1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-07-18 08:53:47 +02:00

Merge branch 'master' of github.com:TREX-CoE/qmckl

This commit is contained in:
Anthony Scemama 2021-09-28 22:46:30 +02:00
commit 1cf1956fa3
2 changed files with 307 additions and 329 deletions

View File

@ -61,7 +61,7 @@ int main() {
#include "qmckl_jastrow_private_func.h" #include "qmckl_jastrow_private_func.h"
#include "qmckl_jastrow_private_type.h" #include "qmckl_jastrow_private_type.h"
#+end_src #+end_src
* Context * Context
:PROPERTIES: :PROPERTIES:
:Name: qmckl_jastrow :Name: qmckl_jastrow
@ -202,7 +202,7 @@ for i in range(elec_num):
type_nucl_num = 1 type_nucl_num = 1
aord_num = 5 aord_num = 5
bord_num = 5 bord_num = 5
cord_num = 23 cord_num = 5
dim_cord_vect= 23 dim_cord_vect= 23
type_nucl_vector = [ 1, 1] type_nucl_vector = [ 1, 1]
aord_vector = [ aord_vector = [
@ -609,7 +609,7 @@ qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, doub
} }
assert (ctx->jastrow.cord_vector != NULL); assert (ctx->jastrow.cord_vector != NULL);
memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_num*sizeof(double)); memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.dim_cord_vect*sizeof(double));
return QMCKL_SUCCESS; return QMCKL_SUCCESS;
} }
@ -860,19 +860,22 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons
int32_t mask = 1 << 5; int32_t mask = 1 << 5;
int64_t cord_num; qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context);
qmckl_exit_code rc = qmckl_get_jastrow_cord_num(context, &cord_num); if (rc != QMCKL_SUCCESS) return rc;
int64_t dim_cord_vect;
rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect);
if (rc != QMCKL_SUCCESS) return rc; if (rc != QMCKL_SUCCESS) return rc;
int64_t type_nucl_num; int64_t type_nucl_num;
rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num);
if (rc != QMCKL_SUCCESS) return rc; if (rc != QMCKL_SUCCESS) return rc;
if (cord_num == 0) { if (dim_cord_vect == 0) {
return qmckl_failwith( context, return qmckl_failwith( context,
QMCKL_FAILURE, QMCKL_FAILURE,
"qmckl_set_jastrow_coefficient", "qmckl_set_jastrow_coefficient",
"cord_num is not set"); "dim_cord_vect is not set");
} }
if (cord_vector == NULL) { if (cord_vector == NULL) {
@ -892,7 +895,7 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons
} }
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = cord_num * type_nucl_num * sizeof(double); mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info); double* new_array = (double*) qmckl_malloc(context, mem_info);
if(new_array == NULL) { if(new_array == NULL) {
@ -1324,20 +1327,20 @@ end function qmckl_compute_asymp_jasb_f
#+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS: #+RESULTS:
#+begin_src c :tangle (eval h_private_func) :comments org #+BEGIN_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_asymp_jasb ( qmckl_exit_code qmckl_compute_asymp_jasb (
const qmckl_context context, const qmckl_context context,
const int64_t bord_num, const int64_t bord_num,
const double* bord_vector, const double* bord_vector,
const double rescale_factor_kappa_ee, const double rescale_factor_kappa_ee,
double* const asymp_jasb ); double* const asymp_jasb );
#+end_src #+END_src
#+CALL: generate_c_interface(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+CALL: generate_c_interface(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS: #+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none #+BEGIN_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_asymp_jasb & integer(c_int32_t) function qmckl_compute_asymp_jasb &
(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) & (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) &
bind(C) result(info) bind(C) result(info)
@ -1356,7 +1359,7 @@ end function qmckl_compute_asymp_jasb_f
(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb)
end function qmckl_compute_asymp_jasb end function qmckl_compute_asymp_jasb
#+end_src #+END_src
*** Test *** Test
#+name: asymp_jasb #+name: asymp_jasb
@ -1380,15 +1383,10 @@ print("asymp_jasb[1] : ", asymp_jasb[1])
#+end_src #+end_src
#+RESULTS: asymp_jasb #+RESULTS: asymp_jasb
: asym_one : 0.6634291325000664
: asymp_jasb[0] : 1.043287918508297
: asymp_jasb[1] : 0.7115733522582638
#+RESULTS:
: asym_one : 0.43340325572525706 : asym_one : 0.43340325572525706
: asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[0] : 0.5323750557252571
: asymp_jasb[1] : 0.31567342786262853 : asymp_jasb[1] : 0.31567342786262853
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
assert(qmckl_electron_provided(context)); assert(qmckl_electron_provided(context));
@ -1416,6 +1414,8 @@ rc = qmckl_set_jastrow_aord_vector(context, aord_vector);
assert(rc == QMCKL_SUCCESS); assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_bord_vector(context, bord_vector); rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
assert(rc == QMCKL_SUCCESS); assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_cord_vector(context, cord_vector); rc = qmckl_set_jastrow_cord_vector(context, cord_vector);
assert(rc == QMCKL_SUCCESS); assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_dependencies(context); rc = qmckl_set_jastrow_dependencies(context);
@ -2114,28 +2114,16 @@ print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0])
print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0]) print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0])
print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0]) print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0])
print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0]) print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0])
print(factor_ee_deriv_e)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
#+begin_example : asym_one : 0.43340325572525706
asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571
asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853
asymp_jasb[1] : 0.31567342786262853 : factor_ee_deriv_e[0][0]: 0.16364894652107934
factor_ee_deriv_e[0][0]: 0.16364894652107934 : factor_ee_deriv_e[1][0]: -0.6927548119830084
factor_ee_deriv_e[1][0]: -0.6927548119830084 : factor_ee_deriv_e[2][0]: 0.073267755223968
factor_ee_deriv_e[2][0]: 0.073267755223968 : factor_ee_deriv_e[3][0]: 1.5111672803213185
factor_ee_deriv_e[3][0]: 1.5111672803213185
[[ 0.16364895 0.60354957 -0.19825547 0.02359797 -0.13123153 -0.18789233
0.07762515 -0.42459184 0.27920265 -0.2056531 ]
[-0.69275481 0.15690393 0.09831069 0.18490587 0.04361723 0.3250686
0.12657961 -0.01736522 -0.40149005 0.17622416]
[ 0.07326776 -0.27532276 0.22396943 0.18771633 -0.34506246 0.07298062
0.63302352 -0.00910198 -0.30238713 -0.25908332]
[ 1.51116728 1.5033247 0.00325003 2.89377255 0.1338393 2.15893795
1.74732003 0.23561147 2.67455607 0.82810434]]
#+end_example
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
@ -2429,7 +2417,7 @@ for a in range(0,nucl_num):
print("factor_en :",factor_en) print("factor_en :",factor_en)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: factor_en : -5.865822569188727 : factor_en : -5.865822569188727
@ -2547,7 +2535,7 @@ qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context)
return QMCKL_SUCCESS; return QMCKL_SUCCESS;
} }
#+end_src #+end_src
*** Compute *** Compute
:PROPERTIES: :PROPERTIES:
:Name: qmckl_compute_factor_en_deriv_e :Name: qmckl_compute_factor_en_deriv_e
@ -3039,6 +3027,13 @@ integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cor
end do end do
end do end do
end do end do
do l = 0, cord_num
do j = 1, elec_num
een_rescaled_e(l, j, j, nw) = 0.0d0
end do
end do
end do end do
end function qmckl_compute_een_rescaled_e_f end function qmckl_compute_een_rescaled_e_f
@ -3124,6 +3119,10 @@ for l in range(1,cord_num+1):
een_rescaled_e[j, i, l] = x een_rescaled_e[j, i, l] = x
k = k + 1 k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1])
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1])
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1])
@ -3135,7 +3134,7 @@ print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2])
#+RESULTS: #+RESULTS:
: een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e[0, 2, 1] = 0.08084493981483197
: een_rescaled_e[0, 3, 1] = 0.1066745707571846 : een_rescaled_e[0, 3, 1] = 0.1066745707571846
: een_rescaled_e[0, 4, 1] = 0.01754273169464735 : een_rescaled_e[0, 4, 1] = 0.017542731694647366
: een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e[1, 3, 2] = 0.02214680362033448
: een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e[1, 4, 2] = 0.0005700154999202759
: een_rescaled_e[1, 5, 2] = 0.3424402276009091 : een_rescaled_e[1, 5, 2] = 0.3424402276009091
@ -3158,10 +3157,11 @@ assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12);
#+end_src #+end_src
** Electron-electron rescaled distances for each order and derivatives ** Electron-electron rescaled distances for each order and derivatives
~een_rescaled_e~ stores the table of the rescaled distances between all ~een_rescaled_e_deriv_e~ stores the table of the derivatives of the
pairs of electrons and raised to the power \(p\) defined by ~cord_num~. rescaled distances between all pairs of electrons and raised to the
Here we take its derivatives required for the een jastrow. power \(p\) defined by ~cord_num~. Here we take its derivatives
required for the een jastrow.
TODO: write formulae TODO: write formulae
@ -3419,7 +3419,7 @@ end function qmckl_compute_factor_een_rescaled_e_deriv_e_f
#+end_src #+end_src
*** Test *** Test
#+name: een_e_deriv_e
#+begin_src python :results output :exports none :noweb yes #+begin_src python :results output :exports none :noweb yes
import numpy as np import numpy as np
@ -3431,6 +3431,16 @@ for i in range(elec_num):
for j in range(elec_num): for j in range(elec_num):
elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float)
for j in range(elec_num):
for i in range(elec_num):
rij_inv = 1.0 / elec_dist[i, j]
for ii in range(3):
elec_dist_deriv_e[ii, i, j] = -(elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv
elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv
elec_dist_deriv_e[:, j, j] = 0.0
kappa = 1.0 kappa = 1.0
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
@ -3458,29 +3468,53 @@ for l in range(1,cord_num+1):
een_rescaled_e[j, i, l] = x een_rescaled_e[j, i, l] = x
k = k + 1 k = k + 1
print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) een_rescaled_e_deriv_e = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float)
print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) for l in range(0,cord_num+1):
print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) kappa_l = -1.0 * kappa * l
print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2]) for j in range(0,elec_num):
print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2]) for i in range(0,elec_num):
print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) for ii in range(0,4):
een_rescaled_e_deriv_e[i,ii,j,l] = kappa_l * elec_dist_deriv_e[ii,i,j]
een_rescaled_e_deriv_e[i,3,j,l] = een_rescaled_e_deriv_e[i,3,j,l] + \
een_rescaled_e_deriv_e[i,0,j,l] * een_rescaled_e_deriv_e[i,0,j,l] + \
een_rescaled_e_deriv_e[i,1,j,l] * een_rescaled_e_deriv_e[i,1,j,l] + \
een_rescaled_e_deriv_e[i,2,j,l] * een_rescaled_e_deriv_e[i,2,j,l]
for ii in range(0,4):
een_rescaled_e_deriv_e[i,ii,j,l] = een_rescaled_e_deriv_e[i,ii,j,l] * een_rescaled_e[i,j,l]
#print(" een_rescaled_e_deriv_e[1, 1, 3, 1] = ",een_rescaled_e_deriv_e[0, 0, 2, 1])
#print(" een_rescaled_e_deriv_e[1, 1, 4, 1] = ",een_rescaled_e_deriv_e[0, 0, 3, 1])
#print(" een_rescaled_e_deriv_e[1, 1, 5, 1] = ",een_rescaled_e_deriv_e[0, 0, 4, 1])
#print(" een_rescaled_e_deriv_e[2, 1, 4, 2] = ",een_rescaled_e_deriv_e[1, 0, 3, 2])
#print(" een_rescaled_e_deriv_e[2, 1, 5, 2] = ",een_rescaled_e_deriv_e[1, 0, 4, 2])
#print(" een_rescaled_e_deriv_e[2, 1, 6, 2] = ",een_rescaled_e_deriv_e[1, 0, 5, 2])
#+end_src #+end_src
#+RESULTS: #+RESULTS: een_e_deriv_e
: een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e_deriv_e[1, 1, 3, 1] = 0.05991352796887283
: een_rescaled_e[0, 3, 1] = 0.1066745707571846 : een_rescaled_e_deriv_e[1, 1, 4, 1] = 0.011714035071545248
: een_rescaled_e[0, 4, 1] = 0.01754273169464735 : een_rescaled_e_deriv_e[1, 1, 5, 1] = 0.00441398875758468
: een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e_deriv_e[2, 1, 4, 2] = 0.013553180060167595
: een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e_deriv_e[2, 1, 5, 2] = 0.00041342909359870457
: een_rescaled_e[1, 5, 2] = 0.3424402276009091 : een_rescaled_e_deriv_e[2, 1, 6, 2] = 0.5880599146214673
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
//assert(qmckl_electron_provided(context)); //assert(qmckl_electron_provided(context));
double een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][(cord_num + 1)];
rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0]));
// value of (0,0,0,2,1)
assert(fabs(een_rescaled_e_deriv_e[0][0][0][2][1] + 0.05991352796887283 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][0][0][3][1] + 0.011714035071545248 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][0][0][4][1] + 0.00441398875758468 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][1][0][3][2] + 0.013553180060167595 ) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][1][0][4][2] + 0.00041342909359870457) < 1.e-12);
assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1.e-12);
#+end_src #+end_src
** Electron-nucleus rescaled distances for each order ** Electron-nucleus rescaled distances for each order
~een_rescaled_n~ stores the table of the rescaled distances between ~een_rescaled_n~ stores the table of the rescaled distances between
electrons and nucleii raised to the power \(p\) defined by ~cord_num~: electrons and nucleii raised to the power \(p\) defined by ~cord_num~:
@ -4076,6 +4110,14 @@ for i in range(elec_num):
for a in range(nucl_num): for a in range(nucl_num):
elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
rij_inv = 1.0 / elnuc_dist[i, a]
for ii in range(3):
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
kappa = 1.0 kappa = 1.0
een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float)
@ -4090,24 +4132,50 @@ for l in range(2,cord_num+1):
for i in range(elec_num): for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) een_rescaled_n_deriv_e = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float)
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) for l in range(0,cord_num+1):
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) kappa_l = -1.0 * kappa * l
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) for j in range(0,elec_num):
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) for a in range(0,nucl_num):
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) for ii in range(0,4):
een_rescaled_n_deriv_e[j,ii,a,l] = kappa_l * elnuc_dist_deriv_e[ii,j,a]
een_rescaled_n_deriv_e[j,3,a,l] = een_rescaled_n_deriv_e[j,3,a,l] + \
een_rescaled_n_deriv_e[j,0,a,l] * een_rescaled_n_deriv_e[j,0,a,l] + \
een_rescaled_n_deriv_e[j,1,a,l] * een_rescaled_n_deriv_e[j,1,a,l] + \
een_rescaled_n_deriv_e[j,2,a,l] * een_rescaled_n_deriv_e[j,2,a,l]
for ii in range(0,4):
een_rescaled_n_deriv_e[j,ii,a,l] = een_rescaled_n_deriv_e[j,ii,a,l] * een_rescaled_n[a,j,l]
print(" een_rescaled_n_deriv_e[1, 1, 3, 1] = ",een_rescaled_n_deriv_e[2, 0, 0, 1])
print(" een_rescaled_n_deriv_e[1, 1, 4, 1] = ",een_rescaled_n_deriv_e[3, 0, 0, 1])
print(" een_rescaled_n_deriv_e[1, 1, 5, 1] = ",een_rescaled_n_deriv_e[4, 0, 0, 1])
print(" een_rescaled_n_deriv_e[2, 1, 4, 2] = ",een_rescaled_n_deriv_e[3, 0, 1, 2])
print(" een_rescaled_n_deriv_e[2, 1, 5, 2] = ",een_rescaled_n_deriv_e[4, 0, 1, 2])
print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2])
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: een_rescaled_n[0, 2, 1] = 0.10612983920006765 : een_rescaled_n_deriv_e[1, 1, 3, 1] = -0.07633444246999128
: een_rescaled_n[0, 3, 1] = 0.135652809635553 : een_rescaled_n_deriv_e[1, 1, 4, 1] = 0.00033282346259738276
: een_rescaled_n[0, 4, 1] = 0.023391817607642338 : een_rescaled_n_deriv_e[1, 1, 5, 1] = -0.004775370547333061
: een_rescaled_n[1, 3, 2] = 0.880957224822116 : een_rescaled_n_deriv_e[2, 1, 4, 2] = 0.1362654644223866
: een_rescaled_n[1, 4, 2] = 0.027185942659395074 : een_rescaled_n_deriv_e[2, 1, 5, 2] = -0.0231253431662794
: een_rescaled_n[1, 5, 2] = 0.01343938025140174 : een_rescaled_n_deriv_e[2, 1, 6, 2] = 0.001593334817691633
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
//assert(qmckl_electron_provided(context)); assert(qmckl_electron_provided(context));
double een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][(cord_num + 1)];
rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0]));
// value of (0,2,1)
assert(fabs(een_rescaled_n_deriv_e[0][2][0][0][1]+0.07633444246999128 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][3][0][0][1]-0.00033282346259738276) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][4][0][0][1]+0.004775370547333061 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][3][0][1][2]-0.1362654644223866 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][4][0][1][2]+0.0231253431662794 ) < 1.e-12);
assert(fabs(een_rescaled_n_deriv_e[0][5][0][1][2]-0.001593334817691633 ) < 1.e-12);
#+end_src #+end_src
@ -4264,7 +4332,6 @@ qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context)
qmckl_exit_code rc = qmckl_exit_code rc =
qmckl_compute_cord_vect_full(context, qmckl_compute_cord_vect_full(context,
ctx->nucleus.num, ctx->nucleus.num,
ctx->jastrow.cord_num,
ctx->jastrow.dim_cord_vect, ctx->jastrow.dim_cord_vect,
ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_num,
ctx->jastrow.type_nucl_vector, ctx->jastrow.type_nucl_vector,
@ -4424,28 +4491,26 @@ end function qmckl_compute_dim_cord_vect_f
:END: :END:
#+NAME: qmckl_factor_cord_vect_full_args #+NAME: qmckl_factor_cord_vect_full_args
| qmckl_context | context | in | Global state | | qmckl_context | context | in | Global state |
| int64_t | nucl_num | in | Number of atoms | | int64_t | nucl_num | in | Number of atoms |
| int64_t | cord_num | in | Order of polynomials | | int64_t | dim_cord_vect | in | dimension of cord full table |
| int64_t | dim_cord_vect | in | dimension of cord full table | | int64_t | type_nucl_num | in | dimension of cord full table |
| int64_t | type_nucl_num | in | dimension of cord full table | | int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table |
| int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table | | double | cord_vector[dim_cord_vect][type_nucl_num] | in | dimension of cord full table |
| double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table | | double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
| double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes #+begin_src f90 :comments org :tangle (eval f) :noweb yes
integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, & integer function qmckl_compute_cord_vect_full_f(context, nucl_num, dim_cord_vect, type_nucl_num, &
type_nucl_vector, cord_vector, cord_vect_full) & type_nucl_vector, cord_vector, cord_vect_full) &
result(info) result(info)
use qmckl use qmckl
implicit none implicit none
integer(qmckl_context), intent(in) :: context integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: nucl_num integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(in) :: type_nucl_num integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num) integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: cord_vector(cord_num, type_nucl_num) double precision , intent(in) :: cord_vector(type_nucl_num, dim_cord_vect)
double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
double precision :: x double precision :: x
integer*8 :: i, a, k, l, nw integer*8 :: i, a, k, l, nw
@ -4462,11 +4527,6 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim
return return
endif endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (type_nucl_num <= 0) then if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4 info = QMCKL_INVALID_ARG_4
return return
@ -4479,7 +4539,7 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim
do a = 1, nucl_num do a = 1, nucl_num
cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a)) cord_vect_full(a,1:dim_cord_vect) = cord_vector(type_nucl_vector(a),1:dim_cord_vect)
end do end do
end function qmckl_compute_cord_vect_full_f end function qmckl_compute_cord_vect_full_f
@ -4492,7 +4552,6 @@ end function qmckl_compute_cord_vect_full_f
qmckl_exit_code qmckl_compute_cord_vect_full ( qmckl_exit_code qmckl_compute_cord_vect_full (
const qmckl_context context, const qmckl_context context,
const int64_t nucl_num, const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect, const int64_t dim_cord_vect,
const int64_t type_nucl_num, const int64_t type_nucl_num,
const int64_t* type_nucl_vector, const int64_t* type_nucl_vector,
@ -4506,14 +4565,7 @@ end function qmckl_compute_cord_vect_full_f
#+RESULTS: #+RESULTS:
#+begin_src f90 :tangle (eval f) :comments org :exports none #+begin_src f90 :tangle (eval f) :comments org :exports none
integer(c_int32_t) function qmckl_compute_cord_vect_full & integer(c_int32_t) function qmckl_compute_cord_vect_full &
(context, & (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) &
nucl_num, &
cord_num, &
dim_cord_vect, &
type_nucl_num, &
type_nucl_vector, &
cord_vector, &
cord_vect_full) &
bind(C) result(info) bind(C) result(info)
use, intrinsic :: iso_c_binding use, intrinsic :: iso_c_binding
@ -4521,23 +4573,15 @@ end function qmckl_compute_cord_vect_full_f
integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: nucl_num integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) , value :: cord_num
integer (c_int64_t) , intent(in) , value :: dim_cord_vect integer (c_int64_t) , intent(in) , value :: dim_cord_vect
integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) , value :: type_nucl_num
integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num)
real (c_double ) , intent(in) :: cord_vector(type_nucl_num,cord_num) real (c_double ) , intent(in) :: cord_vector(type_nucl_num,dim_cord_vect)
real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f
info = qmckl_compute_cord_vect_full_f & info = qmckl_compute_cord_vect_full_f &
(context, & (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full)
nucl_num, &
cord_num, &
dim_cord_vect, &
type_nucl_num, &
type_nucl_vector, &
cord_vector, &
cord_vect_full)
end function qmckl_compute_cord_vect_full end function qmckl_compute_cord_vect_full
#+end_src #+end_src
@ -4644,9 +4688,9 @@ end function qmckl_compute_lkpm_combined_index_f
end function qmckl_compute_lkpm_combined_index end function qmckl_compute_lkpm_combined_index
#+end_src #+end_src
*** Test *** Test
#+name: helper_funcs
#+begin_src python :results output :exports none :noweb yes #+begin_src python :results output :exports none :noweb yes
import numpy as np import numpy as np
@ -4673,21 +4717,46 @@ for l in range(2,cord_num+1):
for i in range(elec_num): for i in range(elec_num):
een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1]
print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float)
print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) for i in range(elec_num):
print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) for j in range(elec_num):
print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j])
print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2])
print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) kappa = 1.0
een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float)
een_rescaled_e_ij[:,0] = 1.0
k = 0
for j in range(elec_num):
for i in range(j):
een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j])
k = k + 1
for l in range(2, cord_num + 1):
for k in range(elec_num * (elec_num - 1)//2):
een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1]
een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float)
een_rescaled_e[:,:,0] = 1.0
for l in range(1,cord_num+1):
k = 0
for j in range(elec_num):
for i in range(j):
x = een_rescaled_e_ij[k, l]
een_rescaled_e[i, j, l] = x
een_rescaled_e[j, i, l] = x
k = k + 1
for l in range(0,cord_num+1):
for j in range(0, elec_num):
een_rescaled_e[j,j,l] = 0.0
lkpm_of_cindex = np.array(lkpm_combined_index).T
#+end_src #+end_src
#+RESULTS: #+RESULTS: helper_funcs
: een_rescaled_n[0, 2, 1] = 0.10612983920006765
: een_rescaled_n[0, 3, 1] = 0.135652809635553
: een_rescaled_n[0, 4, 1] = 0.023391817607642338
: een_rescaled_n[1, 3, 2] = 0.880957224822116
: een_rescaled_n[1, 4, 2] = 0.027185942659395074
: een_rescaled_n[1, 5, 2] = 0.01343938025140174
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
//assert(qmckl_electron_provided(context)); //assert(qmckl_electron_provided(context));
@ -4696,7 +4765,7 @@ print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2])
#+end_src #+end_src
** Electron-electron-nucleus Jastrow \(f_{een}\) ** Electron-electron-nucleus Jastrow \(f_{een}\)
Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~ Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~
using the above prepared tables. using the above prepared tables.
@ -4834,10 +4903,10 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu
implicit none implicit none
integer(qmckl_context), intent(in) :: context integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4)
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
double precision , intent(out) :: factor_een(walk_num) double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw integer*8 :: i, a, j, l, k, p, m, n, nw
@ -4874,23 +4943,27 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu
do nw =1, walk_num do nw =1, walk_num
do n = 1, dim_cord_vect do n = 1, dim_cord_vect
l = lkpm_combined_index(1, n) l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(2, n) k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(3, n) p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(4, n) m = lkpm_combined_index(n, 4)
do a = 1, nucl_num do a = 1, nucl_num
accu2 = 0.0d0 accu2 = 0.0d0
cn = cord_vect_full(n, a) cn = cord_vect_full(a, n)
do j = 1, elec_num do j = 1, elec_num
accu = 0.0d0 accu = 0.0d0
do i = 1, elec_num do i = 1, elec_num
accu = accu + een_rescaled_e(nw, i, j, k) * & accu = accu + een_rescaled_e(k,i,j,nw) * &
een_rescaled_n(nw, i, a, m) een_rescaled_n(m,a,i,nw)
!if(nw .eq. 1) then
! print *,l,k,p,m,j,i,een_rescaled_e(k,i,j,nw), een_rescaled_n(m,a,i,nw), accu
!endif
end do end do
accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l) accu2 = accu2 + accu * een_rescaled_n(m + l,a,j,nw)
!print *, l,m,nw,accu, accu2, een_rescaled_n(m + l, a, j, nw), cn, factor_een(nw)
end do end do
factor_een(nw) = factor_een(nw) + accu2 + cn factor_een(nw) = factor_een(nw) + accu2 * cn
end do end do
end do end do
end do end do
@ -4916,7 +4989,6 @@ end function qmckl_compute_factor_een_f
double* const factor_een ); double* const factor_een );
#+end_src #+end_src
#+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS: #+RESULTS:
@ -4973,100 +5045,44 @@ import numpy as np
<<jastrow_data>> <<jastrow_data>>
<<helper_funcs>>
kappa = 1.0 kappa = 1.0
elec_coord = np.array(elec_coord)[0] factor_een = 0.0
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for j in range(nucl_num):
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) for n in range(0, dim_cord_vect):
for a in range(nucl_num): l = lkpm_of_cindex[0,n]
for i in range(elec_num): k = lkpm_of_cindex[1,n]
rij_inv = 1.0 / elnuc_dist[i, a] p = lkpm_of_cindex[2,n]
for ii in range(3): m = lkpm_of_cindex[3,n]
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
f = 1.0 - kappa * en_distance_rescaled[i][a]
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a]
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a])
for ii in range(4):
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f
third = 1.0 / 3.0
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float)
dx = np.zeros(shape=(4),dtype=float)
pow_ser_g = np.zeros(shape=(3),dtype=float)
for a in range(nucl_num):
for i in range(elec_num):
x = en_distance_rescaled[i][a]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (x + 1.0E-18)
for ii in range(4):
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = en_distance_rescaled[i][a]
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[i][a]
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
dx[ii] * invden2 + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
for a in range(0, nucl_num):
accu2 = 0.0
cn = cord_vector_full[a][n]
for j in range(0, elec_num):
accu = 0.0
for i in range(0, elec_num):
accu = accu + een_rescaled_e[i,j,k] * \
een_rescaled_n[a,i,m]
accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
factor_een = factor_een + accu2 * cn
print("factor_een:",factor_een)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: factor_en_deriv_e[0][0]: 0.11609919541763383 : factor_een: -0.37407972141304213
: factor_en_deriv_e[1][0]: -0.23301394780804574
: factor_en_deriv_e[2][0]: 0.17548337641865783
: factor_en_deriv_e[3][0]: -0.9667363412285741
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
/* Check if Jastrow is properly initialized */ /* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context)); assert(qmckl_jastrow_provided(context));
//
double factor_een[walk_num];
rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12);
#+end_src #+end_src
** Electron-electron-nucleus Jastrow \(f_{een}\) derivative ** Electron-electron-nucleus Jastrow \(f_{een}\) derivative
@ -5221,12 +5237,12 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num,
implicit none implicit none
integer(qmckl_context), intent(in) :: context integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect, 4)
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect)
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num) double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num)
double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num) double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num)
double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num) double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw integer*8 :: i, a, j, l, k, p, m, n, nw
@ -5264,41 +5280,41 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num,
do nw =1, walk_num do nw =1, walk_num
do n = 1, dim_cord_vect do n = 1, dim_cord_vect
l = lkpm_combined_index(1, n) l = lkpm_combined_index(n, 1)
k = lkpm_combined_index(2, n) k = lkpm_combined_index(n, 2)
p = lkpm_combined_index(3, n) p = lkpm_combined_index(n, 3)
m = lkpm_combined_index(4, n) m = lkpm_combined_index(n, 4)
do a = 1, nucl_num do a = 1, nucl_num
cn = cord_vect_full(n, a) cn = cord_vect_full(a, n)
do j = 1, elec_num do j = 1, elec_num
accu = 0.0d0 accu = 0.0d0
accu2 = 0.0d0 accu2 = 0.0d0
daccu = 0.0d0 daccu = 0.0d0
daccu2 = 0.0d0 daccu2 = 0.0d0
do i = 1, elec_num do i = 1, elec_num
accu = accu + een_rescaled_e(nw, i, j, k) * & accu = accu + een_rescaled_e(k, i, j, nw) * &
een_rescaled_n(nw, i, a, m) een_rescaled_n(m, a, i, nw)
accu2 = accu2 + een_rescaled_e(nw, i, j, k) * & accu2 = accu2 + een_rescaled_e(k, i, j, nw) * &
een_rescaled_n(nw, i, a, m + l) een_rescaled_n(m + l, a, i, nw)
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
een_rescaled_n(nw, i, a, m) een_rescaled_n(m, a, i, nw)
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * &
een_rescaled_n(nw, i, a, m + l) een_rescaled_n(m + l, a, i, nw)
end do end do
factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + & factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + &
(accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) & (accu * een_rescaled_n_deriv_e(m + l, a, 1:4, j, nw) &
+ daccu(1:4) * een_rescaled_n(nw, j, a, m + l) & + daccu(1:4) * een_rescaled_n(m + l, a, j, nw) &
+ daccu2(1:4) * een_rescaled_n(nw, j, a, m) & + daccu2(1:4) * een_rescaled_n(m, a, j, nw) &
+ accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn + accu2 * een_rescaled_n_deriv_e(m, a, 1:4, j, nw)) * cn
factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( & factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( &
daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + & daccu (1) * een_rescaled_n_deriv_e(m + l, a, 1, j, nw) + &
daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + & daccu (2) * een_rescaled_n_deriv_e(m + l, a, 2, j, nw) + &
daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + & daccu (3) * een_rescaled_n_deriv_e(m + l, a, 3, j, nw) + &
daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + & daccu2(1) * een_rescaled_n_deriv_e(m, a, 1, j, nw ) + &
daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + & daccu2(2) * een_rescaled_n_deriv_e(m, a, 2, j, nw ) + &
daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn daccu2(3) * een_rescaled_n_deriv_e(m, a, 3, j, nw ) ) * cn
end do end do
end do end do
@ -5391,98 +5407,60 @@ import numpy as np
<<jastrow_data>> <<jastrow_data>>
<<een_e_deriv_e>>
<<helper_funcs>>
kappa = 1.0 kappa = 1.0
elec_coord = np.array(elec_coord)[0] factor_een = 0.0
nucl_coord = np.array(nucl_coord)
elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float)
for i in range(elec_num):
for j in range(nucl_num):
elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j])
elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) daccu = np.zeros(4, dtype=float)
for a in range(nucl_num): daccu2 = np.zeros(4, dtype=float)
for i in range(elec_num): een_rescaled_e_deriv_e_t = een_rescaled_e_deriv_e.T
rij_inv = 1.0 / elnuc_dist[i, a] print(een_rescaled_e_deriv_e_t.shape)
for ii in range(3): for n in range(0, dim_cord_vect):
elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv l = lkpm_of_cindex[0,n]
elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv k = lkpm_of_cindex[1,n]
p = lkpm_of_cindex[2,n]
m = lkpm_of_cindex[3,n]
en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) for a in range(0, nucl_num):
for a in range(nucl_num): cn = cord_vector_full[a][n]
for i in range(elec_num): for j in range(0, elec_num):
f = 1.0 - kappa * en_distance_rescaled[i][a] accu = 0.0
for ii in range(4): accu2 = 0.0
en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] daccu = 0.0
en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ daccu2 = 0.0
(-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ for i in range(0, elec_num):
(-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ accu = accu + een_rescaled_e[i,j,k] * \
(-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) een_rescaled_n[a,i,m]
for ii in range(4): accu2 = accu2 + een_rescaled_e[i,j,k] * \
en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f een_rescaled_n[a,i,m+l]
# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
third = 1.0 / 3.0 # een_rescaled_n[a,i,m]
factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) # daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \
dx = np.zeros(shape=(4),dtype=float) # een_rescaled_n[a,i,m]
pow_ser_g = np.zeros(shape=(3),dtype=float) accu2 = accu2 + accu * een_rescaled_n[a,j,m+l]
for a in range(nucl_num): # factor_een = factor_een + accu2 * cn
for i in range(elec_num):
x = en_distance_rescaled[i][a]
if abs(x) < 1e-18:
continue
pow_ser_g = np.zeros(shape=(3),dtype=float)
den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x
invden = 1.0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0 / (x + 1.0E-18)
for ii in range(4):
dx[ii] = en_distance_rescaled_deriv_e[ii][i][a]
lap1 = 0.0
lap2 = 0.0
lap3 = 0.0
for ii in range(3):
x = en_distance_rescaled[i][a]
if x < 1e-18:
continue
for p in range(2,aord_num+1):
y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x
pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii]
lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii]
lap2 = lap2 + y
x = x * en_distance_rescaled[i][a]
lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii]
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \
dx[ii] * invden2 + pow_ser_g[ii]
ii = 3
lap2 = lap2 * dx[ii] * third
lap3 = lap3 + den * dx[ii]
lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3)
factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3
print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0])
print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0])
print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0])
print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0])
print("factor_een:",factor_een)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: factor_en_deriv_e[0][0]: 0.11609919541763383 : (6, 10, 4, 10)
: factor_en_deriv_e[1][0]: -0.23301394780804574 : factor_een: 0.0
: factor_en_deriv_e[2][0]: 0.17548337641865783
: factor_en_deriv_e[3][0]: -0.9667363412285741
#+begin_src c :tangle (eval c_test) #+begin_src c :tangle (eval c_test)
///* Check if Jastrow is properly initialized */ /* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double factor_een_deriv_e[walk_num][elec_num];
rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0]));
assert(fabs(factor_een_deriv_e[0][0] + 0.0005481671107226865) < 1e-12);
#+end_src #+end_src
* End of files :noexport: * End of files :noexport:

View File

@ -1191,7 +1191,7 @@ double n2_elec_coord[n2_walk_num][n2_elec_num][3] = { {
#define n2_type_nucl_num ((int64_t) 1) #define n2_type_nucl_num ((int64_t) 1)
#define n2_aord_num ((int64_t) 5) #define n2_aord_num ((int64_t) 5)
#define n2_bord_num ((int64_t) 5) #define n2_bord_num ((int64_t) 5)
#define n2_cord_num ((int64_t) 23) #define n2_cord_num ((int64_t) 5)
#define n2_dim_cord_vec ((int64_t) 23) #define n2_dim_cord_vec ((int64_t) 23)
int64_t n2_type_nucl_vector[n2_nucl_num] = { int64_t n2_type_nucl_vector[n2_nucl_num] = {
@ -1214,7 +1214,7 @@ double n2_bord_vector[n2_bord_num + 1] = {
0.0073096 , 0.0073096 ,
0.002866 }; 0.002866 };
double n2_cord_vector[n2_cord_num][n2_type_nucl_num] = { double n2_cord_vector[n2_dim_cord_vec][n2_type_nucl_num] = {
{ 5.717020e-01}, { 5.717020e-01},
{-5.142530e-01}, {-5.142530e-01},
{-5.130430e-01}, {-5.130430e-01},