i] + 1.0E-18)
ipar = 1
for ii in range(4):
dx[ii] = ee_distance_rescaled_deriv_e[ii][j][i]
if((i <= (up_num-1) and j <= (up_num-1) ) or \
(i > (up_num-1) and j > (up_num-1))):
spin_fact = 0.5
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = ee_distance_rescaled[j][i]
if x < 1e-18:
continue
for p in range(2,bord_num+1):
y = p * bord_vector[(p-1) + 1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * ee_distance_rescaled[j][i]
lap3 = lap3 - 2.0 * bord_vector[1] * dx[ii] * dx[ii]
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + spin_fact * bord_vector[0] * \
dx[ii] * invden2 + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (spin_fact * bord_vector[0] * invden3)
factor_ee_deriv_e[ii][j] = factor_ee_deriv_e[ii][j] + lap1 + lap2 + lap3
print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0])
print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0])
print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0])
print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0])
#+end_src
#+RESULTS:
: asym_one : 0.43340325572525706
: asymp_jasb[0] : 0.5323750557252571
: asymp_jasb[1] : 0.31567342786262853
: factor_ee_deriv_e[0][0]: 0.16364894652107934
: factor_ee_deriv_e[1][0]: -0.6927548119830084
: factor_ee_deriv_e[2][0]: 0.073267755223968
: factor_ee_deriv_e[3][0]: 1.5111672803213185
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
// calculate factor_ee_deriv_e
double factor_ee_deriv_e[walk_num][4][elec_num];
rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0]),walk_num*4*elec_num);
// check factor_ee_deriv_e
assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][1][0]+0.6927548119830084 ) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][2][0]-0.073267755223968 ) < 1.e-12);
assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12);
#+end_src
** Electron-nucleus component \(f_{en}\)
Calculate the electron-electron jastrow component ~factor_en~ using the ~aord_vector~
coeffecients and the electron-nucleus rescaled distances ~en_distance_rescaled~.
\[
f_{en} = \sum_{i,j<i} \left\{ \frac{ A_0 C_{ij}}{1 - A_1 C_{ij}} + \sum^{nord}_{k}A_k C_{ij}^k \right\}
\]
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_en(qmckl_context context,
double* const factor_en,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_en(qmckl_context context,
double* const factor_en,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_en(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze=ctx->electron.walk_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_en",
"Array too small. Expected walk_num");
}
memcpy(factor_en, ctx->jastrow.factor_en, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_en_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_en_date) {
/* Allocate array */
if (ctx->jastrow.factor_en == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_en = (double*) qmckl_malloc(context, mem_info);
if (factor_en == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_en",
NULL);
}
ctx->jastrow.factor_en = factor_en;
}
rc = qmckl_compute_factor_en(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector,
ctx->jastrow.aord_num,
ctx->jastrow.aord_vector,
ctx->electron.en_distance_rescaled,
ctx->jastrow.factor_en);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_en_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_en
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_en_args
| Variable | Type | In/Out | Description |
|------------------------+----------------------------------------+--------+----------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nucleii |
| ~aord_num~ | ~int64_t~ | in | Number of coefficients |
| ~aord_vector~ | ~double[aord_num+1][type_nucl_num]~ | in | List of coefficients |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~factor_en~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_en_f( &
context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, aord_vector, &
en_distance_rescaled, factor_en) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num)
double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num)
double precision , intent(out) :: factor_en(walk_num)
integer*8 :: i, a, p, nw
double precision :: x, power_ser
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num <= 0) then
info = QMCKL_INVALID_ARG_7
return
endif
factor_en = 0.0d0
do nw =1, walk_num
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(i, a, nw)
power_ser = 0.0d0
do p = 2, aord_num
x = x * en_distance_rescaled(i, a, nw)
power_ser = power_ser + aord_vector(p + 1, type_nucl_vector(a)) * x
end do
factor_en(nw) = factor_en(nw) + aord_vector(1, type_nucl_vector(a)) * &
en_distance_rescaled(i, a, nw) / &
(1.0d0 + aord_vector(2, type_nucl_vector(a)) * &
en_distance_rescaled(i, a, nw)) &
+ power_ser
end do
end do
end do
end function qmckl_compute_factor_en_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_factor_en (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
double* const factor_en ) {
double x, x1, power_ser;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (type_nucl_num <= 0) {
return QMCKL_INVALID_ARG_5;
}
if (type_nucl_vector == NULL) {
return QMCKL_INVALID_ARG_6;
}
if (aord_num <= 0) {
return QMCKL_INVALID_ARG_7;
}
if (aord_vector == NULL) {
return QMCKL_INVALID_ARG_8;
}
if (en_distance_rescaled == NULL) {
return QMCKL_INVALID_ARG_9;
}
if (factor_en == NULL) {
return QMCKL_INVALID_ARG_10;
}
for (int nw = 0; nw < walk_num; ++nw ) {
// init array
factor_en[nw] = 0.0;
for (int a = 0; a < nucl_num; ++a ) {
for (int i = 0; i < elec_num; ++i ) {
// x = ee_distance_rescaled[j * (walk_num * elec_num) + i * (walk_num) + nw];
x = en_distance_rescaled[i + a * elec_num + nw * (elec_num * nucl_num)];
x1 = x;
power_ser = 0.0;
for (int p = 2; p < aord_num+1; ++p) {
x = x * x1;
power_ser = power_ser + aord_vector[(p+1)-1 + (type_nucl_vector[a]-1) * aord_num] * x;
}
factor_en[nw] = factor_en[nw] + aord_vector[0 + (type_nucl_vector[a]-1)*aord_num] * x1 / \
(1.0 + aord_vector[1 + (type_nucl_vector[a]-1) * aord_num] * x1) + \
power_ser;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_en_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_en (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
double* const factor_en );
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
factor_en = 0.0
for a in range(0,nucl_num):
for i in range(0,elec_num):
x = en_distance_rescaled[i][a]
pow_ser = 0.0
for p in range(2,aord_num+1):
x = x * en_distance_rescaled[i][a]
pow_ser = pow_ser + aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
factor_en = factor_en + aord_vector[0][type_nucl_vector[a]-1] * en_distance_rescaled[i][a] \
/ (1.0 + aord_vector[1][type_nucl_vector[a]-1] * en_distance_rescaled[i][a]) \
+ pow_ser
print("factor_en :",factor_en)
#+end_src
#+RESULTS:
: factor_en : -5.865822569188727
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_en[walk_num];
rc = qmckl_get_jastrow_factor_en(context, factor_en,walk_num);
// calculate factor_en
assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12);
#+end_src
** Electron-nucleus component derivative \(f'_{en}\)
Calculate the electron-electron jastrow component ~factor_en_deriv_e~ derivative
with respect to the electron coordinates using the ~en_distance_rescaled~ and ~en_distance_rescaled_deriv_e~ which are already calculated previously.
TODO: write equations.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context,
double* const factor_en_deriv_e,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context,
double* const factor_en_deriv_e,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_en_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_en_deriv_e",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_en_deriv_e, ctx->jastrow.factor_en_deriv_e, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_en_distance_rescaled(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_en_distance_rescaled_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_en_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.factor_en_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * 4 * ctx->electron.num * sizeof(double);
double* factor_en_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_en_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_en_deriv_e",
NULL);
}
ctx->jastrow.factor_en_deriv_e = factor_en_deriv_e;
}
rc = qmckl_compute_factor_en_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector,
ctx->jastrow.aord_num,
ctx->jastrow.aord_vector,
ctx->electron.en_distance_rescaled,
ctx->electron.en_distance_rescaled_deriv_e,
ctx->jastrow.factor_en_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_en_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_en_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_en_deriv_e_args
| Variable | Type | In/Out | Description |
|--------------------------------+-------------------------------------------+--------+---------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~type_nucl_num~ | ~int64_t~ | in | Number of unique nuclei |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | IDs of unique nucleii |
| ~aord_num~ | ~int64_t~ | in | Number of coefficients |
| ~aord_vector~ | ~double[aord_num+1][type_nucl_num]~ | in | List of coefficients |
| ~en_distance_rescaled~ | ~double[walk_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~en_distance_rescaled_deriv_e~ | ~double[walk_num][4][nucl_num][elec_num]~ | in | Electron-nucleus distance derivatives |
| ~factor_en_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_en_deriv_e_f( &
context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, aord_vector, &
en_distance_rescaled, en_distance_rescaled_deriv_e, factor_en_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num)
double precision , intent(in) :: en_distance_rescaled(elec_num, nucl_num, walk_num)
double precision , intent(in) :: en_distance_rescaled_deriv_e(4, elec_num, nucl_num, walk_num)
double precision , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num)
integer*8 :: i, a, p, ipar, nw, ii
double precision :: x, den, invden, invden2, invden3, xinv
double precision :: y, lap1, lap2, lap3, third
double precision, dimension(3) :: power_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num <= 0) then
info = QMCKL_INVALID_ARG_7
return
endif
factor_en_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(i,a,nw)
if(abs(x) < 1.0d-18) continue
power_ser_g = 0.0d0
den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / x
do ii = 1, 4
dx(ii) = en_distance_rescaled_deriv_e(ii,i,a,nw)
end do
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = en_distance_rescaled(i, a, nw)
do p = 2, aord_num
y = p * aord_vector(p + 1, type_nucl_vector(a)) * x
power_ser_g(ii) = power_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * en_distance_rescaled(i, a, nw)
end do
lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii)
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + aord_vector(1, type_nucl_vector(a)) &
,* dx(ii) * invden2 &
+ power_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * aord_vector(1, type_nucl_vector(a)) * invden3
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_en_deriv_e_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_en_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_deriv_e,
double* const factor_en_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_en_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_en_deriv_e &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
aord_num, &
aord_vector, &
en_distance_rescaled, &
en_distance_rescaled_deriv_e, &
factor_en_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
integer (c_int64_t) , intent(in) , value :: aord_num
real (c_double ) , intent(in) :: aord_vector(type_nucl_num,aord_num+1)
real (c_double ) , intent(in) :: en_distance_rescaled(elec_num,nucl_num,walk_num)
real (c_double ) , intent(in) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,4,walk_num)
real (c_double ) , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_en_deriv_e_f
info = qmckl_compute_factor_en_deriv_e_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
type_nucl_num, &
type_nucl_vector, &
aord_num, &
aord_vector, &
en_distance_rescaled, &
en_distance_rescaled_deriv_e, &
factor_en_deriv_e)
end function qmckl_compute_factor_en_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
kappa = 1.0
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for j in range(nucl_num):
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
f = 1.0 - kappa * en_distance_rescaled[i][a]
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
third = 1.0 / 3.0
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(3),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
x = en_distance_rescaled[i][a]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (x + 1.0E-18)
for ii in range(4):
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = en_distance_rescaled[i][a]
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[i][a]
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
dx[ii] * invden2 + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
#+end_src
#+RESULTS:
: factor_en_deriv_e[0][0]: 0.11609919541763383
: factor_en_deriv_e[1][0]: -0.23301394780804574
: factor_en_deriv_e[2][0]: 0.17548337641865783
: factor_en_deriv_e[3][0]: -0.9667363412285741
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
// calculate factor_en_deriv_e
double factor_en_deriv_e[walk_num][4][elec_num];
rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0]),walk_num*4*elec_num);
// check factor_en_deriv_e
assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
#+end_src
** Electron-electron rescaled distances for each order ~een_rescaled_e~ stores the table of the rescaled distances between all
pairs of electrons and raised to the power \(p\) defined by ~cord_num~:
\[
C_{ij,p} = \left( 1 - \exp{-\kappa C_{ij}} \right)^p
\]
where \(C_{ij}\) is the matrix of electron-electron distances.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een_rescaled_e",
"Array too small. Expected ctx->electron.num * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)");
}
memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_ee_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.een_rescaled_e_date) {
/* Allocate array */
if (ctx->jastrow.een_rescaled_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->electron.num *
ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double);
double* een_rescaled_e = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_een_rescaled_e",
NULL);
}
ctx->jastrow.een_rescaled_e = een_rescaled_e;
}
rc = qmckl_compute_een_rescaled_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->jastrow.cord_num,
ctx->electron.rescale_factor_kappa_ee,
ctx->electron.ee_distance,
ctx->jastrow.een_rescaled_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.een_rescaled_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_een_rescaled_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_e_args
| Variable | Type | In/Out | Description |
|---------------------------+----------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | out | Electron-electron rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_een_rescaled_e_doc_f( &
context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, &
ee_distance, een_rescaled_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
double precision,dimension(:,:),allocatable :: een_rescaled_e_ij
double precision :: x
integer*8 :: i, j, k, l, nw
allocate(een_rescaled_e_ij(elec_num * (elec_num - 1) / 2, cord_num + 1))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_e = 0.0d0
do nw = 1, walk_num
een_rescaled_e_ij = 0.0d0
een_rescaled_e_ij(:, 1) = 1.0d0
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_kappa_ee * ee_distance(i, j, nw))
end do
end do
do l = 2, cord_num
do k = 1, elec_num * (elec_num - 1)/2
een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2)
end do
end do
! prepare the actual een table
een_rescaled_e(:, :, 0, nw) = 1.0d0
do l = 1, cord_num
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
x = een_rescaled_e_ij(k, l + 1)
een_rescaled_e(i, j, l, nw) = x
een_rescaled_e(j, i, l, nw) = x
end do
end do
end do
do l = 0, cord_num
do j = 1, elec_num
een_rescaled_e(j, j, l, nw) = 0.0d0
end do
end do
end do
end function qmckl_compute_een_rescaled_e_doc_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname="qmckl_compute_een_rescaled_e_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_een_rescaled_e_doc &
(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, &
ee_distance, een_rescaled_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee
real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_een_rescaled_e_doc_f
info = qmckl_compute_een_rescaled_e_doc_f &
(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e)
end function qmckl_compute_een_rescaled_e_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_een_rescaled_e_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e ) {
double *een_rescaled_e_ij;
double x;
const int64_t elec_pairs = (elec_num * (elec_num - 1)) / 2;
const int64_t len_een_ij = elec_pairs * (cord_num + 1);
int64_t k;
// number of element for the een_rescaled_e_ij[N_e*(N_e-1)/2][cord+1]
// probably in C is better [cord+1, Ne*(Ne-1)/2]
//elec_pairs = (elec_num * (elec_num - 1)) / 2;
//len_een_ij = elec_pairs * (cord_num + 1);
een_rescaled_e_ij = (double *) malloc (len_een_ij * sizeof(double));
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
// Prepare table of exponentiated distances raised to appropriate power
// init
for (int kk = 0; kk < walk_num*(cord_num+1)*elec_num*elec_num; ++kk) {
een_rescaled_e[kk]= 0.0;
}
/*
for (int nw = 0; nw < walk_num; ++nw) {
for (int l = 0; l < (cord_num + 1); ++l) {
for (int i = 0; i < elec_num; ++i) {
for (int j = 0; j < elec_num; ++j) {
een_rescaled_e[j + i*elec_num + l*elec_num*elec_num + nw*(cord_num+1)*elec_num*elec_num]= 0.0;
}
}
}
}
*/
for (int nw = 0; nw < walk_num; ++nw) {
for (int kk = 0; kk < len_een_ij; ++kk) {
// this array initialized at 0 except een_rescaled_e_ij(:, 1) = 1.0d0
// and the arrangement of indices is [cord_num+1, ne*(ne-1)/2]
een_rescaled_e_ij[kk]= ( kk < (elec_pairs) ? 1.0 : 0.0 );
}
k = 0;
for (int i = 0; i < elec_num; ++i) {
for (int j = 0; j < i; ++j) {
// een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_kappa_ee * ee_distance(i, j, nw));
een_rescaled_e_ij[k + elec_pairs] = exp(-rescale_factor_kappa_ee * \
ee_distance[j + i*elec_num + nw*(elec_num*elec_num)]);
k = k + 1;
}
}
for (int l = 2; l < (cord_num+1); ++l) {
for (int k = 0; k < elec_pairs; ++k) {
// een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2)
een_rescaled_e_ij[k+l*elec_pairs] = een_rescaled_e_ij[k + (l - 1)*elec_pairs] * \
een_rescaled_e_ij[k + elec_pairs];
}
}
// prepare the actual een table
for (int i = 0; i < elec_num; ++i){
for (int j = 0; j < elec_num; ++j) {
een_rescaled_e[j + i*elec_num + 0 + nw*(cord_num+1)*elec_num*elec_num] = 1.0;
}
}
// Up to here it should work.
for ( int l = 1; l < (cord_num+1); ++l) {
k = 0;
for (int i = 0; i < elec_num; ++i) {
for (int j = 0; j < i; ++j) {
x = een_rescaled_e_ij[k + l*elec_pairs];
een_rescaled_e[j + i*elec_num + l*elec_num*elec_num + nw*elec_num*elec_num*(cord_num+1)] = x;
een_rescaled_e[i + j*elec_num + l*elec_num*elec_num + nw*elec_num*elec_num*(cord_num+1)] = x;
k = k + 1;
}
}
}
for (int l = 0; l < (cord_num + 1); ++l) {
for (int j = 0; j < elec_num; ++j) {
een_rescaled_e[j + j*elec_num + l*elec_num*elec_num + nw*elec_num*elec_num*(cord_num+1)] = 0.0;
}
}
}
free(een_rescaled_e_ij);
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_args,rettyp=get_value("CRetType"),fname="qmckl_compute_een_rescaled_e_doc")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_een_rescaled_e_doc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_een_rescaled_e_hpc (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e ) {
#ifdef HAVE_HPC
return qmckl_compute_een_rescaled_e_hpc(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e);
#else
return qmckl_compute_een_rescaled_e_doc(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, ee_distance, een_rescaled_e);
#endif
}
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
kappa = 1.0
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1])
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1])
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1])
print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2])
print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2])
print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2])
#+end_src
#+RESULTS:
: een_rescaled_e[0, 2, 1] = 0.08084493981483197
: een_rescaled_e[0, 3, 1] = 0.1066745707571846
: een_rescaled_e[0, 4, 1] = 0.017542731694647366
: een_rescaled_e[1, 3, 2] = 0.02214680362033448
: een_rescaled_e[1, 4, 2] = 0.0005700154999202759
: een_rescaled_e[1, 5, 2] = 0.3424402276009091
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double een_rescaled_e[walk_num][(cord_num + 1)][elec_num][elec_num];
rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0]),elec_num*elec_num*(cord_num+1)*walk_num);
// value of (0,2,1)
assert(fabs(een_rescaled_e[0][1][0][2]-0.08084493981483197) < 1.e-12);
assert(fabs(een_rescaled_e[0][1][0][3]-0.1066745707571846) < 1.e-12);
assert(fabs(een_rescaled_e[0][1][0][4]-0.01754273169464735) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][3]-0.02214680362033448) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][4]-0.0005700154999202759) < 1.e-12);
assert(fabs(een_rescaled_e[0][2][1][5]-0.3424402276009091) < 1.e-12);
#+end_src
** Electron-electron rescaled distances for each order and derivatives ~een_rescaled_e_deriv_e~ stores the table of the derivatives of the
rescaled distances between all pairs of electrons and raised to the
power \(p\) defined by ~cord_num~. Here we take its derivatives
required for the een jastrow.
TODO: write formulae
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_e_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een_deriv_e",
"Array too small. Expected ctx->electron.num * 4 * ctx->electron.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)");
}
memcpy(distance_rescaled, ctx->jastrow.een_rescaled_e_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_e_deriv_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.een_rescaled_e_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.een_rescaled_e_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * 4 * ctx->electron.num *
ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double);
double* een_rescaled_e_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_e_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_een_rescaled_e_deriv_e",
NULL);
}
ctx->jastrow.een_rescaled_e_deriv_e = een_rescaled_e_deriv_e;
}
rc = qmckl_compute_factor_een_rescaled_e_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->jastrow.cord_num,
ctx->electron.rescale_factor_kappa_ee,
ctx->electron.coord_new.data,
ctx->electron.ee_distance,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_e_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.een_rescaled_e_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_een_rescaled_e_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_e_deriv_e_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_kappa_ee~ | ~double~ | in | Factor to rescale ee distances |
| ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates |
| ~ee_distance~ | ~double[walk_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron distances |
| ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | out | Electron-electron rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f( &
context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, &
coord_new, ee_distance, een_rescaled_e, een_rescaled_e_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(in) :: coord_new(elec_num,3,walk_num)
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
double precision , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num)
double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e
double precision :: x, rij_inv, kappa_l
integer*8 :: i, j, k, l, nw, ii
allocate(elec_dist_deriv_e(4,elec_num,elec_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_e_deriv_e = 0.0d0
do nw = 1, walk_num
do j = 1, elec_num
do i = 1, elec_num
rij_inv = 1.0d0 / ee_distance(i, j, nw)
do ii = 1, 3
elec_dist_deriv_e(ii, i, j) = (coord_new(i, ii, nw) - coord_new(j, ii, nw)) * rij_inv
end do
elec_dist_deriv_e(4, i, j) = 2.0d0 * rij_inv
end do
elec_dist_deriv_e(:, j, j) = 0.0d0
end do
! prepare the actual een table
do l = 1, cord_num
kappa_l = - dble(l) * rescale_factor_kappa_ee
do j = 1, elec_num
do i = 1, elec_num
een_rescaled_e_deriv_e(i, 1, j, l, nw) = kappa_l * elec_dist_deriv_e(1, i, j)
een_rescaled_e_deriv_e(i, 2, j, l, nw) = kappa_l * elec_dist_deriv_e(2, i, j)
een_rescaled_e_deriv_e(i, 3, j, l, nw) = kappa_l * elec_dist_deriv_e(3, i, j)
een_rescaled_e_deriv_e(i, 4, j, l, nw) = kappa_l * elec_dist_deriv_e(4, i, j)
een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) &
+ een_rescaled_e_deriv_e(i, 1, j, l, nw) * een_rescaled_e_deriv_e(i, 1, j, l, nw) &
+ een_rescaled_e_deriv_e(i, 2, j, l, nw) * een_rescaled_e_deriv_e(i, 2, j, l, nw) &
+ een_rescaled_e_deriv_e(i, 3, j, l, nw) * een_rescaled_e_deriv_e(i, 3, j, l, nw)
een_rescaled_e_deriv_e(i, 1, j, l, nw) = een_rescaled_e_deriv_e(i, 1, j, l, nw) * &
een_rescaled_e(i, j, l, nw)
een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 2, j, l, nw) * &
een_rescaled_e(i, j, l, nw)
een_rescaled_e_deriv_e(i, 3, j, l, nw) = een_rescaled_e_deriv_e(i, 3, j, l, nw) * &
een_rescaled_e(i, j, l, nw)
een_rescaled_e_deriv_e(i, 4, j, l, nw) = een_rescaled_e_deriv_e(i, 4, j, l, nw) * &
een_rescaled_e(i, j, l, nw)
end do
end do
end do
end do
end function qmckl_compute_factor_een_rescaled_e_deriv_e_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een_rescaled_e_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* coord_new,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_rescaled_e_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een_rescaled_e_deriv_e &
(context, &
walk_num, &
elec_num, &
cord_num, &
rescale_factor_kappa_ee, &
coord_new, &
ee_distance, &
een_rescaled_e, &
een_rescaled_e_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) , value :: rescale_factor_kappa_ee
real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num)
real (c_double ) , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_e_deriv_e_f
info = qmckl_compute_factor_een_rescaled_e_deriv_e_f &
(context, &
walk_num, &
elec_num, &
cord_num, &
rescale_factor_kappa_ee, &
coord_new, &
ee_distance, &
een_rescaled_e, &
een_rescaled_e_deriv_e)
end function qmckl_compute_factor_een_rescaled_e_deriv_e
#+end_src
*** Test
#+name: een_e_deriv_e
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_deriv_e[ii, i, j] = -(elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
elec_dist_deriv_e[:, j, j] = 0.0
kappa = 1.0
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
een_rescaled_e_deriv_e = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float)
for l in range(0,cord_num+1):
kappa_l = -1.0 * kappa * l
for j in range(0,elec_num):
for i in range(0,elec_num):
for ii in range(0,4):
een_rescaled_e_deriv_e[i,ii,j,l] = kappa_l * elec_dist_deriv_e[ii,i,j]
een_rescaled_e_deriv_e[i,3,j,l] = een_rescaled_e_deriv_e[i,3,j,l] + \
een_rescaled_e_deriv_e[i,0,j,l] * een_rescaled_e_deriv_e[i,0,j,l] + \
een_rescaled_e_deriv_e[i,1,j,l] * een_rescaled_e_deriv_e[i,1,j,l] + \
een_rescaled_e_deriv_e[i,2,j,l] * een_rescaled_e_deriv_e[i,2,j,l]
for ii in range(0,4):
een_rescaled_e_deriv_e[i,ii,j,l] = een_rescaled_e_deriv_e[i,ii,j,l] * een_rescaled_e[i,j,l]
#print(" een_rescaled_e_deriv_e[1, 1, 3, 1] = ",een_rescaled_e_deriv_e[0, 0, 2, 1])
#print(" een_rescaled_e_deriv_e[1, 1, 4, 1] = ",een_rescaled_e_deriv_e[0, 0, 3, 1])
#print(" een_rescaled_e_deriv_e[1, 1, 5, 1] = ",een_rescaled_e_deriv_e[0, 0, 4, 1])
#print(" een_rescaled_e_deriv_e[2, 1, 4, 2] = ",een_rescaled_e_deriv_e[1, 0, 3, 2])
#print(" een_rescaled_e_deriv_e[2, 1, 5, 2] = ",een_rescaled_e_deriv_e[1, 0, 4, 2])
#print(" een_rescaled_e_deriv_e[2, 1, 6, 2] = ",een_rescaled_e_deriv_e[1, 0, 5, 2])
#+end_src
#+RESULTS: een_e_deriv_e
: een_rescaled_e_deriv_e[1, 1, 3, 1] = 0.05991352796887283
: een_rescaled_e_deriv_e[1, 1, 4, 1] = 0.011714035071545248
: een_rescaled_e_deriv_e[1, 1, 5, 1] = 0.00441398875758468
: een_rescaled_e_deriv_e[2, 1, 4, 2] = 0.013553180060167595
: een_rescaled_e_deriv_e[2, 1, 5, 2] = 0.00041342909359870457
: een_rescaled_e_deriv_e[2, 1, 6, 2] = 0.5880599146214673
#+begin_src c :tangle (eval c_test)
//assert(qmckl_electron_provided(context));
double een_rescaled_e_deriv_e[walk_num][(cord_num + 1)][elec_num][4][elec_num];
size_max=walk_num*(cord_num + 1)*elec_num*4*elec_num;
rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context,
&(een_rescaled_e_deriv_e[0][0][0][0][0]),size_max);
// value of (0,0,0,2,1)
assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][2] + 0.05991352796887283 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][3] + 0.011714035071545248 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][1][0][0][4] + 0.00441398875758468 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][3] + 0.013553180060167595 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][4] + 0.00041342909359870457) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][2][1][0][5] + 0.5880599146214673 ) < 1.e-12);
#+end_src
** Electron-nucleus rescaled distances for each order ~een_rescaled_n~ stores the table of the rescaled distances between
electrons and nucleii raised to the power \(p\) defined by ~cord_num~:
\[
C_{ia,p} = \left( 1 - \exp{-\kappa C_{ia}} \right)^p
\]
where \(C_{ia}\) is the matrix of electron-nucleus distances.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_n(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_n(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_n(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een_deriv_e",
"Array too small. Expected ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)");
}
memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_en_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.een_rescaled_n_date) {
/* Allocate array */
if (ctx->jastrow.een_rescaled_n == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * ctx->nucleus.num *
ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double);
double* een_rescaled_n = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_n == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_een_rescaled_n",
NULL);
}
ctx->jastrow.een_rescaled_n = een_rescaled_n;
}
rc = qmckl_compute_een_rescaled_n(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->electron.rescale_factor_kappa_en,
ctx->electron.en_distance,
ctx->jastrow.een_rescaled_n);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.een_rescaled_n_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_een_rescaled_n
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_rescaled_n_args
| Variable | Type | In/Out | Description |
|---------------------------+----------------------------------------------------+--------+-------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_kappa_en~ | ~double~ | in | Factor to rescale ee distances |
| ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | out | Electron-nucleus rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_een_rescaled_n_f( &
context, walk_num, elec_num, nucl_num, cord_num, rescale_factor_kappa_en, &
en_distance, een_rescaled_n) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_en
double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num)
double precision , intent(out) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_n = 0.0d0
do nw = 1, walk_num
! prepare the actual een table
een_rescaled_n(:, :, 0, nw) = 1.0d0
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw))
end do
end do
do l = 2, cord_num
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(i, a, l, nw) = een_rescaled_n(i, a, l - 1, nw) * een_rescaled_n(i, a, 1, nw)
end do
end do
end do
end do
end function qmckl_compute_een_rescaled_n_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_een_rescaled_n (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const double rescale_factor_kappa_en,
const double* en_distance,
double* const een_rescaled_n ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_5;
}
// Prepare table of exponentiated distances raised to appropriate power
for (int i = 0; i < (walk_num*(cord_num+1)*nucl_num*elec_num); ++i) {
een_rescaled_n[i] = 17.0;
}
for (int nw = 0; nw < walk_num; ++nw) {
for (int a = 0; a < nucl_num; ++a) {
for (int i = 0; i < elec_num; ++i) {
// prepare the actual een table
//een_rescaled_n(:, :, 0, nw) = 1.0d0
een_rescaled_n[i + a * elec_num + 0 + nw * elec_num*nucl_num*(cord_num+1)] = 1.0;
//een_rescaled_n(i, a, 1, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw))
een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] = exp(-rescale_factor_kappa_en * \
en_distance[i + a*elec_num + nw*elec_num*nucl_num]);
}
}
for (int l = 2; l < (cord_num+1); ++l){
for (int a = 0; a < nucl_num; ++a) {
for (int i = 0; i < elec_num; ++i) {
een_rescaled_n[i + a*elec_num + l*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] = een_rescaled_n[i + a*elec_num + (l-1)*elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)] *\
een_rescaled_n[i + a*elec_num + elec_num*nucl_num + nw*elec_num*nucl_num*(cord_num+1)];
}
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_rescaled_n_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_een_rescaled_n (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const double rescale_factor_kappa_en,
const double* en_distance,
double* const een_rescaled_n );
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
kappa = 1.0
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1])
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1])
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1])
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2])
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
#+end_src
#+RESULTS:
: een_rescaled_n[0, 2, 1] = 0.10612983920006765
: een_rescaled_n[0, 3, 1] = 0.135652809635553
: een_rescaled_n[0, 4, 1] = 0.023391817607642338
: een_rescaled_n[1, 3, 2] = 0.880957224822116
: een_rescaled_n[1, 4, 2] = 0.027185942659395074
: een_rescaled_n[1, 5, 2] = 0.01343938025140174
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double een_rescaled_n[walk_num][(cord_num + 1)][nucl_num][elec_num];
size_max=walk_num*(cord_num + 1)*nucl_num*elec_num;
rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]),size_max);
// value of (0,2,1)
assert(fabs(een_rescaled_n[0][1][0][2]-0.10612983920006765) < 1.e-12);
assert(fabs(een_rescaled_n[0][1][0][3]-0.135652809635553) < 1.e-12);
assert(fabs(een_rescaled_n[0][1][0][4]-0.023391817607642338) < 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][3]-0.880957224822116) < 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][4]-0.027185942659395074) < 1.e-12);
assert(fabs(een_rescaled_n[0][2][1][5]-0.01343938025140174) < 1.e-12);
#+end_src
** Electron-nucleus rescaled distances for each order and derivatives ~een_rescaled_n_deriv_e~ stores the table of the rescaled distances between
electrons and nucleii raised to the power \(p\) defined by ~cord_num~:
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context,
double* const distance_rescaled,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_een_rescaled_n_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1);
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een_deriv_e",
"Array too small. Expected ctx->electron.num * 4 * ctx->nucleus.num * ctx->electron.walk_num * (ctx->jastrow.cord_num + 1)");
}
memcpy(distance_rescaled, ctx->jastrow.een_rescaled_n_deriv_e, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_een_rescaled_n_deriv_e(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if ee distance is provided */
qmckl_exit_code rc = qmckl_provide_en_distance(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if ee distance is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.een_rescaled_n_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.een_rescaled_n_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.num * 4 * ctx->nucleus.num *
ctx->electron.walk_num * (ctx->jastrow.cord_num + 1) * sizeof(double);
double* een_rescaled_n_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (een_rescaled_n_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_een_rescaled_n_deriv_e",
NULL);
}
ctx->jastrow.een_rescaled_n_deriv_e = een_rescaled_n_deriv_e;
}
rc = qmckl_compute_factor_een_rescaled_n_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->electron.rescale_factor_kappa_en,
ctx->electron.coord_new.data,
ctx->nucleus.coord.data,
ctx->electron.en_distance,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.een_rescaled_n_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.een_rescaled_n_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_een_rescaled_n_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_compute_factor_een_rescaled_n_deriv_e_args
| Variable | Type | In/Out | Description |
|---------------------------+-------------------------------------------------------+--------+-------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~rescale_factor_kappa_en~ | ~double~ | in | Factor to rescale ee distances |
| ~coord_new~ | ~double[walk_num][3][elec_num]~ | in | Electron coordinates |
| ~coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~en_distance~ | ~double[walk_num][elec_num][nucl_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus distances |
| ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | out | Electron-nucleus rescaled distances |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f( &
context, walk_num, elec_num, nucl_num, &
cord_num, rescale_factor_kappa_en, &
coord_new, coord, en_distance, een_rescaled_n, een_rescaled_n_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_en
double precision , intent(in) :: coord_new(elec_num,3,walk_num)
double precision , intent(in) :: coord(nucl_num,3)
double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
double precision , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num)
double precision,dimension(:,:,:),allocatable :: elnuc_dist_deriv_e
double precision :: x, ria_inv, kappa_l
integer*8 :: i, a, k, l, nw, ii
allocate(elnuc_dist_deriv_e(4, elec_num, nucl_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_n_deriv_e = 0.0d0
do nw = 1, walk_num
! prepare the actual een table
do a = 1, nucl_num
do i = 1, elec_num
ria_inv = 1.0d0 / en_distance(i, a, nw)
do ii = 1, 3
elnuc_dist_deriv_e(ii, i, a) = (coord_new(i, ii, nw) - coord(a, ii)) * ria_inv
end do
elnuc_dist_deriv_e(4, i, a) = 2.0d0 * ria_inv
end do
end do
do l = 0, cord_num
kappa_l = - dble(l) * rescale_factor_kappa_en
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n_deriv_e(i, 1, a, l, nw) = kappa_l * elnuc_dist_deriv_e(1, i, a)
een_rescaled_n_deriv_e(i, 2, a, l, nw) = kappa_l * elnuc_dist_deriv_e(2, i, a)
een_rescaled_n_deriv_e(i, 3, a, l, nw) = kappa_l * elnuc_dist_deriv_e(3, i, a)
een_rescaled_n_deriv_e(i, 4, a, l, nw) = kappa_l * elnuc_dist_deriv_e(4, i, a)
een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) &
+ een_rescaled_n_deriv_e(i, 1, a, l, nw) * een_rescaled_n_deriv_e(i, 1, a, l, nw) &
+ een_rescaled_n_deriv_e(i, 2, a, l, nw) * een_rescaled_n_deriv_e(i, 2, a, l, nw) &
+ een_rescaled_n_deriv_e(i, 3, a, l, nw) * een_rescaled_n_deriv_e(i, 3, a, l, nw)
een_rescaled_n_deriv_e(i, 1, a, l, nw) = een_rescaled_n_deriv_e(i, 1, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_deriv_e(i, 2, a, l, nw) = een_rescaled_n_deriv_e(i, 2, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_deriv_e(i, 3, a, l, nw) = een_rescaled_n_deriv_e(i, 3, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
een_rescaled_n_deriv_e(i, 4, a, l, nw) = een_rescaled_n_deriv_e(i, 4, a, l, nw) * &
een_rescaled_n(i, a, l, nw)
end do
end do
end do
end do
end function qmckl_compute_factor_een_rescaled_n_deriv_e_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een_rescaled_n_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const double rescale_factor_kappa_en,
const double* coord_new,
const double* coord,
const double* en_distance,
const double* een_rescaled_n,
double* const een_rescaled_n_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_compute_factor_een_rescaled_n_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een_rescaled_n_deriv_e &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
rescale_factor_kappa_en, &
coord_new, &
coord, &
en_distance, &
een_rescaled_n, &
een_rescaled_n_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
real (c_double ) , intent(in) , value :: rescale_factor_kappa_en
real (c_double ) , intent(in) :: coord_new(elec_num,3,walk_num)
real (c_double ) , intent(in) :: coord(nucl_num,3)
real (c_double ) , intent(in) :: en_distance(nucl_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_rescaled_n_deriv_e_f
info = qmckl_compute_factor_een_rescaled_n_deriv_e_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
rescale_factor_kappa_en, &
coord_new, &
coord, &
en_distance, &
een_rescaled_n, &
een_rescaled_n_deriv_e)
end function qmckl_compute_factor_een_rescaled_n_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
kappa = 1.0
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
een_rescaled_n_deriv_e = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float)
for l in range(0,cord_num+1):
kappa_l = -1.0 * kappa * l
for j in range(0,elec_num):
for a in range(0,nucl_num):
for ii in range(0,4):
een_rescaled_n_deriv_e[j,ii,a,l] = kappa_l * elnuc_dist_deriv_e[ii,j,a]
een_rescaled_n_deriv_e[j,3,a,l] = een_rescaled_n_deriv_e[j,3,a,l] + \
een_rescaled_n_deriv_e[j,0,a,l] * een_rescaled_n_deriv_e[j,0,a,l] + \
een_rescaled_n_deriv_e[j,1,a,l] * een_rescaled_n_deriv_e[j,1,a,l] + \
een_rescaled_n_deriv_e[j,2,a,l] * een_rescaled_n_deriv_e[j,2,a,l]
for ii in range(0,4):
een_rescaled_n_deriv_e[j,ii,a,l] = een_rescaled_n_deriv_e[j,ii,a,l] * een_rescaled_n[a,j,l]
print(" een_rescaled_n_deriv_e[1, 1, 3, 1] = ",een_rescaled_n_deriv_e[2, 0, 0, 1])
print(" een_rescaled_n_deriv_e[1, 1, 4, 1] = ",een_rescaled_n_deriv_e[3, 0, 0, 1])
print(" een_rescaled_n_deriv_e[1, 1, 5, 1] = ",een_rescaled_n_deriv_e[4, 0, 0, 1])
print(" een_rescaled_n_deriv_e[2, 1, 4, 2] = ",een_rescaled_n_deriv_e[3, 0, 1, 2])
print(" een_rescaled_n_deriv_e[2, 1, 5, 2] = ",een_rescaled_n_deriv_e[4, 0, 1, 2])
print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2])
#+end_src
#+RESULTS:
: een_rescaled_n_deriv_e[1, 1, 3, 1] = -0.07633444246999128
: een_rescaled_n_deriv_e[1, 1, 4, 1] = 0.00033282346259738276
: een_rescaled_n_deriv_e[1, 1, 5, 1] = -0.004775370547333061
: een_rescaled_n_deriv_e[2, 1, 4, 2] = 0.1362654644223866
: een_rescaled_n_deriv_e[2, 1, 5, 2] = -0.0231253431662794
: een_rescaled_n_deriv_e[2, 1, 6, 2] = 0.001593334817691633
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double een_rescaled_n_deriv_e[walk_num][(cord_num + 1)][nucl_num][4][elec_num];
size_max=walk_num*(cord_num + 1)*nucl_num*4*elec_num;
rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0]),size_max);
// value of (0,2,1)
assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][2]+0.07633444246999128 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][3]-0.00033282346259738276) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][1][0][0][4]+0.004775370547333061 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][3]-0.1362654644223866 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][4]+0.0231253431662794 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][2][1][0][5]-0.001593334817691633 ) < 1.e-12);
#+end_src
** Prepare for electron-electron-nucleus Jastrow \(f_{een}\)
Prepare ~cord_vect_full~ and ~lkpm_combined_index~ tables required for the
calculation of the three-body jastrow ~factor_een~ and its derivative ~factor_een_deriv_e~.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect);
qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full);
qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index);
qmckl_exit_code qmckl_get_jastrow_tmp_c(qmckl_context context, double* const tmp_c);
qmckl_exit_code qmckl_get_jastrow_dtmp_c(qmckl_context context, double* const dtmp_c);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
*dim_cord_vect = ctx->jastrow.dim_cord_vect;
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
size_t sze = ctx->jastrow.dim_cord_vect * ctx->nucleus.num;
memcpy(cord_vect_full, ctx->jastrow.cord_vect_full, sze * sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
size_t sze = ctx->jastrow.dim_cord_vect * 4;
memcpy(lkpm_combined_index, ctx->jastrow.lkpm_combined_index, sze * sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_tmp_c(qmckl_context context, double* const tmp_c)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_tmp_c(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
size_t sze = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1)
* ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num;
memcpy(tmp_c, ctx->jastrow.tmp_c, sze * sizeof(double));
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_get_jastrow_dtmp_c(qmckl_context context, double* const dtmp_c)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_dim_cord_vect(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_cord_vect_full(context);
if (rc != QMCKL_SUCCESS) return rc;
rc = qmckl_provide_dtmp_c(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
size_t sze = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1)
*4* ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num;
memcpy(dtmp_c, ctx->jastrow.dtmp_c, sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context);
qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context);
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context);
qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context);
qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_dim_cord_vect(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Compute if necessary */
if (ctx->date > ctx->jastrow.dim_cord_vect_date) {
qmckl_exit_code rc =
qmckl_compute_dim_cord_vect(context,
ctx->jastrow.cord_num,
&(ctx->jastrow.dim_cord_vect));
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.dim_cord_vect_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.cord_vect_full_date) {
/* Allocate array */
if (ctx->jastrow.cord_vect_full == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->jastrow.dim_cord_vect * ctx->nucleus.num * sizeof(double);
double* cord_vect_full = (double*) qmckl_malloc(context, mem_info);
if (cord_vect_full == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_cord_vect_full",
NULL);
}
ctx->jastrow.cord_vect_full = cord_vect_full;
}
rc = qmckl_compute_cord_vect_full(context,
ctx->nucleus.num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector,
ctx->jastrow.cord_vector,
ctx->jastrow.cord_vect_full);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.cord_vect_full_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_lkpm_combined_index(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.lkpm_combined_index_date) {
/* Allocate array */
if (ctx->jastrow.lkpm_combined_index == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->jastrow.dim_cord_vect * sizeof(int64_t);
int64_t* lkpm_combined_index = (int64_t*) qmckl_malloc(context, mem_info);
if (lkpm_combined_index == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_lkpm_combined_index",
NULL);
}
ctx->jastrow.lkpm_combined_index = lkpm_combined_index;
}
rc = qmckl_compute_lkpm_combined_index(context,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.lkpm_combined_index);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.lkpm_combined_index_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_tmp_c(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.tmp_c_date) {
/* Allocate array */
if (ctx->jastrow.tmp_c == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1)
,* ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double);
double* tmp_c = (double*) qmckl_malloc(context, mem_info);
if (tmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_tmp_c",
NULL);
}
ctx->jastrow.tmp_c = tmp_c;
}
/* Choose the correct compute function (depending on offload type) */
#ifdef HAVE_HPC
const bool gpu_offload = ctx->jastrow.gpu_offload;
#else
const bool gpu_offload = false;
#endif
if (gpu_offload) {
#ifdef HAVE_CUBLAS_OFFLOAD
rc = qmckl_compute_tmp_c_cublas_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.tmp_c);
#elif HAVE_OPENACC_OFFLOAD
rc = qmckl_compute_tmp_c_acc_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.tmp_c);
#elif HAVE_OPENMP_OFFLOAD
rc = qmckl_compute_tmp_c_omp_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.tmp_c);
#else
rc = QMCKL_FAILURE;
#endif
} else {
rc = qmckl_compute_tmp_c(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.tmp_c);
}
ctx->jastrow.tmp_c_date = ctx->date;
}
return QMCKL_SUCCESS;
}
qmckl_exit_code qmckl_provide_dtmp_c(qmckl_context context)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if dim_cord_vect is provided */
qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.dtmp_c_date) {
/* Allocate array */
if (ctx->jastrow.dtmp_c == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (ctx->jastrow.cord_num) * (ctx->jastrow.cord_num + 1)
,* 4 * ctx->electron.num * ctx->nucleus.num * ctx->electron.walk_num * sizeof(double);
double* dtmp_c = (double*) qmckl_malloc(context, mem_info);
if (dtmp_c == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_dtmp_c",
NULL);
}
ctx->jastrow.dtmp_c = dtmp_c;
}
#ifdef HAVE_HPC
const bool gpu_offload = ctx->jastrow.gpu_offload;
#else
const bool gpu_offload = false;
#endif
if (gpu_offload) {
#ifdef HAVE_CUBLAS_OFFLOAD
rc = qmckl_compute_dtmp_c_cublas_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e_deriv_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.dtmp_c);
#elif HAVE_OPENACC_OFFLOAD
rc = qmckl_compute_dtmp_c_acc_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e_deriv_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.dtmp_c);
#elif HAVE_OPENMP_OFFLOAD
rc = qmckl_compute_dtmp_c_omp_offload(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e_deriv_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.dtmp_c);
#else
rc = QMCKL_FAILURE;
#endif
} else {
rc = qmckl_compute_dtmp_c(context,
ctx->jastrow.cord_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->electron.walk_num,
ctx->jastrow.een_rescaled_e_deriv_e,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.dtmp_c);
}
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.dtmp_c_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute dim_cord_vect
:PROPERTIES:
:Name: qmckl_compute_dim_cord_vect
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_dim_cord_vect_args
| Variable | Type | In/Out | Description |
|-----------------+-----------------+--------+-----------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | out | dimension of cord_vect_full table |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_dim_cord_vect_f( &
context, cord_num, dim_cord_vect) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(out) :: dim_cord_vect
double precision :: x
integer*8 :: i, a, k, l, p, lmax
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
dim_cord_vect = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
endif
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) == 1) cycle
dim_cord_vect = dim_cord_vect + 1
end do
end do
end do
end function qmckl_compute_dim_cord_vect_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_dim_cord_vect (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_cord_vect){
int lmax;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
*dim_cord_vect = 0;
for (int p=2; p <= cord_num; ++p){
for (int k=p-1; k >= 0; --k) {
if (k != 0) {
lmax = p - k;
} else {
lmax = p - k - 2;
}
for (int l = lmax; l >= 0; --l) {
if ( ((p - k - l) & 1)==1) continue;
*dim_cord_vect=*dim_cord_vect+1;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_dim_cord_vect_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dim_cord_vect (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_cord_vect );
#+end_src
*** Compute cord_vect_full
:PROPERTIES:
:Name: qmckl_compute_cord_vect_full
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_cord_vect_full_args
| Variable | Type | In/Out | Description |
|--------------------+----------------------------------------+--------+------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~nucl_num~ | ~int64_t~ | in | Number of atoms |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of cord full table |
| ~type_nucl_num~ | ~int64_t~ | in | dimension of cord full table |
| ~type_nucl_vector~ | ~int64_t[nucl_num]~ | in | dimension of cord full table |
| ~cord_vector~ | ~double[dim_cord_vect][type_nucl_num]~ | in | dimension of cord full table |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | out | Full list of coefficients |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_cord_vect_full_doc_f( &
context, nucl_num, dim_cord_vect, type_nucl_num, &
type_nucl_vector, cord_vector, cord_vect_full) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: cord_vector(type_nucl_num, dim_cord_vect)
double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do a = 1, nucl_num
cord_vect_full(a,1:dim_cord_vect) = cord_vector(type_nucl_vector(a),1:dim_cord_vect)
end do
end function qmckl_compute_cord_vect_full_doc_f
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname="qmckl_compute_cord_vect_full_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_cord_vect_full_doc &
(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: cord_vector(type_nucl_num,dim_cord_vect)
real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
integer(c_int32_t), external :: qmckl_compute_cord_vect_full_doc_f
info = qmckl_compute_cord_vect_full_doc_f &
(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full)
end function qmckl_compute_cord_vect_full_doc
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_cord_vect_full_hpc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (type_nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (dim_cord_vect <= 0) {
return QMCKL_INVALID_ARG_5;
}
for (int i=0; i < dim_cord_vect; ++i) {
for (int a=0; a < nucl_num; ++a){
cord_vect_full[a + i*nucl_num] = cord_vector[(type_nucl_vector[a]-1)+i*type_nucl_num];
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_cord_vect_full_args,rettyp=get_value("CRetType"),fname="qmckl_compute_cord_vect_full_doc")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_cord_vect_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_cord_vect_full_doc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_cord_vect_full_hpc (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_cord_vect_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full ) {
#ifdef HAVE_HPC
return qmckl_compute_cord_vect_full_hpc(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full);
#else
return qmckl_compute_cord_vect_full_doc(context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full);
#endif
}
#+end_src
*** Compute lkpm_combined_index
:PROPERTIES:
:Name: qmckl_compute_lkpm_combined_index
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_lkpm_combined_index_args
| Variable | Type | In/Out | Description |
|-----------------------+-----------------------------+--------+-------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of cord full table |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | out | Full list of combined indices |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_lkpm_combined_index_f( &
context, cord_num, dim_cord_vect, lkpm_combined_index) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(out) :: lkpm_combined_index(dim_cord_vect, 4)
double precision :: x
integer*8 :: i, a, k, l, kk, p, lmax, m
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
kk = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) .eq. 1) cycle
m = (p - k - l)/2
kk = kk + 1
lkpm_combined_index(kk, 1) = l
lkpm_combined_index(kk, 2) = k
lkpm_combined_index(kk, 3) = p
lkpm_combined_index(kk, 4) = m
end do
end do
end do
end function qmckl_compute_lkpm_combined_index_f
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_cord_vect,
int64_t* const lkpm_combined_index ) {
int kk, lmax, m;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (dim_cord_vect <= 0) {
return QMCKL_INVALID_ARG_3;
}
/*
*/
kk = 0;
for (int p = 2; p <= cord_num; ++p) {
for (int k=(p-1); k >= 0; --k) {
if (k != 0) {
lmax = p - k;
} else {
lmax = p - k - 2;
}
for (int l=lmax; l >= 0; --l) {
if (((p - k - l) & 1) == 1) continue;
m = (p - k - l)/2;
lkpm_combined_index[kk ] = l;
lkpm_combined_index[kk + dim_cord_vect] = k;
lkpm_combined_index[kk + 2*dim_cord_vect] = p;
lkpm_combined_index[kk + 3*dim_cord_vect] = m;
kk = kk + 1;
}
}
}
return QMCKL_SUCCESS;
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_lkpm_combined_index_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_cord_vect,
int64_t* const lkpm_combined_index );
#+end_src
*** Compute tmp_c
:PROPERTIES:
:Name: qmckl_compute_tmp_c
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_tmp_c_args
| Variable | Type | In/Out | Description |
|------------------+------------------------------------------------------------------+--------+-----------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~een_rescaled_e~ | ~double[walk_num][0:cord_num][elec_num][elec_num]~ | in | Electron-electron rescaled factor |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients |
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_tmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c )
{
#ifdef HAVE_HPC
return qmckl_compute_tmp_c_hpc(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c);
#else
return qmckl_compute_tmp_c_doc(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c);
#endif
}
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c")
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_tmp_c (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_tmp_c_doc_f( &
context, cord_num, elec_num, nucl_num, &
walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: een_rescaled_e(elec_num, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: x
integer*8 :: i, j, a, l, kk, p, lmax, nw
character :: TransA, TransB
double precision :: alpha, beta
integer*8 :: M, N, K, LDA, LDB, LDC
TransA = 'N'
TransB = 'N'
alpha = 1.0d0
beta = 0.0d0
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
M = elec_num
N = nucl_num*(cord_num + 1)
K = elec_num
LDA = size(een_rescaled_e,1)
LDB = size(een_rescaled_n,1)
LDC = size(tmp_c,1)
do nw=1, walk_num
do i=0, cord_num-1
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha, &
een_rescaled_e(1,1,i,nw),LDA*1_8, &
een_rescaled_n(1,1,0,nw),LDB*1_8, &
beta, &
tmp_c(1,1,0,i,nw),LDC)
end do
end do
end function qmckl_compute_tmp_c_doc_f
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_tmp_c_args,rettyp=get_value("FRetType"),fname="qmckl_compute_tmp_c_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_tmp_c_doc &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: een_rescaled_e(elec_num,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_tmp_c_doc_f
info = qmckl_compute_tmp_c_doc_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e, een_rescaled_n, tmp_c)
end function qmckl_compute_tmp_c_doc
#+end_src
**** CPU :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code qmckl_compute_tmp_c_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_5;
}
qmckl_exit_code info = QMCKL_SUCCESS;
const char TransA = 'N';
const char TransB = 'N';
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = elec_num;
const int64_t af = elec_num*elec_num;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = bf;
#ifdef HAVE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int64_t nw=0; nw < walk_num; ++nw) {
for (int64_t i=0; i<cord_num; ++i){
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha,
&(een_rescaled_e[af*(i+nw*(cord_num+1))]), LDA,
&(een_rescaled_n[bf*nw]), LDB, beta,
&(tmp_c[cf*(i+nw*cord_num)]), LDC);
}
}
return info;
}
#+end_src
#+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_tmp_c_args,rettyp=get_value("CRetType"),fname="qmckl_compute_tmp_c_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_tmp_c_hpc (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#+end_src
**** OpenACC offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_OPENACC_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_acc_offload (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c )
{
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
// Compute array access strides:
// For tmp_c...
const int64_t stride_k_c = elec_num;
const int64_t stride_j_c = stride_k_c * nucl_num;
const int64_t stride_i_c = stride_j_c * (cord_num+1);
const int64_t stride_nw_c = stride_i_c * cord_num;
// For een_rescaled_e...
const int64_t stride_m_e = elec_num;
const int64_t stride_i_e = stride_m_e * elec_num;
const int64_t stride_nw_e = stride_i_e * (cord_num+1);
// For een_rescaled_n...
const int64_t stride_k_n = elec_num;
const int64_t stride_j_n = stride_k_n * nucl_num;
const int64_t stride_nw_n = stride_j_n * (cord_num+1);
const int64_t size_tmp_c = elec_num*nucl_num*(cord_num+1)*cord_num*walk_num;
const int64_t size_e = walk_num*(cord_num+1)*elec_num*elec_num;
const int64_t size_n = walk_num*(cord_num+1)*nucl_num*elec_num;
#pragma acc parallel copyout(tmp_c [0:size_tmp_c]) copyin(een_rescaled_e[0:size_e], een_rescaled_n[0:size_n])
{
#pragma acc loop independent gang worker vector collapse(5)
for (int nw=0; nw < walk_num; ++nw) {
for (int i=0; i<cord_num; ++i){
// Replacement for single DGEMM
for (int j=0; j<cord_num+1; j++) {
for (int k=0; k<nucl_num; k++) {
for (int l=0; l<elec_num; l++) {
// Single reduction
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] = 0.;
for (int m=0; m<elec_num; m++) {
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] =
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] +
een_rescaled_e[l + m*stride_m_e + i*stride_i_e + nw*stride_nw_e] *
een_rescaled_n[m + k*stride_k_n + j*stride_j_n + nw*stride_nw_n];
}
}
}
}
}
}
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_OPENACC_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_acc_offload (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#endif
#+end_src
**** OpenMP offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_OPENMP_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_omp_offload (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c )
{
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
// Compute array access strides:
// For tmp_c...
const int64_t stride_k_c = elec_num;
const int64_t stride_j_c = stride_k_c * nucl_num;
const int64_t stride_i_c = stride_j_c * (cord_num+1);
const int64_t stride_nw_c = stride_i_c * cord_num;
// For een_rescaled_e...
const int64_t stride_m_e = elec_num;
const int64_t stride_i_e = stride_m_e * elec_num;
const int64_t stride_nw_e = stride_i_e * (cord_num+1);
// For een_rescaled_n...
const int64_t stride_k_n = elec_num;
const int64_t stride_j_n = stride_k_n * nucl_num;
const int64_t stride_nw_n = stride_j_n * (cord_num+1);
const int64_t size_tmp_c = elec_num*nucl_num*(cord_num+1)*cord_num*walk_num;
const int64_t size_e = walk_num*(cord_num+1)*elec_num*elec_num;
const int64_t size_n = walk_num*(cord_num+1)*nucl_num*elec_num;
// WARNING This implementation seems unomptimized
#pragma omp target map(from:tmp_c[0:size_tmp_c]) map(to:een_rescaled_e[0:size_e], een_rescaled_n[0:size_n])
{
#pragma omp teams distribute parallel for collapse(5)
for (int nw=0; nw < walk_num; ++nw) {
for (int i=0; i<cord_num; ++i){
// Replacement for single DGEMM
for (int j=0; j<cord_num+1; j++) {
for (int k=0; k<nucl_num; k++) {
for (int l=0; l<elec_num; l++) {
// Single reduction
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] = 0.;
for (int m=0; m<elec_num; m++) {
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] =
tmp_c[l + k*stride_k_c + j*stride_j_c + i*stride_i_c + nw*stride_nw_c] +
een_rescaled_e[l + m*stride_m_e + i*stride_i_e + nw*stride_nw_e] *
een_rescaled_n[m + k*stride_k_n + j*stride_j_n + nw*stride_nw_n];
}
}
}
}
}
}
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_OPENMP_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_omp_offload (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#endif
#+end_src
**** cuBLAS offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_CUBLAS_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_cublas_offload (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c )
{
qmckl_exit_code info;
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
//cuBLAS initialization
cublasHandle_t handle;
if (cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS)
{
fprintf(stdout, "CUBLAS initialization failed!\n");
exit(EXIT_FAILURE);
}
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = elec_num;
const int64_t af = elec_num*elec_num;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = bf;
#pragma omp target enter data map(to:een_rescaled_e[0:elec_num*elec_num*(cord_num+1)*walk_num],een_rescaled_n[0:M*N*walk_num],tmp_c[0:elec_num*nucl_num*(cord_num+1)*cord_num*walk_num])
#pragma omp target data use_device_ptr(een_rescaled_e,een_rescaled_n,tmp_c)
{
for (int nw=0; nw < walk_num; ++nw) {
int cublasError = cublasDgemmStridedBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, M, N, K, &alpha,
&(een_rescaled_e[nw*(cord_num+1)]),
LDA, af,
&(een_rescaled_n[bf*nw]),
LDB, 0,
&beta,
&(tmp_c[nw*cord_num]),
LDC, cf, cord_num);
}
}
#pragma omp target exit data map(from:tmp_c[0:elec_num*nucl_num*(cord_num+1)*cord_num*walk_num])
cublasDestroy(handle);
return info;
}
#endif
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_CUBLAS_OFFLOAD
qmckl_exit_code
qmckl_compute_tmp_c_cublas_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const tmp_c );
#endif
#+end_src
*** Compute dtmp_c
:PROPERTIES:
:Name: qmckl_compute_dtmp_c
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_dtmp_c_args
| Variable | Type | In/Out | Description |
|--------------------------+------------------------------------------------------------------+--------+-----------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~cord_num~ | ~int64_t~ | in | Order of polynomials |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~een_rescaled_e_deriv_e~ | ~double[walk_num][0:cord_num][elec_num][4][elec_num]~ | in | Electron-electron rescaled factor derivatives |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | out | vector of non-zero coefficients |
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code
qmckl_compute_dtmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_dtmp_c (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c )
{
#ifdef HAVE_HPC
return qmckl_compute_dtmp_c_hpc (context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e,
een_rescaled_n, dtmp_c );
#else
return qmckl_compute_dtmp_c_doc (context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e,
een_rescaled_n, dtmp_c );
#endif
}
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_dtmp_c_doc_f( &
context, cord_num, elec_num, nucl_num, &
walk_num, een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: walk_num
double precision , intent(in) :: een_rescaled_e_deriv_e(elec_num, 4, elec_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision :: x
integer*8 :: i, j, a, l, kk, p, lmax, nw, ii
character :: TransA, TransB
double precision :: alpha, beta
integer*8 :: M, N, K, LDA, LDB, LDC
TransA = 'N'
TransB = 'N'
alpha = 1.0d0
beta = 0.0d0
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
M = 4*elec_num
N = nucl_num*(cord_num + 1)
K = elec_num
LDA = 4*size(een_rescaled_e_deriv_e,1)
LDB = size(een_rescaled_n,1)
LDC = 4*size(dtmp_c,1)
do nw=1, walk_num
do i=0, cord_num-1
info = qmckl_dgemm(context,TransA, TransB, M, N, K, alpha, &
een_rescaled_e_deriv_e(1,1,1,i,nw),LDA*1_8, &
een_rescaled_n(1,1,0,nw),LDB*1_8, &
beta, &
dtmp_c(1,1,1,0,i,nw),LDC)
end do
end do
end function qmckl_compute_dtmp_c_doc_f
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_dtmp_c_args,rettyp=get_value("FRetType"),fname="qmckl_compute_dtmp_c_doc")
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_dtmp_c_doc &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: walk_num
real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(elec_num,4,elec_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: dtmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
integer(c_int32_t), external :: qmckl_compute_dtmp_c_doc_f
info = qmckl_compute_dtmp_c_doc_f &
(context, cord_num, elec_num, nucl_num, walk_num, een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c)
end function qmckl_compute_dtmp_c_doc
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dtmp_c_doc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
**** CPU :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
qmckl_exit_code
qmckl_compute_dtmp_c_hpc (const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c )
{
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_5;
}
qmckl_exit_code info = QMCKL_SUCCESS;
const char TransA = 'N';
const char TransB = 'N';
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = 4*elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = 4*elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = 4*elec_num;
const int64_t af = elec_num*elec_num*4;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = elec_num*4*nucl_num*(cord_num+1);
#ifdef HAVE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int64_t nw=0; nw < walk_num; ++nw) {
for (int64_t i=0; i < cord_num; ++i) {
info = qmckl_dgemm(context, TransA, TransB, M, N, K, alpha,
&(een_rescaled_e_deriv_e[af*(i+nw*(cord_num+1))]), LDA,
&(een_rescaled_n[bf*nw]), LDB, beta,
&(dtmp_c[cf*(i+nw*cord_num)]), LDC);
}
}
return info;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_dtmp_c_hpc (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#+end_src
**** OpenACC offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_OPENACC_OFFLOAD
qmckl_exit_code
qmckl_compute_dtmp_c_acc_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
// Compute strides...
// For dtmp_c
const int64_t stride_l_d = elec_num;
const int64_t stride_k_d = stride_l_d * 4;
const int64_t stride_j_d = stride_k_d * nucl_num;
const int64_t stride_i_d = stride_j_d * (cord_num+1);
const int64_t stride_nw_d = stride_i_d * cord_num;
// For een_rescaled_e_deriv_e
const int64_t stride_l_e = elec_num;
const int64_t stride_n_e = stride_l_e * 4;
const int64_t stride_i_e = stride_n_e * elec_num;
const int64_t stride_nw_e = stride_i_e * cord_num;
// For een_rescaled_n
const int64_t stride_k_n = elec_num;
const int64_t stride_j_n = stride_k_n * nucl_num;
const int64_t stride_nw_n = stride_j_n * (cord_num+1);
const int64_t size_dtmp_c = walk_num*cord_num*(cord_num+1)*nucl_num*4*elec_num;
const int64_t size_n = walk_num*(cord_num+1)*nucl_num*elec_num;
const int64_t size_e = walk_num*(cord_num+1)*elec_num*4*elec_num;
#pragma acc parallel copyout(dtmp_c [0:size_dtmp_c]) copyin(een_rescaled_e_deriv_e[0:size_e], een_rescaled_n[0:size_n])
{
#pragma acc loop independent gang worker vector collapse(6)
for (int nw=0; nw < walk_num; nw++) {
for (int i=0; i < cord_num; i++) {
// Single DGEMM
for(int j=0; j<cord_num+1; j++) {
for(int k=0; k<nucl_num; k++) {
for(int l=0; l<4; l++) {
for(int m=0; m<elec_num; m++) {
// Single reduction
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] = 0.;
for(int n=0; n<elec_num; n++){
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] =
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] +
een_rescaled_e_deriv_e[m + l * stride_l_e + n * stride_n_e + i * stride_i_e + nw * stride_nw_e] *
een_rescaled_n[n + k * stride_k_n + j * stride_j_n + nw * stride_nw_n];
}
}
}
}
}
}
}
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_OPENACC_OFFLOAD
qmckl_exit_code qmckl_compute_dtmp_c_acc_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#endif
#+end_src
**** OpenMP offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_OPENMP_OFFLOAD
qmckl_exit_code qmckl_compute_dtmp_c_omp_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
// Compute strides...
// For dtmp_c
const int64_t stride_l_d = elec_num;
const int64_t stride_k_d = stride_l_d * 4;
const int64_t stride_j_d = stride_k_d * nucl_num;
const int64_t stride_i_d = stride_j_d * (cord_num+1);
const int64_t stride_nw_d = stride_i_d * cord_num;
// For een_rescaled_e_deriv_e
const int64_t stride_l_e = elec_num;
const int64_t stride_n_e = stride_l_e * 4;
const int64_t stride_i_e = stride_n_e * elec_num;
const int64_t stride_nw_e = stride_i_e * cord_num;
// For een_rescaled_n
const int64_t stride_k_n = elec_num;
const int64_t stride_j_n = stride_k_n * nucl_num;
const int64_t stride_nw_n = stride_j_n * (cord_num+1);
const int64_t size_dtmp_c = walk_num*cord_num*(cord_num+1)*nucl_num*4*elec_num;
const int64_t size_n = walk_num*(cord_num+1)*nucl_num*elec_num;
const int64_t size_e = walk_num*(cord_num+1)*elec_num*4*elec_num;
// WARNING This implementation seems unomptimized
#pragma omp target map(from:dtmp_c[0:size_dtmp_c]) map(to:een_rescaled_e_deriv_e[0:size_e], een_rescaled_n[0:size_n])
{
#pragma omp teams distribute parallel for collapse(6)
for (int nw=0; nw < walk_num; nw++) {
for (int i=0; i < cord_num; i++) {
// Single DGEMM
for(int j=0; j<cord_num+1; j++) {
for(int k=0; k<nucl_num; k++) {
for(int l=0; l<4; l++) {
for(int m=0; m<elec_num; m++) {
// Single reduction
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] = 0;
for(int n=0; n<elec_num; n++){
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] =
dtmp_c[m + l * stride_l_d + k * stride_k_d + j * stride_j_d + i * stride_i_d + nw * stride_nw_d] +
een_rescaled_e_deriv_e[m + l * stride_l_e + n * stride_n_e + i * stride_i_e + nw * stride_nw_e] *
een_rescaled_n[n + k * stride_k_n + j * stride_j_n + nw * stride_nw_n];
}
}
}
}
}
}
}
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_OPENMP_OFFLOAD
qmckl_exit_code qmckl_compute_dtmp_c_omp_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#endif
#+end_src
**** cuBLAS offload :noexport:
#+begin_src c :comments org :tangle (eval c) :noweb yes
#ifdef HAVE_CUBLAS_OFFLOAD
qmckl_exit_code
qmckl_compute_dtmp_c_cublas_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c ) {
if (context == QMCKL_NULL_CONTEXT) {
return QMCKL_INVALID_CONTEXT;
}
if (cord_num <= 0) {
return QMCKL_INVALID_ARG_2;
}
if (elec_num <= 0) {
return QMCKL_INVALID_ARG_3;
}
if (nucl_num <= 0) {
return QMCKL_INVALID_ARG_4;
}
if (walk_num <= 0) {
return QMCKL_INVALID_ARG_5;
}
qmckl_exit_code info = QMCKL_SUCCESS;
//cuBLAS initialization
cublasHandle_t handle;
if (cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS)
{
fprintf(stdout, "CUBLAS initialization failed!\n");
exit(EXIT_FAILURE);
}
const double alpha = 1.0;
const double beta = 0.0;
const int64_t M = 4*elec_num;
const int64_t N = nucl_num*(cord_num + 1);
const int64_t K = elec_num;
const int64_t LDA = 4*elec_num;
const int64_t LDB = elec_num;
const int64_t LDC = 4*elec_num;
const int64_t af = elec_num*elec_num*4;
const int64_t bf = elec_num*nucl_num*(cord_num+1);
const int64_t cf = elec_num*4*nucl_num*(cord_num+1);
#pragma omp target enter data map(to:een_rescaled_e_deriv_e[0:elec_num*4*elec_num*(cord_num+1)*walk_num], een_rescaled_n[0:elec_num*nucl_num*(cord_num+1)*walk_num], dtmp_c[0:elec_num*4*nucl_num*(cord_num+1)*cord_num*walk_num])
#pragma omp target data use_device_ptr(een_rescaled_e_deriv_e, een_rescaled_n, dtmp_c)
{
for (int64_t nw=0; nw < walk_num; ++nw) {
int cublasError = cublasDgemmStridedBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, M, N, K, &alpha,
&(een_rescaled_e_deriv_e[(nw*(cord_num+1))]),
LDA, af,
&(een_rescaled_n[bf*nw]), LDB, 0,
&beta,
&(dtmp_c[(nw*cord_num)]),
LDC, cf, cord_num);
}
}
#pragma omp target exit data map(from:dtmp_c[0:cf*cord_num*walk_num])
cublasDestroy(handle);
return info;
}
#endif
#+end_src
#+RESULTS:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
#ifdef HAVE_CUBLAS_OFFLOAD
qmckl_exit_code qmckl_compute_dtmp_c_cublas_offload (
const qmckl_context context,
const int64_t cord_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t walk_num,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n,
double* const dtmp_c );
#endif
#+end_src
*** Test
#+name: helper_funcs
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
elec_coord = np.array(elec_coord)[0]
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
kappa = 1.0
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_n[:,:,0] = 1.0
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, 1] = np.exp(-kappa * elnuc_dist[i, a])
for l in range(2,cord_num+1):
for a in range(nucl_num):
for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
for i in range(elec_num):
for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
kappa = 1.0
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
lkpm_of_cindex = np.array(lkpm_combined_index).T
#+end_src
#+RESULTS: helper_funcs
#+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context));
double tmp_c[walk_num][cord_num][cord_num+1][nucl_num][elec_num];
rc = qmckl_get_jastrow_tmp_c(context, &(tmp_c[0][0][0][0][0]));
double dtmp_c[walk_num][cord_num][cord_num+1][nucl_num][4][elec_num];
rc = qmckl_get_jastrow_dtmp_c(context, &(dtmp_c[0][0][0][0][0][0]));
printf("%e\n%e\n", tmp_c[0][0][1][0][0], 2.7083473948352403);
assert(fabs(tmp_c[0][0][1][0][0] - 2.7083473948352403) < 1e-12);
printf("%e\n%e\n", tmp_c[0][1][0][0][0],0.237440520852232);
assert(fabs(dtmp_c[0][1][0][0][0][0] - 0.237440520852232) < 1e-12);
#+end_src
** Electron-electron-nucleus Jastrow \(f_{een}\)
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~
using the above prepared tables.
TODO: write equations.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_een(qmckl_context context,
double* const factor_een,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_een(qmckl_context context,
double* const factor_een,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_een(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.walk_num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een",
"Array too small. Expected walk_num");
}
memcpy(factor_een, ctx->jastrow.factor_een, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_cord_vect_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_een_date) {
/* Allocate array */
if (ctx->jastrow.factor_een == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->electron.walk_num * sizeof(double);
double* factor_een = (double*) qmckl_malloc(context, mem_info);
if (factor_een == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_een",
NULL);
}
ctx->jastrow.factor_een = factor_een;
}
rc = qmckl_compute_factor_een(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.cord_vect_full,
ctx->jastrow.lkpm_combined_index,
ctx->jastrow.tmp_c,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.factor_een);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_een_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute naive
:PROPERTIES:
:Name: qmckl_compute_factor_een_naive
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_naive_args
| Variable | Type | In/Out | Description |
|-----------------------+----------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices |
| ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor |
| ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_naive_f( &
context, walk_num, elec_num, nucl_num, cord_num,&
dim_cord_vect, cord_vect_full, lkpm_combined_index, &
een_rescaled_e, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
accu2 = 0.0d0
cn = cord_vect_full(a, n)
do j = 1, elec_num
accu = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(k,i,j,nw) * &
een_rescaled_n(m,a,i,nw)
!if(nw .eq. 1) then
! print *,l,k,p,m,j,i,een_rescaled_e(k,i,j,nw), een_rescaled_n(m,a,i,nw), accu
!endif
end do
accu2 = accu2 + accu * een_rescaled_n(m + l,a,j,nw)
!print *, l,m,nw,accu, accu2, een_rescaled_n(m + l, a, j, nw), cn, factor_een(nw)
end do
factor_een(nw) = factor_een(nw) + accu2 * cn
end do
end do
end do
end function qmckl_compute_factor_een_naive_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een_naive (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const factor_een );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een_naive &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
real (c_double ) , intent(out) :: factor_een(walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_naive_f
info = qmckl_compute_factor_een_naive_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een)
end function qmckl_compute_factor_een_naive
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_een
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_args
| Variable | Type | In/Out | Description |
|-----------------------+------------------------------------------------------------------+---------------------------------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | vector of non-zero coefficients | |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~factor_een~ | ~double[walk_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_f( &
context, walk_num, elec_num, nucl_num, cord_num, &
dim_cord_vect, cord_vect_full, lkpm_combined_index, &
tmp_c, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = cord_vect_full(a, n)
if(cn == 0.d0) cycle
accu = 0.0d0
do j = 1, elec_num
accu = accu + een_rescaled_n(j,a,m,nw) * tmp_c(j,a,m+l,k,nw)
end do
factor_een(nw) = factor_een(nw) + accu * cn
end do
end do
end do
end function qmckl_compute_factor_een_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const factor_een );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: factor_een(walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_f
info = qmckl_compute_factor_een_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
factor_een)
end function qmckl_compute_factor_een
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<helper_funcs>>
kappa = 1.0
factor_een = 0.0
for n in range(0, dim_cord_vect):
l = lkpm_of_cindex[0,n]
k = lkpm_of_cindex[1,n]
p = lkpm_of_cindex[2,n]
m = lkpm_of_cindex[3,n]
for a in range(0, nucl_num):
accu2 = 0.0
cn = cord_vector_full[a][n]
for j in range(0, elec_num):
accu = 0.0
for i in range(0, elec_num):
accu = accu + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m]
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
factor_een = factor_een + accu2 * cn
print("factor_een:",factor_een)
#+end_src
#+RESULTS:
: factor_een: -0.37407972141304213
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_een[walk_num];
rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]),walk_num);
assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12);
#+end_src
** Electron-electron-nucleus Jastrow \(f_{een}\) derivative
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een_deriv_e~
using the above prepared tables.
TODO: write equations.
*** Get
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context,
double* const factor_een_deriv_e,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context,
double* const factor_een_deriv_e,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_exit_code rc;
rc = qmckl_provide_factor_een_deriv_e(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->electron.walk_num * 4 * ctx->electron.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_jastrow_factor_een_deriv_e",
"Array too small. Expected 4*walk_num*elec_num");
}
memcpy(factor_een_deriv_e, ctx->jastrow.factor_een_deriv_e, sze*sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
*** Provide :noexport:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_provide_factor_een_deriv_e(qmckl_context context)
{
qmckl_exit_code rc;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return QMCKL_NULL_CONTEXT;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance is provided */
rc = qmckl_provide_een_rescaled_e_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_een_rescaled_n_deriv_e(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_cord_vect_full(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if en rescaled distance derivatives is provided */
rc = qmckl_provide_lkpm_combined_index(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if tmp_c is provided */
rc = qmckl_provide_tmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Check if dtmp_c is provided */
rc = qmckl_provide_dtmp_c(context);
if(rc != QMCKL_SUCCESS) return rc;
/* Compute if necessary */
if (ctx->date > ctx->jastrow.factor_een_deriv_e_date) {
/* Allocate array */
if (ctx->jastrow.factor_een_deriv_e == NULL) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = 4 * ctx->electron.num * ctx->electron.walk_num * sizeof(double);
double* factor_een_deriv_e = (double*) qmckl_malloc(context, mem_info);
if (factor_een_deriv_e == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_provide_factor_een_deriv_e",
NULL);
}
ctx->jastrow.factor_een_deriv_e = factor_een_deriv_e;
}
rc = qmckl_compute_factor_een_deriv_e(context,
ctx->electron.walk_num,
ctx->electron.num,
ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect,
ctx->jastrow.cord_vect_full,
ctx->jastrow.lkpm_combined_index,
ctx->jastrow.tmp_c,
ctx->jastrow.dtmp_c,
ctx->jastrow.een_rescaled_n,
ctx->jastrow.een_rescaled_n_deriv_e,
ctx->jastrow.factor_een_deriv_e);
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->jastrow.factor_een_deriv_e_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Compute Naive
:PROPERTIES:
:Name: qmckl_compute_factor_een_deriv_e_naive
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_deriv_e_naive_args
| Variable | Type | In/Out | Description |
|--------------------------+-------------------------------------------------------+--------+--------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices |
| ~een_rescaled_e~ | ~double[walk_num][elec_num][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n~ | ~double[walk_num][elec_num][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor |
| ~een_rescaled_e_deriv_e~ | ~double[walk_num][elec_num][4][elec_num][0:cord_num]~ | in | Electron-nucleus rescaled |
| ~een_rescaled_n_deriv_e~ | ~double[walk_num][elec_num][4][nucl_num][0:cord_num]~ | in | Electron-nucleus rescaled factor |
| ~factor_een_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_deriv_e_naive_f( &
context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, &
cord_vect_full, lkpm_combined_index, een_rescaled_e, een_rescaled_n, &
een_rescaled_e_deriv_e, een_rescaled_n_deriv_e, factor_een_deriv_e)&
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect, 4)
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num)
double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
double precision :: daccu(1:4), daccu2(1:4)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een_deriv_e = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = cord_vect_full(a, n)
do j = 1, elec_num
accu = 0.0d0
accu2 = 0.0d0
daccu = 0.0d0
daccu2 = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(k, i, j, nw) * &
een_rescaled_n(m, a, i, nw)
accu2 = accu2 + een_rescaled_e(k, i, j, nw) * &
een_rescaled_n(m + l, a, i, nw)
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
een_rescaled_n(m, a, i, nw)
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
een_rescaled_n(m + l, a, i, nw)
end do
factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + &
(accu * een_rescaled_n_deriv_e(m + l, a, 1:4, j, nw) &
+ daccu(1:4) * een_rescaled_n(m + l, a, j, nw) &
+ daccu2(1:4) * een_rescaled_n(m, a, j, nw) &
+ accu2 * een_rescaled_n_deriv_e(m, a, 1:4, j, nw)) * cn
factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( &
daccu (1) * een_rescaled_n_deriv_e(m + l, a, 1, j, nw) + &
daccu (2) * een_rescaled_n_deriv_e(m + l, a, 2, j, nw) + &
daccu (3) * een_rescaled_n_deriv_e(m + l, a, 3, j, nw) + &
daccu2(1) * een_rescaled_n_deriv_e(m, a, 1, j, nw ) + &
daccu2(2) * een_rescaled_n_deriv_e(m, a, 2, j, nw ) + &
daccu2(3) * een_rescaled_n_deriv_e(m, a, 3, j, nw ) ) * cn
end do
end do
end do
end do
end function qmckl_compute_factor_een_deriv_e_naive_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een_deriv_e_naive (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n_deriv_e,
double* const factor_een_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_naive_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een_deriv_e_naive &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
een_rescaled_e_deriv_e, &
een_rescaled_n_deriv_e, &
factor_een_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
real (c_double ) , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num)
real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_naive_f
info = qmckl_compute_factor_een_deriv_e_naive_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
een_rescaled_e, &
een_rescaled_n, &
een_rescaled_e_deriv_e, &
een_rescaled_n_deriv_e, &
factor_een_deriv_e)
end function qmckl_compute_factor_een_deriv_e_naive
#+end_src
*** Compute
:PROPERTIES:
:Name: qmckl_compute_factor_een_deriv_e
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_factor_een_deriv_e_args
| Variable | Type | In/Out | Description |
|--------------------------+---------------------------------------------------------------------+--------+------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~walk_num~ | ~int64_t~ | in | Number of walkers |
| ~elec_num~ | ~int64_t~ | in | Number of electrons |
| ~nucl_num~ | ~int64_t~ | in | Number of nucleii |
| ~cord_num~ | ~int64_t~ | in | order of polynomials |
| ~dim_cord_vect~ | ~int64_t~ | in | dimension of full coefficient vector |
| ~cord_vect_full~ | ~double[dim_cord_vect][nucl_num]~ | in | full coefficient vector |
| ~lkpm_combined_index~ | ~int64_t[4][dim_cord_vect]~ | in | combined indices |
| ~tmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][elec_num]~ | in | Temporary intermediate tensor |
| ~dtmp_c~ | ~double[walk_num][0:cord_num-1][0:cord_num][nucl_num][4][elec_num]~ | in | vector of non-zero coefficients |
| ~een_rescaled_n~ | ~double[walk_num][0:cord_num][nucl_num][elec_num]~ | in | Electron-nucleus rescaled factor |
| ~een_rescaled_n_deriv_e~ | ~double[walk_num][0:cord_num][nucl_num][4][elec_num]~ | in | Derivative of Electron-nucleus rescaled factor |
| ~factor_een_deriv_e~ | ~double[walk_num][4][elec_num]~ | out | Derivative of Electron-nucleus jastrow |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_factor_een_deriv_e_f( &
context, walk_num, elec_num, nucl_num, &
cord_num, dim_cord_vect, cord_vect_full, lkpm_combined_index, &
tmp_c, dtmp_c, een_rescaled_n, een_rescaled_n_deriv_e, factor_een_deriv_e)&
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: tmp_c(elec_num, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: dtmp_c(elec_num, 4, nucl_num,0:cord_num, 0:cord_num-1, walk_num)
double precision , intent(in) :: een_rescaled_n(elec_num, nucl_num, 0:cord_num, walk_num)
double precision , intent(in) :: een_rescaled_n_deriv_e(elec_num, 4, nucl_num, 0:cord_num, walk_num)
double precision , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw, ii
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een_deriv_e = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(n, 4)
do a = 1, nucl_num
cn = cord_vect_full(a, n)
if(cn == 0.d0) cycle
do ii = 1, 4
do j = 1, elec_num
factor_een_deriv_e(j,ii,nw) = factor_een_deriv_e(j,ii,nw) + (&
tmp_c(j,a,m,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m+l,nw) + &
(dtmp_c(j,ii,a,m,k,nw)) * een_rescaled_n(j,a,m+l,nw) + &
(dtmp_c(j,ii,a,m+l,k,nw)) * een_rescaled_n(j,a,m ,nw) + &
tmp_c(j,a,m+l,k,nw) * een_rescaled_n_deriv_e(j,ii,a,m,nw) &
) * cn
end do
end do
cn = cn + cn
do j = 1, elec_num
factor_een_deriv_e(j,4,nw) = factor_een_deriv_e(j,4,nw) + (&
(dtmp_c(j,1,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m+l,nw) + &
(dtmp_c(j,2,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m+l,nw) + &
(dtmp_c(j,3,a,m ,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m+l,nw) + &
(dtmp_c(j,1,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,1,a,m ,nw) + &
(dtmp_c(j,2,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,2,a,m ,nw) + &
(dtmp_c(j,3,a,m+l,k,nw)) * een_rescaled_n_deriv_e(j,3,a,m ,nw) &
) * cn
end do
end do
end do
end do
end function qmckl_compute_factor_een_deriv_e_f
#+end_src
# #+CALL: generate_c_header(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_compute_factor_een_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* tmp_c,
const double* dtmp_c,
const double* een_rescaled_n,
const double* een_rescaled_n_deriv_e,
double* const factor_een_deriv_e );
#+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_deriv_e_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_factor_een_deriv_e &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
tmp_c, &
dtmp_c, &
een_rescaled_n, &
een_rescaled_n_deriv_e, &
factor_een_deriv_e) &
bind(C) result(info)
use, intrinsic :: iso_c_binding
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: walk_num
integer (c_int64_t) , intent(in) , value :: elec_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect
real (c_double ) , intent(in) :: cord_vect_full(nucl_num,dim_cord_vect)
integer (c_int64_t) , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
real (c_double ) , intent(in) :: tmp_c(elec_num,nucl_num,0:cord_num,0:cord_num-1,walk_num)
real (c_double ) , intent(in) :: dtmp_c(elec_num,4,nucl_num,0:cord_num,0:cord_num-1,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n(elec_num,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(in) :: een_rescaled_n_deriv_e(elec_num,4,nucl_num,0:cord_num,walk_num)
real (c_double ) , intent(out) :: factor_een_deriv_e(elec_num,4,walk_num)
integer(c_int32_t), external :: qmckl_compute_factor_een_deriv_e_f
info = qmckl_compute_factor_een_deriv_e_f &
(context, &
walk_num, &
elec_num, &
nucl_num, &
cord_num, &
dim_cord_vect, &
cord_vect_full, &
lkpm_combined_index, &
tmp_c, &
dtmp_c, &
een_rescaled_n, &
een_rescaled_n_deriv_e, &
factor_een_deriv_e)
end function qmckl_compute_factor_een_deriv_e
#+end_src
*** Test
#+begin_src python :results output :exports none :noweb yes
import numpy as np
<<jastrow_data>>
<<een_e_deriv_e>>
<<helper_funcs>>
kappa = 1.0
factor_een = 0.0
daccu = np.zeros(4, dtype=float)
daccu2 = np.zeros(4, dtype=float)
een_rescaled_e_deriv_e_t = een_rescaled_e_deriv_e.T
print(een_rescaled_e_deriv_e_t.shape)
for n in range(0, dim_cord_vect):
l = lkpm_of_cindex[0,n]
k = lkpm_of_cindex[1,n]
p = lkpm_of_cindex[2,n]
m = lkpm_of_cindex[3,n]
for a in range(0, nucl_num):
cn = cord_vector_full[a][n]
for j in range(0, elec_num):
accu = 0.0
accu2 = 0.0
daccu = 0.0
daccu2 = 0.0
for i in range(0, elec_num):
accu = accu + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m]
accu2 = accu2 + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m+l]
# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
# een_rescaled_n[a,i,m]
# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
# een_rescaled_n[a,i,m]
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
# factor_een = factor_een + accu2 * cn
print("factor_een:",factor_een)
#+end_src
#+RESULTS:
: (6, 10, 4, 10)
: factor_een: 0.0
#+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_een_deriv_e[4][walk_num][elec_num];
rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0][0]),4*walk_num*elec_num);
assert(fabs(factor_een_deriv_e[0][0][0] + 0.0005481671107226865) < 1e-12);
#+end_src
* End of files :noexport:
#+begin_src c :tangle (eval h_private_type)
#endif
#+end_src
#+begin_src c :tangle (eval h_private_func)
#endif
#+end_src
*** Test
#+begin_src c :tangle (eval c_test)
rc = qmckl_context_destroy(context);
assert (rc == QMCKL_SUCCESS);
return 0;
}
#+end_src
# -*- mode: org -*-
# vim: syntax=c