1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-03 10:06:09 +01:00

Fix tests

This commit is contained in:
Anthony Scemama 2022-05-20 19:22:56 +02:00
parent e00e034497
commit bd299126c1
2 changed files with 167 additions and 59 deletions

View File

@ -3,10 +3,117 @@
#+INCLUDE: ../tools/lib.org
In this section, we present examples of usage of QMCkl.
For simplicity, we assume that the wave function parameters are stores
For simplicity, we assume that the wave function parameters are stored
in a [[https://github.com/TREX-CoE/trexio][TREXIO]] file.
* Checking errors
* Python
** Check numerically that MOs are orthonormal
In this example, we will compute the numerically the overlap
between the molecular orbitals:
\[
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
\]
#+begin_src python :session
import numpy as np
import qmckl
#+end_src
#+RESULTS:
First, we create a context for the QMCkl calculation, and load the
wave function stored in =h2o_5z.h5= inside it:
#+begin_src python :session
trexio_filename = "..//share/qmckl/test_data/h2o_5z.h5"
context = qmckl.context_create()
qmckl.trexio_read(context, trexio_filename)
#+end_src
#+RESULTS:
: None
We now define the grid points as a regular grid around the
molecule.
We fetch the nuclear coordinates from the context,
#+begin_src python :session :results output
nucl_num = qmckl.get_nucleus_num(context)
nucl_charge = qmckl.get_nucleus_charge(context, nucl_num)
nucl_coord = qmckl.get_nucleus_coord(context, 'N', nucl_num*3)
nucl_coord = np.reshape(nucl_coord, (3, nucl_num))
for i in range(nucl_num):
print("%d %+f %+f %+f"%(int(nucl_charge[i]),
nucl_coord[i,0],
nucl_coord[i,1],
nucl_coord[i,2]) )
#+end_src
#+RESULTS:
: 8 +0.000000 +0.000000 +0.000000
: 1 -1.430429 +0.000000 -1.107157
: 1 +1.430429 +0.000000 -1.107157
and compute the coordinates of the grid points:
#+begin_src python :session
nx = ( 40, 40, 40 )
point_num = nx[0] * nx[1] * nx[2]
rmin = np.array( list([ np.min(nucl_coord[:,a]) for a in range(3) ]) )
rmax = np.array( list([ np.max(nucl_coord[:,a]) for a in range(3) ]) )
shift = np.array([5.,5.,5.])
linspace = [ None for i in range(3) ]
step = [ None for i in range(3) ]
for a in range(3):
linspace[a], step[a] = np.linspace(rmin[a]-shift[a],
rmax[a]+shift[a],
num=nx[a],
retstep=True)
dr = step[0] * step[1] * step[2]
dr
#+end_src
#+RESULTS:
: 0.024081249137090373
Now the grid is ready, we can create the list of grid points on
which the MOs will be evaluated, and transfer them to the QMCkl
context:
#+begin_src python :session
point = []
for x in linspace[0]:
for y in linspace[1]:
for z in linspace[2]:
point += [x, y, z]
#point = np.array(point)
qmckl.set_point(context, 'N', point, len(point)/3)
#+end_src
#+RESULTS:
Then, will first evaluate all the MOs at the grid points, and then we will
compute the overlap between all the MOs.
* Fortran
** Checking errors
All QMCkl functions return an error code. A convenient way to handle
errors is to write an error-checking function that displays the
@ -29,7 +136,7 @@ subroutine qmckl_check_error(rc, message)
end subroutine qmckl_check_error
#+end_src
* Computing an atomic orbital on a grid
** Computing an atomic orbital on a grid
:PROPERTIES:
:header-args: :tangle ao_grid.f90
:END:
@ -197,3 +304,4 @@ program ao_grid
deallocate( nucl_coord, points, ao_vgl )
end program ao_grid
#+end_src

View File

@ -1289,7 +1289,7 @@ end function qmckl_compute_local_energy_f
double local_energy[chbrclf_walk_num];
rc = qmckl_get_local_energy(context, &(local_energy[0]), walk_num);
rc = qmckl_get_local_energy(context, &(local_energy[0]), chbrclf_walk_num);
assert (rc == QMCKL_SUCCESS);
#+end_src