79 KiB
Quantum Monte Carlo
- Introduction
- Numerical evaluation of the energy of the hydrogen atom
- Variational Monte Carlo
- Project
- Acknowledgments
Introduction
This website contains the QMC tutorial of the 2021 LTTC winter school Tutorials in Theoretical Chemistry.
We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we start with the computation of the energy of a hydrogen atom using numerical integration. The goal of this section is to familarize yourself with the concept of local energy. Then, we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function, and apply this approach to the hydrogen atom. Finally, we present the diffusion Monte Carlo (DMC) method which we use here to estimate the exact energy of the hydrogen atom and of the H_2 molecule, starting from an approximate wave function.
Code examples will be given in Python3 and Fortran. You can use whatever language you prefer to write the programs.
We consider the stationary solution of the Schrödinger equation, so the wave functions considered here are real: for an $N$ electron system where the electrons move in the 3-dimensional space, $\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}$. In addition, $\Psi$ is defined everywhere, continuous, and infinitely differentiable.
All the quantities are expressed in atomic units (energies, coordinates, etc).
Energy and local energy
For a given system with Hamiltonian $\hat{H}$ and wave function $\Psi$, we define the local energy as
$$ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, $$
where $\mathbf{r}$ denotes the 3N-dimensional electronic coordinates.
The electronic energy of a system, $E$, can be rewritten in terms of the local energy $E_L(\mathbf{r})$ as
\begin{eqnarray*} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \\ & = & \frac{\int |\Psi(\mathbf{r})|^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} = \frac{\int |\Psi(\mathbf{r})|^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \end{eqnarray*}For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.
To this aim, recall that the probabilistic expected value of an arbitrary function $f(x)$ with respect to a probability density function $P(x)$ is given by
$$ \langle f \rangle_P = \int_{-\infty}^\infty P(x)\, f(x)\,dx, $$
where a probability density function $P(x)$ is non-negative and integrates to one:
$$ \int_{-\infty}^\infty P(x)\,dx = 1. $$
Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to a probability density $P(\mathbf{r})$ defined in 3$N$ dimensions:
$$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r} \equiv \langle E_L \rangle_{P}\,, $$
where the probability density is given by the square of the wave function:
$$ P(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|^2}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $P$, we can estimate $E$ as the average of the local energy computed over these configurations:
$$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i) \,. $$
Numerical evaluation of the energy of the hydrogen atom
In this section, we consider the hydrogen atom with the following wave function:
$$ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) $$
We will first verify that, for a particular value of $a$, $\Psi$ is an eigenfunction of the Hamiltonian
$$ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} $$
To do that, we will compute the local energy and check whether it is constant.
Local energy
You will now program all quantities needed to compute the local energy of the H atom for the given wave function.
Write all the functions of this section in a single file :
hydrogen.py
if you use Python, or hydrogen.f90
is you use
Fortran.
- When computing a square root in $\mathbb{R}$, always make sure that the argument of the square root is non-negative.
- When you divide, always make sure that you will not divide by zero
If a floating-point exception can occur, you should make a test to catch the error.
Exercise 1
Write a function which computes the potential at $\mathbf{r}$.
The function accepts a 3-dimensional vector r
as input argument
and returns the potential.
$\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)$, so $$ V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}} $$
Python
#!/usr/bin/env python3
import numpy as np
def potential(r):
# TODO
Fortran
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
! TODO
end function potential
Exercise 2
Write a function which computes the wave function at $\mathbf{r}$.
The function accepts a scalar a
and a 3-dimensional vector r
as
input arguments, and returns a scalar.
Python
def psi(a, r):
# TODO
Fortran
double precision function psi(a, r)
implicit none
double precision, intent(in) :: a, r(3)
! TODO
end function psi
Exercise 3
Write a function which computes the local kinetic energy at $\mathbf{r}$.
The function accepts a
and r
as input arguments and returns the
local kinetic energy.
The local kinetic energy is defined as $$T_L(\mathbf{r}) = -\frac{1}{2}\frac{\Delta \Psi(\mathbf{r})}{\Psi(\mathbf{r})}.$$
We differentiate $\Psi$ with respect to $x$:
\[ \Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \] \[\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]
and we differentiate a second time:
$$ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(\mathbf{r}). $$
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ applied to the wave function gives:
$$ \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})\,. $$
Therefore, the local kinetic energy is $$ T_L (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) $$
Python
def kinetic(a,r):
# TODO
Fortran
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
! TODO
end function kinetic
Exercise 4
Write a function which computes the local energy at $\mathbf{r}$,
using the previously defined functions.
The function accepts a
and r
as input arguments and returns the
local kinetic energy.
$$ E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r}) $$
Python
def e_loc(a,r):
#TODO
Fortran
When you call a function in Fortran, you need to declare its
return type.
You might by accident choose a function name which is the
same as an internal function of Fortran. So it is recommended to
always use the keyword external
to make sure the function you
are calling is yours.
double precision function e_loc(a,r)
implicit none
double precision, intent(in) :: a, r(3)
double precision, external :: kinetic
double precision, external :: potential
! TODO
end function e_loc
Exercise 5
Find the theoretical value of $a$ for which $\Psi$ is an eigenfunction of $\hat{H}$.
Plot of the local energy along the $x$ axis
The program you will write in this section will be written in
another file (plot_hydrogen.py
or plot_hydrogen.f90
for
example).
It will use the functions previously defined.
In Python, you should put at the beginning of the file
#!/usr/bin/env python3
from hydrogen import e_loc
to be able to use the e_loc
function of the hydrogen.py
file.
In Fortran, you will need to compile all the source files together:
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
Exercise
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the $x$ axis. In Python, you can use matplotlib for example. In Fortran, it is convenient to write in a text file the values of $x$ and $E_L(\mathbf{r})$ for each point, and use Gnuplot to plot the files. With Gnuplot, you will need 2 blank lines to separate the data corresponding to different values of $a$.
The potential and the kinetic energy both diverge at $r=0$, so we choose a grid which does not contain the origin to avoid numerical issues.
Python
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from hydrogen import e_loc
x=np.linspace(-5,5)
plt.figure(figsize=(10,5))
# TODO
plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")
Fortran
program plot
implicit none
double precision, external :: e_loc
double precision :: x(50), dx
integer :: i, j
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
! TODO
end program plot
To compile and run:
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data
To plot the data using Gnuplot:
set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
'./data' index 1 using 1:2 with lines title 'a=0.2', \
'./data' index 2 using 1:2 with lines title 'a=0.5', \
'./data' index 3 using 1:2 with lines title 'a=1.0', \
'./data' index 4 using 1:2 with lines title 'a=1.5', \
'./data' index 5 using 1:2 with lines title 'a=2.0'
Numerical estimation of the energy
If the space is discretized in small volume elements $\mathbf{r}_i$ of size $\delta \mathbf{r}$, the expression of $\langle E_L \rangle_{\Psi^2}$ becomes a weighted average of the local energy, where the weights are the values of the wave function square at $\mathbf{r}_i$ multiplied by the volume element:
$$ \langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left|\Psi(\mathbf{r}_i)\right|^2 \delta \mathbf{r} $$
The energy is biased because:
- The volume elements are not infinitely small (discretization error)
- The energy is evaluated only inside the box (incompleteness of the space)
Exercise
Compute a numerical estimate of the energy using a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
Python
#!/usr/bin/env python3
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# TODO
print(f"a = {a} \t E = {E}")
Fortran
program energy_hydrogen
implicit none
double precision, external :: e_loc, psi
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
integer :: i, k, l, j
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
do j=1,size(a)
! TODO
print *, 'a = ', a(j), ' E = ', energy
end do
end program energy_hydrogen
To compile the Fortran and run it:
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
Variance of the local energy
The variance of the local energy is a functional of $\Psi$ which measures the magnitude of the fluctuations of the local energy associated with $\Psi$ around its average:
$$ \sigma^2(E_L) = \frac{\int |\Psi(\mathbf{r})|^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} $$ which can be simplified as
$$ \sigma^2(E_L) = \langle E_L^2 \rangle_{\Psi^2} - \langle E_L \rangle_{\Psi^2}^2.$$
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function.
Exercise (optional)
Prove that : $$\langle \left( E - \langle E \rangle_{\Psi^2} \right)^2\rangle_{\Psi^2} = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 $$
Exercise
Add the calculation of the variance to the previous code, and compute a numerical estimate of the variance of the local energy using a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$ for different values of $a$.
Python
#!/usr/bin/env python3
import numpy as np from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# TODO
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
Fortran
program variance_hydrogen
implicit none
double precision :: x(50), w, delta, energy, energy2
double precision :: dx, r(3), a(6), norm, e_tmp, s2
integer :: i, k, l, j
double precision, external :: e_loc, psi
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(size(x)-1)
do i=1,size(x)
x(i) = -5.d0 + (i-1)*dx
end do
do j=1,size(a)
! TODO
print *, 'a = ', a(j), ' E = ', energy
end do
end program variance_hydrogen
To compile and run:
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
Variational Monte Carlo
Numerical integration with deterministic methods is very efficient in low dimensions. When the number of dimensions becomes large, instead of computing the average energy as a numerical integration on a grid, it is usually more efficient to use Monte Carlo sampling.
Moreover, Monte Carlo sampling will allow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.
Computation of the statistical error
To compute the statistical error, you need to perform $M$ independent Monte Carlo calculations. You will obtain $M$ different estimates of the energy, which are expected to have a Gaussian distribution for large $M$, according to the Central Limit Theorem.
The estimate of the energy is
$$ E = \frac{1}{M} \sum_{i=1}^M E_i $$
The variance of the average energies can be computed as
$$ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_i - E)^2 $$
And the confidence interval is given by
$$ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} $$
Exercise
Write a function returning the average and statistical error of an input array.
Python
#!/usr/bin/env python3
from math import sqrt
def ave_error(arr):
#TODO
return (average, error)
Fortran
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
Uniform sampling in the box
We will now perform our first Monte Carlo calculation to compute the energy of the hydrogen atom.
Consider again the expression of the energy
\begin{eqnarray*} E & = & \frac{\int E_L(\mathbf{r})|\Psi(\mathbf{r})|^2\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}\,. \end{eqnarray*}Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as
\begin{eqnarray*} E & = & \frac{\int E_L(\mathbf{r})\frac{|\Psi(\mathbf{r})|^2}{P(\mathbf{r})}P(\mathbf{r})\, \,d\mathbf{r}}{\int \frac{|\Psi(\mathbf{r})|^2 }{P(\mathbf{r})}P(\mathbf{r})d\mathbf{r}}\,. \end{eqnarray*}Here, we will sample a uniform probability $P(\mathbf{r})$ in a cube of volume $L^3$ centered at the origin:
$$ P(\mathbf{r}) = \frac{1}{L^3}\,, $$
and zero outside the cube.
One Monte Carlo run will consist of $N_{\rm MC}$ Monte Carlo iterations. At every Monte Carlo iteration:
- Draw a random point $\mathbf{r}_i$ in the box $(-5,-5,-5) \le (x,y,z) \le (5,5,5)$
- Compute $|\Psi(\mathbf{r}_i)|^2$ and accumulate the result in a
variable
normalization
- Compute $|\Psi(\mathbf{r}_i)|^2 \times E_L(\mathbf{r}_i)$, and accumulate the
result in a variable
energy
Once all the iterations have been computed, the run returns the average energy $\bar{E}_k$ over the $N_{\rm MC}$ iterations of the run.
To compute the statistical error, perform $M$ independent runs. The final estimate of the energy will be the average over the $\bar{E}_k$, and the variance of the $\bar{E}_k$ will be used to compute the statistical error.
Exercise
Parameterize the wave function with $a=1.2$. Perform 30 independent Monte Carlo runs, each with 100 000 Monte Carlo steps. Store the final energies of each run and use this array to compute the average energy and the associated error bar.
Python
To draw a uniform random number in Python, you can use
the random.uniform
function of Numpy.
#!/usr/bin/env python3
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
# TODO
a = 1.2
nmax = 100000
#TODO
print(f"E = {E} +/- {deltaE}")
Fortran
To draw a uniform random number in Fortran, you can use
the RANDOM_NUMBER
subroutine.
When running Monte Carlo calculations, the number of steps is
usually very large. We expect nmax
to be possibly larger than 2
billion, so we use 8-byte integers (integer*8
) to represent it, as
well as the index of the current step.
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
! TODO
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 1.2d0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
!TODO
print *, 'E = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
Metropolis sampling with $\Psi^2$
We will now use the square of the wave function to sample random points distributed with the probability density \[ P(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|^2}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. \]
The expression of the average energy is now simplified as the average of the local energies, since the weights are taken care of by the sampling:
$$ E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i)\,. $$
To sample a chosen probability density, an efficient method is the Metropolis-Hastings sampling algorithm. Starting from a random initial position $\mathbf{r}_0$, we will realize a random walk:
$$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \rightarrow \mathbf{r}_{N_{\rm MC}}\,, $$
according to the following algorithm.
At every step, we propose a new move according to a transition probability $T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})$ of our choice.
For simplicity, we will move the electron in a 3-dimensional box of side $2\delta L$ centered at the current position of the electron:
$$ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \delta L \, \mathbf{u} $$
where $\delta L$ is a fixed constant, and $\mathbf{u}$ is a uniform random number in a 3-dimensional box $(-1,-1,-1) \le \mathbf{u} \le (1,1,1)$.
After having moved the electron, we add the accept/reject step that guarantees that the distribution of the $\mathbf{r}_n$ is $\Psi^2$. This amounts to accepting the move with probability
$$ A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n+1}\rightarrow\mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})P(\mathbf{r}_{n})}\right)\,, $$
which, for our choice of transition probability, becomes
$$ A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{|\Psi(\mathbf{r}_{n+1})|^2}{|\Psi(\mathbf{r}_{n})|^2}\right)\,. $$
Explain why the transition probability cancels out in the expression of $A$.
Also note that we do not need to compute the norm of the wave function!
The algorithm is summarized as follows:
- Evaluate the local energy at $\mathbf{r}_n$ and accumulate it
- Compute a new position $\mathbf{r'} = \mathbf{r}_n + \delta L\, \mathbf{u}$
- Evaluate $\Psi(\mathbf{r}')$ at the new position
- Compute the ratio $A = \frac{\left|\Psi(\mathbf{r'})\right|^2}{\left|\Psi(\mathbf{r}_{n})\right|^2}$
- Draw a uniform random number $v \in [0,1]$
- if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$
- else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
A common error is to remove the rejected samples from the calculation of the average. Don't do it!
All samples should be kept, from both accepted and rejected moves.
Optimal step size
If the box is infinitely small, the ratio will be very close to one and all the steps will be accepted. However, the moves will be very correlated and you will visit the configurational space very slowly.
On the other hand, if you propose too large moves, the number of accepted steps will decrease because the ratios might become small. If the number of accepted steps is close to zero, then the space is not well sampled either.
The size of the move should be adjusted so that it is as large as possible, keeping the number of accepted steps not too small. To achieve that, we define the acceptance rate as the number of accepted steps over the total number of steps. Adjusting the time step such that the acceptance rate is close to 0.5 is a good compromise for the current problem.
Below, we use the symbol $\delta t$ to denote $\delta L$ since we will use the same variable later on to store a time step.
Exercise
Modify the program of the previous section to compute the energy, sampled with $\Psi^2$.
Compute also the acceptance rate, so that you can adapt the time step in order to have an acceptance rate close to 0.5.
Can you observe a reduction in the statistical error?
Python
#!/usr/bin/env python3
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,dt):
# TODO
return energy/nmax, N_accep/nmax
# Run simulation
a = 1.2
nmax = 100000
dt = #TODO
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
Fortran
subroutine metropolis_montecarlo(a,nmax,dt,energy,accep)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(in) :: dt
double precision, intent(out) :: energy
double precision, intent(out) :: accep
integer*8 :: istep
integer*8 :: n_accep
double precision :: r_old(3), r_new(3), psi_old, psi_new
double precision :: v, ratio
double precision, external :: e_loc, psi, gaussian
! TODO
end subroutine metropolis_montecarlo
program qmc
implicit none
double precision, parameter :: a = 1.2d0
double precision, parameter :: dt = ! TODO
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), Y(nruns)
double precision :: ave, err
do irun=1,nruns
call metropolis_montecarlo(a,nmax,dt,X(irun),Y(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(Y,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
./qmc_metropolis
Generalized Metropolis algorithm
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.
The Metropolis acceptance step has to be adapted accordingly to ensure that the detailed balance condition is satisfied. This means that the acceptance probability $A$ is chosen so that it is consistent with the probability of leaving $\mathbf{r}_n$ and the probability of entering $\mathbf{r}_{n+1}$:
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} {T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} \right) \] where $T(\mathbf{r}_n \rightarrow \mathbf{r}_{n+1})$ is the probability of transition from $\mathbf{r}_n$ to $\mathbf{r}_{n+1}$.
In the previous example, we were using uniform sampling in a box centered at the current position. Hence, the transition probability was symmetric
\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) = \text{constant}\,, \]
so the expression of $A$ was simplified to the ratios of the squared wave functions.
Now, if instead of drawing uniform random numbers, we choose to draw Gaussian random numbers with zero mean and variance $\delta t$, the transition probability becomes:
\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\delta t} \right]\,. \]
Furthermore, to sample the density even better, we can "push" the electrons into in the regions of high probability, and "pull" them away from the low-probability regions. This will increase the acceptance ratios and improve the sampling.
To do this, we can use the gradient of the probability density
\[ \frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}\,, \]
and add the so-called drift vector, $\frac{\nabla \Psi}{\Psi}$, so that the numerical scheme becomes a drifted diffusion with transition probability:
\[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left( \mathbf{r}_{n+1} - \mathbf{r}_{n} - \delta t\frac{\nabla \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,. \]
The corresponding move is proposed as
\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi \,, \]
where $\chi$ is a Gaussian random variable with zero mean and variance $\delta t$.
The algorithm of the previous exercise is only slighlty modified as:
- Evaluate the local energy at $\mathbf{r}_{n}$ and accumulate it
- Compute a new position $\mathbf{r'} = \mathbf{r}_n + \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi$
- Evaluate $\Psi(\mathbf{r}')$ and $\frac{\nabla \Psi(\mathbf{r'})}{\Psi(\mathbf{r'})}$ at the new position
- Compute the ratio $A = \frac{T(\mathbf{r}' \rightarrow \mathbf{r}_{n}) P(\mathbf{r}')}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}') P(\mathbf{r}_{n})}$
- Draw a uniform random number $v \in [0,1]$
- if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$
- else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
Gaussian random number generator
To obtain Gaussian-distributed random numbers, you can apply the Box Muller transform to uniform random numbers:
\begin{eqnarray*} z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\ z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2) \end{eqnarray*}Below is a Fortran implementation returning a Gaussian-distributed n-dimensional vector $\mathbf{z}$. This will be useful for the following sections.
Fortran
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) * dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
In Python, you can use the random.normal
function of Numpy.
Exercise 1
If you use Fortran, copy/paste the random_gauss
function in
a Fortran file.
Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
Python
def drift(a,r):
# TODO
Fortran
subroutine drift(a,r,b)
implicit none
double precision, intent(in) :: a, r(3)
double precision, intent(out) :: b(3)
! TODO
end subroutine drift
Exercise 2
Modify the previous program to introduce the drift-diffusion scheme. (This is a necessary step for the next section on diffusion Monte Carlo).
Python
#!/usr/bin/env python3
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,dt):
# TODO
# Run simulation
a = 1.2
nmax = 100000
dt = # TODO
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
Fortran
subroutine variational_montecarlo(a,dt,nmax,energy,accep)
implicit none
double precision, intent(in) :: a, dt
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep
integer*8 :: istep
integer*8 :: n_accep
double precision :: sq_dt, chi(3)
double precision :: psi_old, psi_new
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
! TODO
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 1.2d0
double precision, parameter :: dt = ! TODO
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), accep(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,dt,nmax,X(irun),accep(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
Project
Change your PDMC code for one of the following:
- the Helium atom, or
- the H_2 molecule at $R$ =1.401 bohr.
And compute the ground state energy.
Acknowledgments
TREX : Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union’s Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.