diff --git a/org/qmckl_jastrow.org b/org/qmckl_jastrow.org index 27aab31..663ef3d 100644 --- a/org/qmckl_jastrow.org +++ b/org/qmckl_jastrow.org @@ -61,7 +61,7 @@ int main() { #include "qmckl_jastrow_private_func.h" #include "qmckl_jastrow_private_type.h" #+end_src - + * Context :PROPERTIES: :Name: qmckl_jastrow @@ -202,7 +202,7 @@ for i in range(elec_num): type_nucl_num = 1 aord_num = 5 bord_num = 5 -cord_num = 23 +cord_num = 5 dim_cord_vect= 23 type_nucl_vector = [ 1, 1] aord_vector = [ @@ -609,7 +609,7 @@ qmckl_exit_code qmckl_get_jastrow_cord_vector (const qmckl_context context, doub } assert (ctx->jastrow.cord_vector != NULL); - memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.cord_num*sizeof(double)); + memcpy(cord_vector, ctx->jastrow.cord_vector, ctx->jastrow.dim_cord_vect*sizeof(double)); return QMCKL_SUCCESS; } @@ -860,19 +860,22 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons int32_t mask = 1 << 5; - int64_t cord_num; - qmckl_exit_code rc = qmckl_get_jastrow_cord_num(context, &cord_num); + qmckl_exit_code rc = qmckl_provide_dim_cord_vect(context); + if (rc != QMCKL_SUCCESS) return rc; + + int64_t dim_cord_vect; + rc = qmckl_get_jastrow_dim_cord_vect(context, &dim_cord_vect); if (rc != QMCKL_SUCCESS) return rc; int64_t type_nucl_num; rc = qmckl_get_jastrow_type_nucl_num(context, &type_nucl_num); if (rc != QMCKL_SUCCESS) return rc; - if (cord_num == 0) { + if (dim_cord_vect == 0) { return qmckl_failwith( context, QMCKL_FAILURE, "qmckl_set_jastrow_coefficient", - "cord_num is not set"); + "dim_cord_vect is not set"); } if (cord_vector == NULL) { @@ -892,7 +895,7 @@ qmckl_exit_code qmckl_set_jastrow_cord_vector(qmckl_context context, double cons } qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero; - mem_info.size = cord_num * type_nucl_num * sizeof(double); + mem_info.size = dim_cord_vect * type_nucl_num * sizeof(double); double* new_array = (double*) qmckl_malloc(context, mem_info); if(new_array == NULL) { @@ -1324,20 +1327,20 @@ end function qmckl_compute_asymp_jasb_f #+CALL: generate_c_header(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: - #+begin_src c :tangle (eval h_private_func) :comments org + #+BEGIN_src c :tangle (eval h_func) :comments org qmckl_exit_code qmckl_compute_asymp_jasb ( const qmckl_context context, const int64_t bord_num, const double* bord_vector, const double rescale_factor_kappa_ee, double* const asymp_jasb ); - #+end_src + #+END_src #+CALL: generate_c_interface(table=qmckl_asymp_jasb_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: - #+begin_src f90 :tangle (eval f) :comments org :exports none + #+BEGIN_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_asymp_jasb & (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) & bind(C) result(info) @@ -1356,7 +1359,7 @@ end function qmckl_compute_asymp_jasb_f (context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) end function qmckl_compute_asymp_jasb - #+end_src + #+END_src *** Test #+name: asymp_jasb @@ -1380,15 +1383,10 @@ print("asymp_jasb[1] : ", asymp_jasb[1]) #+end_src #+RESULTS: asymp_jasb - : asym_one : 0.6634291325000664 - : asymp_jasb[0] : 1.043287918508297 - : asymp_jasb[1] : 0.7115733522582638 - - #+RESULTS: : asym_one : 0.43340325572525706 : asymp_jasb[0] : 0.5323750557252571 : asymp_jasb[1] : 0.31567342786262853 - + #+begin_src c :tangle (eval c_test) assert(qmckl_electron_provided(context)); @@ -1416,6 +1414,8 @@ rc = qmckl_set_jastrow_aord_vector(context, aord_vector); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_bord_vector(context, bord_vector); assert(rc == QMCKL_SUCCESS); +rc = qmckl_set_jastrow_bord_vector(context, bord_vector); +assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_cord_vector(context, cord_vector); assert(rc == QMCKL_SUCCESS); rc = qmckl_set_jastrow_dependencies(context); @@ -2114,28 +2114,16 @@ print("factor_ee_deriv_e[0][0]:",factor_ee_deriv_e[0][0]) print("factor_ee_deriv_e[1][0]:",factor_ee_deriv_e[1][0]) print("factor_ee_deriv_e[2][0]:",factor_ee_deriv_e[2][0]) print("factor_ee_deriv_e[3][0]:",factor_ee_deriv_e[3][0]) -print(factor_ee_deriv_e) - #+end_src #+RESULTS: - #+begin_example - asym_one : 0.43340325572525706 - asymp_jasb[0] : 0.5323750557252571 - asymp_jasb[1] : 0.31567342786262853 - factor_ee_deriv_e[0][0]: 0.16364894652107934 - factor_ee_deriv_e[1][0]: -0.6927548119830084 - factor_ee_deriv_e[2][0]: 0.073267755223968 - factor_ee_deriv_e[3][0]: 1.5111672803213185 - [[ 0.16364895 0.60354957 -0.19825547 0.02359797 -0.13123153 -0.18789233 - 0.07762515 -0.42459184 0.27920265 -0.2056531 ] - [-0.69275481 0.15690393 0.09831069 0.18490587 0.04361723 0.3250686 - 0.12657961 -0.01736522 -0.40149005 0.17622416] - [ 0.07326776 -0.27532276 0.22396943 0.18771633 -0.34506246 0.07298062 - 0.63302352 -0.00910198 -0.30238713 -0.25908332] - [ 1.51116728 1.5033247 0.00325003 2.89377255 0.1338393 2.15893795 - 1.74732003 0.23561147 2.67455607 0.82810434]] - #+end_example + : asym_one : 0.43340325572525706 + : asymp_jasb[0] : 0.5323750557252571 + : asymp_jasb[1] : 0.31567342786262853 + : factor_ee_deriv_e[0][0]: 0.16364894652107934 + : factor_ee_deriv_e[1][0]: -0.6927548119830084 + : factor_ee_deriv_e[2][0]: 0.073267755223968 + : factor_ee_deriv_e[3][0]: 1.5111672803213185 #+begin_src c :tangle (eval c_test) @@ -2429,7 +2417,7 @@ for a in range(0,nucl_num): print("factor_en :",factor_en) #+end_src - + #+RESULTS: : factor_en : -5.865822569188727 @@ -2547,7 +2535,7 @@ qmckl_exit_code qmckl_provide_factor_en_deriv_e(qmckl_context context) return QMCKL_SUCCESS; } #+end_src - + *** Compute :PROPERTIES: :Name: qmckl_compute_factor_en_deriv_e @@ -3039,6 +3027,13 @@ integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cor end do end do end do + + do l = 0, cord_num + do j = 1, elec_num + een_rescaled_e(l, j, j, nw) = 0.0d0 + end do + end do + end do end function qmckl_compute_een_rescaled_e_f @@ -3124,6 +3119,10 @@ for l in range(1,cord_num+1): een_rescaled_e[j, i, l] = x k = k + 1 +for l in range(0,cord_num+1): + for j in range(0, elec_num): + een_rescaled_e[j,j,l] = 0.0 + print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) @@ -3135,7 +3134,7 @@ print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) #+RESULTS: : een_rescaled_e[0, 2, 1] = 0.08084493981483197 : een_rescaled_e[0, 3, 1] = 0.1066745707571846 - : een_rescaled_e[0, 4, 1] = 0.01754273169464735 + : een_rescaled_e[0, 4, 1] = 0.017542731694647366 : een_rescaled_e[1, 3, 2] = 0.02214680362033448 : een_rescaled_e[1, 4, 2] = 0.0005700154999202759 : een_rescaled_e[1, 5, 2] = 0.3424402276009091 @@ -3158,10 +3157,11 @@ assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12); #+end_src ** Electron-electron rescaled distances for each order and derivatives - - ~een_rescaled_e~ stores the table of the rescaled distances between all - pairs of electrons and raised to the power \(p\) defined by ~cord_num~. - Here we take its derivatives required for the een jastrow. + + ~een_rescaled_e_deriv_e~ stores the table of the derivatives of the + rescaled distances between all pairs of electrons and raised to the + power \(p\) defined by ~cord_num~. Here we take its derivatives + required for the een jastrow. TODO: write formulae @@ -3419,7 +3419,7 @@ end function qmckl_compute_factor_een_rescaled_e_deriv_e_f #+end_src *** Test - +#+name: een_e_deriv_e #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -3431,6 +3431,16 @@ for i in range(elec_num): for j in range(elec_num): elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) +elec_dist_deriv_e = np.zeros(shape=(4,elec_num, elec_num),dtype=float) +for j in range(elec_num): + for i in range(elec_num): + rij_inv = 1.0 / elec_dist[i, j] + for ii in range(3): + elec_dist_deriv_e[ii, i, j] = -(elec_coord[j][ii] - elec_coord[i][ii]) * rij_inv + elec_dist_deriv_e[3, i, j] = 2.0 * rij_inv + elec_dist_deriv_e[:, j, j] = 0.0 + + kappa = 1.0 een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) @@ -3458,29 +3468,53 @@ for l in range(1,cord_num+1): een_rescaled_e[j, i, l] = x k = k + 1 -print(" een_rescaled_e[0, 2, 1] = ",een_rescaled_e[0, 2, 1]) -print(" een_rescaled_e[0, 3, 1] = ",een_rescaled_e[0, 3, 1]) -print(" een_rescaled_e[0, 4, 1] = ",een_rescaled_e[0, 4, 1]) -print(" een_rescaled_e[1, 3, 2] = ",een_rescaled_e[1, 3, 2]) -print(" een_rescaled_e[1, 4, 2] = ",een_rescaled_e[1, 4, 2]) -print(" een_rescaled_e[1, 5, 2] = ",een_rescaled_e[1, 5, 2]) +een_rescaled_e_deriv_e = np.zeros(shape=(elec_num,4,elec_num,cord_num+1),dtype=float) +for l in range(0,cord_num+1): + kappa_l = -1.0 * kappa * l + for j in range(0,elec_num): + for i in range(0,elec_num): + for ii in range(0,4): + een_rescaled_e_deriv_e[i,ii,j,l] = kappa_l * elec_dist_deriv_e[ii,i,j] + een_rescaled_e_deriv_e[i,3,j,l] = een_rescaled_e_deriv_e[i,3,j,l] + \ + een_rescaled_e_deriv_e[i,0,j,l] * een_rescaled_e_deriv_e[i,0,j,l] + \ + een_rescaled_e_deriv_e[i,1,j,l] * een_rescaled_e_deriv_e[i,1,j,l] + \ + een_rescaled_e_deriv_e[i,2,j,l] * een_rescaled_e_deriv_e[i,2,j,l] + + for ii in range(0,4): + een_rescaled_e_deriv_e[i,ii,j,l] = een_rescaled_e_deriv_e[i,ii,j,l] * een_rescaled_e[i,j,l] + +#print(" een_rescaled_e_deriv_e[1, 1, 3, 1] = ",een_rescaled_e_deriv_e[0, 0, 2, 1]) +#print(" een_rescaled_e_deriv_e[1, 1, 4, 1] = ",een_rescaled_e_deriv_e[0, 0, 3, 1]) +#print(" een_rescaled_e_deriv_e[1, 1, 5, 1] = ",een_rescaled_e_deriv_e[0, 0, 4, 1]) +#print(" een_rescaled_e_deriv_e[2, 1, 4, 2] = ",een_rescaled_e_deriv_e[1, 0, 3, 2]) +#print(" een_rescaled_e_deriv_e[2, 1, 5, 2] = ",een_rescaled_e_deriv_e[1, 0, 4, 2]) +#print(" een_rescaled_e_deriv_e[2, 1, 6, 2] = ",een_rescaled_e_deriv_e[1, 0, 5, 2]) #+end_src - #+RESULTS: - : een_rescaled_e[0, 2, 1] = 0.08084493981483197 - : een_rescaled_e[0, 3, 1] = 0.1066745707571846 - : een_rescaled_e[0, 4, 1] = 0.01754273169464735 - : een_rescaled_e[1, 3, 2] = 0.02214680362033448 - : een_rescaled_e[1, 4, 2] = 0.0005700154999202759 - : een_rescaled_e[1, 5, 2] = 0.3424402276009091 + #+RESULTS: een_e_deriv_e + : een_rescaled_e_deriv_e[1, 1, 3, 1] = 0.05991352796887283 + : een_rescaled_e_deriv_e[1, 1, 4, 1] = 0.011714035071545248 + : een_rescaled_e_deriv_e[1, 1, 5, 1] = 0.00441398875758468 + : een_rescaled_e_deriv_e[2, 1, 4, 2] = 0.013553180060167595 + : een_rescaled_e_deriv_e[2, 1, 5, 2] = 0.00041342909359870457 + : een_rescaled_e_deriv_e[2, 1, 6, 2] = 0.5880599146214673 #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); +double een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][(cord_num + 1)]; +rc = qmckl_get_jastrow_een_rescaled_e_deriv_e(context, &(een_rescaled_e_deriv_e[0][0][0][0][0])); +// value of (0,0,0,2,1) +assert(fabs(een_rescaled_e_deriv_e[0][0][0][2][1] + 0.05991352796887283 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][0][0][3][1] + 0.011714035071545248 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][0][0][4][1] + 0.00441398875758468 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][3][2] + 0.013553180060167595 ) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][4][2] + 0.00041342909359870457) < 1.e-12); +assert(fabs(een_rescaled_e_deriv_e[0][1][0][5][2] + 0.5880599146214673 ) < 1.e-12); #+end_src ** Electron-nucleus rescaled distances for each order - + ~een_rescaled_n~ stores the table of the rescaled distances between electrons and nucleii raised to the power \(p\) defined by ~cord_num~: @@ -4076,6 +4110,14 @@ for i in range(elec_num): for a in range(nucl_num): elnuc_dist[i, a] = np.linalg.norm(elec_coord[i] - nucl_coord[:,a]) +elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) +for a in range(nucl_num): + for i in range(elec_num): + rij_inv = 1.0 / elnuc_dist[i, a] + for ii in range(3): + elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv + elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv + kappa = 1.0 een_rescaled_n = np.zeros(shape=(nucl_num, elec_num, cord_num + 1), dtype=float) @@ -4090,24 +4132,50 @@ for l in range(2,cord_num+1): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] -print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) -print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) -print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) -print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) -print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) -print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) +een_rescaled_n_deriv_e = np.zeros(shape=(elec_num,4,nucl_num,cord_num+1),dtype=float) +for l in range(0,cord_num+1): + kappa_l = -1.0 * kappa * l + for j in range(0,elec_num): + for a in range(0,nucl_num): + for ii in range(0,4): + een_rescaled_n_deriv_e[j,ii,a,l] = kappa_l * elnuc_dist_deriv_e[ii,j,a] + een_rescaled_n_deriv_e[j,3,a,l] = een_rescaled_n_deriv_e[j,3,a,l] + \ + een_rescaled_n_deriv_e[j,0,a,l] * een_rescaled_n_deriv_e[j,0,a,l] + \ + een_rescaled_n_deriv_e[j,1,a,l] * een_rescaled_n_deriv_e[j,1,a,l] + \ + een_rescaled_n_deriv_e[j,2,a,l] * een_rescaled_n_deriv_e[j,2,a,l] + + for ii in range(0,4): + een_rescaled_n_deriv_e[j,ii,a,l] = een_rescaled_n_deriv_e[j,ii,a,l] * een_rescaled_n[a,j,l] + +print(" een_rescaled_n_deriv_e[1, 1, 3, 1] = ",een_rescaled_n_deriv_e[2, 0, 0, 1]) +print(" een_rescaled_n_deriv_e[1, 1, 4, 1] = ",een_rescaled_n_deriv_e[3, 0, 0, 1]) +print(" een_rescaled_n_deriv_e[1, 1, 5, 1] = ",een_rescaled_n_deriv_e[4, 0, 0, 1]) +print(" een_rescaled_n_deriv_e[2, 1, 4, 2] = ",een_rescaled_n_deriv_e[3, 0, 1, 2]) +print(" een_rescaled_n_deriv_e[2, 1, 5, 2] = ",een_rescaled_n_deriv_e[4, 0, 1, 2]) +print(" een_rescaled_n_deriv_e[2, 1, 6, 2] = ",een_rescaled_n_deriv_e[5, 0, 1, 2]) #+end_src #+RESULTS: - : een_rescaled_n[0, 2, 1] = 0.10612983920006765 - : een_rescaled_n[0, 3, 1] = 0.135652809635553 - : een_rescaled_n[0, 4, 1] = 0.023391817607642338 - : een_rescaled_n[1, 3, 2] = 0.880957224822116 - : een_rescaled_n[1, 4, 2] = 0.027185942659395074 - : een_rescaled_n[1, 5, 2] = 0.01343938025140174 + : een_rescaled_n_deriv_e[1, 1, 3, 1] = -0.07633444246999128 + : een_rescaled_n_deriv_e[1, 1, 4, 1] = 0.00033282346259738276 + : een_rescaled_n_deriv_e[1, 1, 5, 1] = -0.004775370547333061 + : een_rescaled_n_deriv_e[2, 1, 4, 2] = 0.1362654644223866 + : een_rescaled_n_deriv_e[2, 1, 5, 2] = -0.0231253431662794 + : een_rescaled_n_deriv_e[2, 1, 6, 2] = 0.001593334817691633 #+begin_src c :tangle (eval c_test) -//assert(qmckl_electron_provided(context)); +assert(qmckl_electron_provided(context)); + +double een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][(cord_num + 1)]; +rc = qmckl_get_jastrow_een_rescaled_n_deriv_e(context, &(een_rescaled_n_deriv_e[0][0][0][0][0])); + +// value of (0,2,1) +assert(fabs(een_rescaled_n_deriv_e[0][2][0][0][1]+0.07633444246999128 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][3][0][0][1]-0.00033282346259738276) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][4][0][0][1]+0.004775370547333061 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][3][0][1][2]-0.1362654644223866 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][4][0][1][2]+0.0231253431662794 ) < 1.e-12); +assert(fabs(een_rescaled_n_deriv_e[0][5][0][1][2]-0.001593334817691633 ) < 1.e-12); #+end_src @@ -4264,7 +4332,6 @@ qmckl_exit_code qmckl_provide_cord_vect_full(qmckl_context context) qmckl_exit_code rc = qmckl_compute_cord_vect_full(context, ctx->nucleus.num, - ctx->jastrow.cord_num, ctx->jastrow.dim_cord_vect, ctx->jastrow.type_nucl_num, ctx->jastrow.type_nucl_vector, @@ -4424,28 +4491,26 @@ end function qmckl_compute_dim_cord_vect_f :END: #+NAME: qmckl_factor_cord_vect_full_args - | qmckl_context | context | in | Global state | - | int64_t | nucl_num | in | Number of atoms | - | int64_t | cord_num | in | Order of polynomials | - | int64_t | dim_cord_vect | in | dimension of cord full table | - | int64_t | type_nucl_num | in | dimension of cord full table | - | int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table | - | double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table | - | double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients | + | qmckl_context | context | in | Global state | + | int64_t | nucl_num | in | Number of atoms | + | int64_t | dim_cord_vect | in | dimension of cord full table | + | int64_t | type_nucl_num | in | dimension of cord full table | + | int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table | + | double | cord_vector[dim_cord_vect][type_nucl_num] | in | dimension of cord full table | + | double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients | #+begin_src f90 :comments org :tangle (eval f) :noweb yes -integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, & +integer function qmckl_compute_cord_vect_full_f(context, nucl_num, dim_cord_vect, type_nucl_num, & type_nucl_vector, cord_vector, cord_vect_full) & result(info) use qmckl implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: nucl_num - integer*8 , intent(in) :: cord_num integer*8 , intent(in) :: dim_cord_vect integer*8 , intent(in) :: type_nucl_num integer*8 , intent(in) :: type_nucl_vector(nucl_num) - double precision , intent(in) :: cord_vector(cord_num, type_nucl_num) + double precision , intent(in) :: cord_vector(type_nucl_num, dim_cord_vect) double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) double precision :: x integer*8 :: i, a, k, l, nw @@ -4462,11 +4527,6 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim return endif - if (cord_num <= 0) then - info = QMCKL_INVALID_ARG_3 - return - endif - if (type_nucl_num <= 0) then info = QMCKL_INVALID_ARG_4 return @@ -4479,7 +4539,7 @@ integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim do a = 1, nucl_num - cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a)) + cord_vect_full(a,1:dim_cord_vect) = cord_vector(type_nucl_vector(a),1:dim_cord_vect) end do end function qmckl_compute_cord_vect_full_f @@ -4492,7 +4552,6 @@ end function qmckl_compute_cord_vect_full_f qmckl_exit_code qmckl_compute_cord_vect_full ( const qmckl_context context, const int64_t nucl_num, - const int64_t cord_num, const int64_t dim_cord_vect, const int64_t type_nucl_num, const int64_t* type_nucl_vector, @@ -4506,14 +4565,7 @@ end function qmckl_compute_cord_vect_full_f #+RESULTS: #+begin_src f90 :tangle (eval f) :comments org :exports none integer(c_int32_t) function qmckl_compute_cord_vect_full & - (context, & - nucl_num, & - cord_num, & - dim_cord_vect, & - type_nucl_num, & - type_nucl_vector, & - cord_vector, & - cord_vect_full) & + (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) & bind(C) result(info) use, intrinsic :: iso_c_binding @@ -4521,23 +4573,15 @@ end function qmckl_compute_cord_vect_full_f integer (c_int64_t) , intent(in) , value :: context integer (c_int64_t) , intent(in) , value :: nucl_num - integer (c_int64_t) , intent(in) , value :: cord_num integer (c_int64_t) , intent(in) , value :: dim_cord_vect integer (c_int64_t) , intent(in) , value :: type_nucl_num integer (c_int64_t) , intent(in) :: type_nucl_vector(nucl_num) - real (c_double ) , intent(in) :: cord_vector(type_nucl_num,cord_num) + real (c_double ) , intent(in) :: cord_vector(type_nucl_num,dim_cord_vect) real (c_double ) , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect) integer(c_int32_t), external :: qmckl_compute_cord_vect_full_f info = qmckl_compute_cord_vect_full_f & - (context, & - nucl_num, & - cord_num, & - dim_cord_vect, & - type_nucl_num, & - type_nucl_vector, & - cord_vector, & - cord_vect_full) + (context, nucl_num, dim_cord_vect, type_nucl_num, type_nucl_vector, cord_vector, cord_vect_full) end function qmckl_compute_cord_vect_full #+end_src @@ -4644,9 +4688,9 @@ end function qmckl_compute_lkpm_combined_index_f end function qmckl_compute_lkpm_combined_index #+end_src - *** Test + #+name: helper_funcs #+begin_src python :results output :exports none :noweb yes import numpy as np @@ -4673,21 +4717,46 @@ for l in range(2,cord_num+1): for i in range(elec_num): een_rescaled_n[a, i, l] = een_rescaled_n[a, i, l - 1] * een_rescaled_n[a, i, 1] -print(" een_rescaled_n[0, 2, 1] = ",een_rescaled_n[0, 2, 1]) -print(" een_rescaled_n[0, 3, 1] = ",een_rescaled_n[0, 3, 1]) -print(" een_rescaled_n[0, 4, 1] = ",een_rescaled_n[0, 4, 1]) -print(" een_rescaled_n[1, 3, 2] = ",een_rescaled_n[1, 3, 2]) -print(" een_rescaled_n[1, 4, 2] = ",een_rescaled_n[1, 4, 2]) -print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) +elec_dist = np.zeros(shape=(elec_num, elec_num),dtype=float) +for i in range(elec_num): + for j in range(elec_num): + elec_dist[i, j] = np.linalg.norm(elec_coord[i] - elec_coord[j]) + +kappa = 1.0 + +een_rescaled_e_ij = np.zeros(shape=(elec_num * (elec_num - 1)//2, cord_num+1), dtype=float) +een_rescaled_e_ij[:,0] = 1.0 + +k = 0 +for j in range(elec_num): + for i in range(j): + een_rescaled_e_ij[k, 1] = np.exp(-kappa * elec_dist[i, j]) + k = k + 1 + +for l in range(2, cord_num + 1): + for k in range(elec_num * (elec_num - 1)//2): + een_rescaled_e_ij[k, l] = een_rescaled_e_ij[k, l - 1] * een_rescaled_e_ij[k, 1] + +een_rescaled_e = np.zeros(shape=(elec_num, elec_num, cord_num + 1), dtype=float) +een_rescaled_e[:,:,0] = 1.0 + +for l in range(1,cord_num+1): + k = 0 + for j in range(elec_num): + for i in range(j): + x = een_rescaled_e_ij[k, l] + een_rescaled_e[i, j, l] = x + een_rescaled_e[j, i, l] = x + k = k + 1 + +for l in range(0,cord_num+1): + for j in range(0, elec_num): + een_rescaled_e[j,j,l] = 0.0 + +lkpm_of_cindex = np.array(lkpm_combined_index).T #+end_src - #+RESULTS: - : een_rescaled_n[0, 2, 1] = 0.10612983920006765 - : een_rescaled_n[0, 3, 1] = 0.135652809635553 - : een_rescaled_n[0, 4, 1] = 0.023391817607642338 - : een_rescaled_n[1, 3, 2] = 0.880957224822116 - : een_rescaled_n[1, 4, 2] = 0.027185942659395074 - : een_rescaled_n[1, 5, 2] = 0.01343938025140174 + #+RESULTS: helper_funcs #+begin_src c :tangle (eval c_test) //assert(qmckl_electron_provided(context)); @@ -4696,7 +4765,7 @@ print(" een_rescaled_n[1, 5, 2] = ",een_rescaled_n[1, 5, 2]) #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) - + Calculate the electron-electron-nuclear three-body jastrow component ~factor_een~ using the above prepared tables. @@ -4834,10 +4903,10 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect - integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) - double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) - double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) - double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) + integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect,4) + double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) + double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) double precision , intent(out) :: factor_een(walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw @@ -4874,23 +4943,27 @@ integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_nu do nw =1, walk_num do n = 1, dim_cord_vect - l = lkpm_combined_index(1, n) - k = lkpm_combined_index(2, n) - p = lkpm_combined_index(3, n) - m = lkpm_combined_index(4, n) + l = lkpm_combined_index(n, 1) + k = lkpm_combined_index(n, 2) + p = lkpm_combined_index(n, 3) + m = lkpm_combined_index(n, 4) do a = 1, nucl_num accu2 = 0.0d0 - cn = cord_vect_full(n, a) + cn = cord_vect_full(a, n) do j = 1, elec_num accu = 0.0d0 do i = 1, elec_num - accu = accu + een_rescaled_e(nw, i, j, k) * & - een_rescaled_n(nw, i, a, m) + accu = accu + een_rescaled_e(k,i,j,nw) * & + een_rescaled_n(m,a,i,nw) + !if(nw .eq. 1) then + ! print *,l,k,p,m,j,i,een_rescaled_e(k,i,j,nw), een_rescaled_n(m,a,i,nw), accu + !endif end do - accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l) + accu2 = accu2 + accu * een_rescaled_n(m + l,a,j,nw) + !print *, l,m,nw,accu, accu2, een_rescaled_n(m + l, a, j, nw), cn, factor_een(nw) end do - factor_een(nw) = factor_een(nw) + accu2 + cn + factor_een(nw) = factor_een(nw) + accu2 * cn end do end do end do @@ -4916,7 +4989,6 @@ end function qmckl_compute_factor_een_f double* const factor_een ); #+end_src - #+CALL: generate_c_interface(table=qmckl_factor_een_args,rettyp=get_value("CRetType"),fname=get_value("Name")) #+RESULTS: @@ -4973,100 +5045,44 @@ import numpy as np <> +<> + kappa = 1.0 -elec_coord = np.array(elec_coord)[0] -nucl_coord = np.array(nucl_coord) -elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) -for i in range(elec_num): - for j in range(nucl_num): - elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) +factor_een = 0.0 -elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - rij_inv = 1.0 / elnuc_dist[i, a] - for ii in range(3): - elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv - elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv - -en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - f = 1.0 - kappa * en_distance_rescaled[i][a] - for ii in range(4): - en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] - en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ - (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ - (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ - (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) - for ii in range(4): - en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f - -third = 1.0 / 3.0 -factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) -dx = np.zeros(shape=(4),dtype=float) -pow_ser_g = np.zeros(shape=(3),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - x = en_distance_rescaled[i][a] - if abs(x) < 1e-18: - continue - pow_ser_g = np.zeros(shape=(3),dtype=float) - den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x - invden = 1.0 / den - invden2 = invden * invden - invden3 = invden2 * invden - xinv = 1.0 / (x + 1.0E-18) - - for ii in range(4): - dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] - - lap1 = 0.0 - lap2 = 0.0 - lap3 = 0.0 - for ii in range(3): - x = en_distance_rescaled[i][a] - if x < 1e-18: - continue - for p in range(2,aord_num+1): - y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x - pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] - lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] - lap2 = lap2 + y - x = x * en_distance_rescaled[i][a] - - lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] - - factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ - dx[ii] * invden2 + pow_ser_g[ii] - - ii = 3 - lap2 = lap2 * dx[ii] * third - lap3 = lap3 + den * dx[ii] - lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) - factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 - -print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) -print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) -print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) -print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) +for n in range(0, dim_cord_vect): + l = lkpm_of_cindex[0,n] + k = lkpm_of_cindex[1,n] + p = lkpm_of_cindex[2,n] + m = lkpm_of_cindex[3,n] + for a in range(0, nucl_num): + accu2 = 0.0 + cn = cord_vector_full[a][n] + for j in range(0, elec_num): + accu = 0.0 + for i in range(0, elec_num): + accu = accu + een_rescaled_e[i,j,k] * \ + een_rescaled_n[a,i,m] + accu2 = accu2 + accu * een_rescaled_n[a,j,m+l] + factor_een = factor_een + accu2 * cn +print("factor_een:",factor_een) #+end_src #+RESULTS: - : factor_en_deriv_e[0][0]: 0.11609919541763383 - : factor_en_deriv_e[1][0]: -0.23301394780804574 - : factor_en_deriv_e[2][0]: 0.17548337641865783 - : factor_en_deriv_e[3][0]: -0.9667363412285741 + : factor_een: -0.37407972141304213 #+begin_src c :tangle (eval c_test) /* Check if Jastrow is properly initialized */ -//assert(qmckl_jastrow_provided(context)); -// +assert(qmckl_jastrow_provided(context)); +double factor_een[walk_num]; +rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0])); + +assert(fabs(factor_een[0] + 0.37407972141304213) < 1e-12); #+end_src ** Electron-electron-nucleus Jastrow \(f_{een}\) derivative @@ -5221,12 +5237,12 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, implicit none integer(qmckl_context), intent(in) :: context integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect - integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect) - double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num) - double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num) - double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num) - double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num) - double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num) + integer*8 , intent(in) :: lkpm_combined_index(dim_cord_vect, 4) + double precision , intent(in) :: cord_vect_full(nucl_num, dim_cord_vect) + double precision , intent(in) :: een_rescaled_e(0:cord_num, elec_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_n(0:cord_num, nucl_num, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_e_deriv_e(0:cord_num, elec_num, 4, elec_num, walk_num) + double precision , intent(in) :: een_rescaled_n_deriv_e(0:cord_num, nucl_num, 4, elec_num, walk_num) double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num) integer*8 :: i, a, j, l, k, p, m, n, nw @@ -5264,41 +5280,41 @@ integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, do nw =1, walk_num do n = 1, dim_cord_vect - l = lkpm_combined_index(1, n) - k = lkpm_combined_index(2, n) - p = lkpm_combined_index(3, n) - m = lkpm_combined_index(4, n) + l = lkpm_combined_index(n, 1) + k = lkpm_combined_index(n, 2) + p = lkpm_combined_index(n, 3) + m = lkpm_combined_index(n, 4) do a = 1, nucl_num - cn = cord_vect_full(n, a) + cn = cord_vect_full(a, n) do j = 1, elec_num accu = 0.0d0 accu2 = 0.0d0 daccu = 0.0d0 daccu2 = 0.0d0 do i = 1, elec_num - accu = accu + een_rescaled_e(nw, i, j, k) * & - een_rescaled_n(nw, i, a, m) - accu2 = accu2 + een_rescaled_e(nw, i, j, k) * & - een_rescaled_n(nw, i, a, m + l) - daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & - een_rescaled_n(nw, i, a, m) - daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * & - een_rescaled_n(nw, i, a, m + l) + accu = accu + een_rescaled_e(k, i, j, nw) * & + een_rescaled_n(m, a, i, nw) + accu2 = accu2 + een_rescaled_e(k, i, j, nw) * & + een_rescaled_n(m + l, a, i, nw) + daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * & + een_rescaled_n(m, a, i, nw) + daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(k, j, 1:4, i, nw) * & + een_rescaled_n(m + l, a, i, nw) end do factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + & - (accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) & - + daccu(1:4) * een_rescaled_n(nw, j, a, m + l) & - + daccu2(1:4) * een_rescaled_n(nw, j, a, m) & - + accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn + (accu * een_rescaled_n_deriv_e(m + l, a, 1:4, j, nw) & + + daccu(1:4) * een_rescaled_n(m + l, a, j, nw) & + + daccu2(1:4) * een_rescaled_n(m, a, j, nw) & + + accu2 * een_rescaled_n_deriv_e(m, a, 1:4, j, nw)) * cn factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( & - daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + & - daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + & - daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + & - daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + & - daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + & - daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn + daccu (1) * een_rescaled_n_deriv_e(m + l, a, 1, j, nw) + & + daccu (2) * een_rescaled_n_deriv_e(m + l, a, 2, j, nw) + & + daccu (3) * een_rescaled_n_deriv_e(m + l, a, 3, j, nw) + & + daccu2(1) * een_rescaled_n_deriv_e(m, a, 1, j, nw ) + & + daccu2(2) * een_rescaled_n_deriv_e(m, a, 2, j, nw ) + & + daccu2(3) * een_rescaled_n_deriv_e(m, a, 3, j, nw ) ) * cn end do end do @@ -5391,98 +5407,60 @@ import numpy as np <> +<> + +<> + kappa = 1.0 -elec_coord = np.array(elec_coord)[0] -nucl_coord = np.array(nucl_coord) -elnuc_dist = np.zeros(shape=(elec_num, nucl_num),dtype=float) -for i in range(elec_num): - for j in range(nucl_num): - elnuc_dist[i, j] = np.linalg.norm(elec_coord[i] - nucl_coord[:,j]) +factor_een = 0.0 -elnuc_dist_deriv_e = np.zeros(shape=(4, elec_num, nucl_num),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - rij_inv = 1.0 / elnuc_dist[i, a] - for ii in range(3): - elnuc_dist_deriv_e[ii, i, a] = (elec_coord[i][ii] - nucl_coord[ii][a]) * rij_inv - elnuc_dist_deriv_e[3, i, a] = 2.0 * rij_inv +daccu = np.zeros(4, dtype=float) +daccu2 = np.zeros(4, dtype=float) +een_rescaled_e_deriv_e_t = een_rescaled_e_deriv_e.T +print(een_rescaled_e_deriv_e_t.shape) +for n in range(0, dim_cord_vect): + l = lkpm_of_cindex[0,n] + k = lkpm_of_cindex[1,n] + p = lkpm_of_cindex[2,n] + m = lkpm_of_cindex[3,n] -en_distance_rescaled_deriv_e = np.zeros(shape=(4,elec_num,nucl_num),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - f = 1.0 - kappa * en_distance_rescaled[i][a] - for ii in range(4): - en_distance_rescaled_deriv_e[ii][i][a] = elnuc_dist_deriv_e[ii][i][a] - en_distance_rescaled_deriv_e[3][i][a] = en_distance_rescaled_deriv_e[3][i][a] + \ - (-kappa * en_distance_rescaled_deriv_e[0][i][a] * en_distance_rescaled_deriv_e[0][i][a]) + \ - (-kappa * en_distance_rescaled_deriv_e[1][i][a] * en_distance_rescaled_deriv_e[1][i][a]) + \ - (-kappa * en_distance_rescaled_deriv_e[2][i][a] * en_distance_rescaled_deriv_e[2][i][a]) - for ii in range(4): - en_distance_rescaled_deriv_e[ii][i][a] = en_distance_rescaled_deriv_e[ii][i][a] * f - -third = 1.0 / 3.0 -factor_en_deriv_e = np.zeros(shape=(4,elec_num),dtype=float) -dx = np.zeros(shape=(4),dtype=float) -pow_ser_g = np.zeros(shape=(3),dtype=float) -for a in range(nucl_num): - for i in range(elec_num): - x = en_distance_rescaled[i][a] - if abs(x) < 1e-18: - continue - pow_ser_g = np.zeros(shape=(3),dtype=float) - den = 1.0 + aord_vector[1][type_nucl_vector[a]-1] * x - invden = 1.0 / den - invden2 = invden * invden - invden3 = invden2 * invden - xinv = 1.0 / (x + 1.0E-18) - - for ii in range(4): - dx[ii] = en_distance_rescaled_deriv_e[ii][i][a] - - lap1 = 0.0 - lap2 = 0.0 - lap3 = 0.0 - for ii in range(3): - x = en_distance_rescaled[i][a] - if x < 1e-18: - continue - for p in range(2,aord_num+1): - y = p * aord_vector[(p-1) + 1][type_nucl_vector[a]-1] * x - pow_ser_g[ii] = pow_ser_g[ii] + y * dx[ii] - lap1 = lap1 + (p - 1) * y * xinv * dx[ii] * dx[ii] - lap2 = lap2 + y - x = x * en_distance_rescaled[i][a] - - lap3 = lap3 - 2.0 * aord_vector[1][type_nucl_vector[a]-1] * dx[ii] * dx[ii] - - factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + aord_vector[0][type_nucl_vector[a]-1] * \ - dx[ii] * invden2 + pow_ser_g[ii] - - ii = 3 - lap2 = lap2 * dx[ii] * third - lap3 = lap3 + den * dx[ii] - lap3 = lap3 * (aord_vector[0][type_nucl_vector[a]-1] * invden3) - factor_en_deriv_e[ii][i] = factor_en_deriv_e[ii][i] + lap1 + lap2 + lap3 - -print("factor_en_deriv_e[0][0]:",factor_en_deriv_e[0][0]) -print("factor_en_deriv_e[1][0]:",factor_en_deriv_e[1][0]) -print("factor_en_deriv_e[2][0]:",factor_en_deriv_e[2][0]) -print("factor_en_deriv_e[3][0]:",factor_en_deriv_e[3][0]) + for a in range(0, nucl_num): + cn = cord_vector_full[a][n] + for j in range(0, elec_num): + accu = 0.0 + accu2 = 0.0 + daccu = 0.0 + daccu2 = 0.0 + for i in range(0, elec_num): + accu = accu + een_rescaled_e[i,j,k] * \ + een_rescaled_n[a,i,m] + accu2 = accu2 + een_rescaled_e[i,j,k] * \ + een_rescaled_n[a,i,m+l] +# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \ +# een_rescaled_n[a,i,m] +# daccu[0:4] = daccu[0:4] + een_rescaled_e_deriv_e_t[k,j,0:4,i,k] * \ +# een_rescaled_n[a,i,m] + accu2 = accu2 + accu * een_rescaled_n[a,j,m+l] +# factor_een = factor_een + accu2 * cn +print("factor_een:",factor_een) #+end_src #+RESULTS: - : factor_en_deriv_e[0][0]: 0.11609919541763383 - : factor_en_deriv_e[1][0]: -0.23301394780804574 - : factor_en_deriv_e[2][0]: 0.17548337641865783 - : factor_en_deriv_e[3][0]: -0.9667363412285741 + : (6, 10, 4, 10) + : factor_een: 0.0 #+begin_src c :tangle (eval c_test) -///* Check if Jastrow is properly initialized */ +/* Check if Jastrow is properly initialized */ +assert(qmckl_jastrow_provided(context)); +double factor_een_deriv_e[walk_num][elec_num]; +rc = qmckl_get_jastrow_factor_een_deriv_e(context, &(factor_een_deriv_e[0][0])); + +assert(fabs(factor_een_deriv_e[0][0] + 0.0005481671107226865) < 1e-12); #+end_src * End of files :noexport: diff --git a/org/qmckl_tests.org b/org/qmckl_tests.org index 4b2e47b..373a333 100644 --- a/org/qmckl_tests.org +++ b/org/qmckl_tests.org @@ -1191,7 +1191,7 @@ double n2_elec_coord[n2_walk_num][n2_elec_num][3] = { { #define n2_type_nucl_num ((int64_t) 1) #define n2_aord_num ((int64_t) 5) #define n2_bord_num ((int64_t) 5) -#define n2_cord_num ((int64_t) 23) +#define n2_cord_num ((int64_t) 5) #define n2_dim_cord_vec ((int64_t) 23) int64_t n2_type_nucl_vector[n2_nucl_num] = { @@ -1214,7 +1214,7 @@ double n2_bord_vector[n2_bord_num + 1] = { 0.0073096 , 0.002866 }; -double n2_cord_vector[n2_cord_num][n2_type_nucl_num] = { +double n2_cord_vector[n2_dim_cord_vec][n2_type_nucl_num] = { { 5.717020e-01}, {-5.142530e-01}, {-5.130430e-01},