1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-10-10 10:01:57 +02:00
qmc-lttc/QMC.org
2021-01-07 10:01:55 +01:00

22 KiB

Quantum Monte Carlo

Introduction

We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we propose to compute the energy of a hydrogen atom using numerical integration. The goal of this section is to introduce the local energy. Then we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function. Finally, we introduce the diffusion Monte Carlo (DMC) method which gives the exact energy of the H$_2$ molecule.

Code examples will be given in Python and Fortran. Whatever language can be chosen.

Python

Fortran

  • 1.d0
  • external
  • r(:) = 0.d0
  • a = (/ 0.1, 0.2 /)
  • size(x)

Numerical evaluation of the energy

In this section we consider the Hydrogen atom with the following wave function:

$$ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) $$

We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian

$$ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} $$

when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for all $\mathbf{r}$: we will check that the local energy, defined as

$$ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, $$

is constant.

Local energy

Write a function which computes the potential at $\mathbf{r}$

The function accepts a 3-dimensional vector r as input arguments and returns the potential.

$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so $$ V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$ $$

import numpy as np

def potential(r):
    return -1. / np.sqrt(np.dot(r,r))
double precision function potential(r)
  implicit none
  double precision, intent(in) :: r(3)
  potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
end function potential

Write a function which computes the wave function at $\mathbf{r}$

The function accepts a scalar a and a 3-dimensional vector r as input arguments, and returns a scalar.

def psi(a, r):
    return np.exp(-a*np.sqrt(np.dot(r,r)))
double precision function psi(a, r)
  implicit none
  double precision, intent(in) :: a, r(3)
  psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi

Write a function which computes the local kinetic energy at $\mathbf{r}$

The function accepts a and r as input arguments and returns the local kinetic energy.

The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$.

$$ \Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}). $$

We differentiate $\Psi$ with respect to $x$:

$$ \frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z) $$

and we differentiate a second time:

$$ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z). $$

The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ applied to the wave function gives:

$$ \Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z) $$

So the local kinetic energy is $$ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) $$

def kinetic(a,r):
    return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
double precision function kinetic(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)
  kinetic = -0.5d0 * (a*a - (2.d0*a) / &
       dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) 
end function kinetic

Write a function which computes the local energy at $\mathbf{r}$

The function accepts x,y,z as input arguments and returns the local energy.

$$ E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z) $$

def e_loc(a,r):
    return kinetic(a,r) + potential(r)
double precision function e_loc(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)
  double precision, external   :: kinetic, potential
  e_loc = kinetic(a,r) + potential(r)
end function e_loc

Plot the local energy along the x axis

For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the $x$ axis.

import numpy as np
import matplotlib.pyplot as plt

from hydrogen import e_loc

x=np.linspace(-5,5)

def make_array(a):
  y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
  return y

plt.figure(figsize=(10,5))
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
  y = make_array(a)
  plt.plot(x,y,label=f"a={a}")

plt.tight_layout()

plt.legend()

plt.savefig("plot_py.png")

/TREX/qmc-lttc/media/commit/8594cdfa395e8bd1e71781274dcb1da5d7c0eedd/plot_py.png

program plot
  implicit none
  double precision, external :: e_loc

  double precision :: x(50), energy, dx, r(3), a(6)
  integer :: i, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  r(:) = 0.d0

  do j=1,size(a)
     print *, '# a=', a(j)
     do i=1,size(x)
        r(1) = x(i)
        energy = e_loc( a(j), r )
        print *, x(i), energy
     end do
     print *, ''
     print *, ''
  end do

end program plot

To compile and run:

gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data

To plot the data using gnuplot"

set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
     './data' index 1 using 1:2 with lines title 'a=0.2', \
     './data' index 2 using 1:2 with lines title 'a=0.5', \
     './data' index 3 using 1:2 with lines title 'a=1.0', \
     './data' index 4 using 1:2 with lines title 'a=1.5', \
     './data' index 5 using 1:2 with lines title 'a=2.0'

/TREX/qmc-lttc/media/commit/8594cdfa395e8bd1e71781274dcb1da5d7c0eedd/plot.png

Compute numerically the average energy

We want to compute

\begin{eqnarray} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\ & = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \end{eqnarray}

If the space is discretized in small volume elements $\delta \mathbf{r}$, this last equation corresponds to a weighted average of the local energy, where the weights are the values of the square of the wave function at $\mathbf{r}$ multiplied by the volume element:

$$ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} $$

We now compute an numerical estimate of the energy in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.

Note: the energy is biased because:

  • The energy is evaluated only inside the box
  • The volume elements are not infinitely small

    import numpy as np
    from hydrogen import e_loc, psi
    
    interval = np.linspace(-5,5,num=50)
    delta = (interval[1]-interval[0])**3
    
    r = np.array([0.,0.,0.])
    
    for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
      E = 0.
      norm = 0.
      for x in interval:
            r[0] = x
            for y in interval:
                  r[1] = y
                  for z in interval:
                        r[2] = z
                        w = psi(a,r)
                        w = w * w * delta
                        E    += w * e_loc(a,r)
                        norm += w 
      E = E / norm
      print(f"a = {a} \t E = {E}")
    a = 0.1 	 E = -0.24518438948809218
    a = 0.2 	 E = -0.26966057967803525
    a = 0.5 	 E = -0.3856357612517407
    a = 0.9 	 E = -0.49435709786716214
    a = 1.0 	 E = -0.5
    a = 1.5 	 E = -0.39242967082602226
    a = 2.0 	 E = -0.08086980667844901
    
program energy_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
  integer :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta

              energy = energy + w * e_loc(a(j), r)
              norm   = norm   + w 
           end do
        end do
     end do
     energy = energy / norm
     print *, 'a = ', a(j), '    E = ', energy
  end do

end program energy_hydrogen

To compile and run:

gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
 a =   0.10000000000000001          E =  -0.24518438948809140     
 a =   0.20000000000000001          E =  -0.26966057967803236     
 a =   0.50000000000000000          E =  -0.38563576125173815     
 a =    1.0000000000000000          E =  -0.50000000000000000     
 a =    1.5000000000000000          E =  -0.39242967082602065     
 a =    2.0000000000000000          E =   -8.0869806678448772E-002

Compute the variance of the local energy

The variance of the local energy measures the magnitude of the fluctuations of the local energy around the average. If the local energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$) the variance is zero.

$$ \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} $$

Compute a numerical estimate of the variance of the local energy in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3

r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    E = 0.
    norm = 0.
    for x in interval:
        r[0] = x
        for y in interval:
            r[1] = y
            for z in interval:
                r[2] = z
                w = psi(a, r)
                w = w * w * delta
                El = e_loc(a, r)
                E  += w * El
                norm += w 
    E = E / norm
    s2 = 0.
    for x in interval:
        r[0] = x
        for y in interval:
            r[1] = y
            for z in interval:
                r[2] = z
                w = psi(a, r)
                w = w * w * delta
                El = e_loc(a, r)
                s2 += w * (El - E)**2
    s2 = s2 / norm
    print(f"a = {a} \t E = {E:10.8f}  \t  \sigma^2 = {s2:10.8f}")
a = 0.1 	 E = -0.24518439  	  \sigma^2 = 0.02696522
a = 0.2 	 E = -0.26966058  	  \sigma^2 = 0.03719707
a = 0.5 	 E = -0.38563576  	  \sigma^2 = 0.05318597
a = 0.9 	 E = -0.49435710  	  \sigma^2 = 0.00577812
a = 1.0 	 E = -0.50000000  	  \sigma^2 = 0.00000000
a = 1.5 	 E = -0.39242967  	  \sigma^2 = 0.31449671
a = 2.0 	 E = -0.08086981  	  \sigma^2 = 1.80688143
program variance_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
  integer :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta

              energy = energy + w * e_loc(a(j), r)
              norm   = norm   + w 
           end do
        end do
     end do
     energy = energy / norm

     s2 = 0.d0
     norm = 0.d0
     do i=1,size(x)
        r(1) = x(i)
        do k=1,size(x)
           r(2) = x(k)
           do l=1,size(x)
              r(3) = x(l)
              w = psi(a(j),r)
              w = w * w * delta

              s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
              norm   = norm   + w 
           end do
        end do
     end do
     s2 = s2 / norm
     print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
  end do

end program variance_hydrogen

To compile and run:

gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
 a =   0.10000000000000001       E =  -0.24518438948809140       s2 =    2.6965218719733813E-002
 a =   0.20000000000000001       E =  -0.26966057967803236       s2 =    3.7197072370217653E-002
 a =   0.50000000000000000       E =  -0.38563576125173815       s2 =    5.3185967578488862E-002
 a =    1.0000000000000000       E =  -0.50000000000000000       s2 =    0.0000000000000000     
 a =    1.5000000000000000       E =  -0.39242967082602065       s2 =   0.31449670909180444     
 a =    2.0000000000000000       E =   -8.0869806678448772E-002  s2 =    1.8068814270851303     

Variational Monte Carlo

Instead of computing the average energy as a numerical integration on a grid, we will do a Monte Carlo sampling, which is an extremely efficient method to compute integrals when the number of dimensions is large.

Moreover, a Monte Carlo sampling will alow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.

Computation of the statistical error

To compute the statistical error, you need to perform $M$ independent Monte Carlo calculations. You will obtain $M$ different estimates of the energy, which are expected to have a Gaussian distribution by the central limit theorem.

The estimate of the energy is

$$ E = \frac{1}{M} \sum_{i=1}^M E_M $$

The variance of the average energies can be computed as

$$ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2 $$

And the confidence interval is given by

$$ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} $$

Write a function returning the average and statistical error of an input array.

from math import sqrt
def ave_error(arr):
    M = len(arr)
    assert (M>1)
    average = sum(arr)/M
    variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
    return (average, sqrt(variance/M))
subroutine ave_error(x,n,ave,err)
  implicit none
  integer, intent(in)           :: n 
  double precision, intent(in)  :: x(n) 
  double precision, intent(out) :: ave, err
  double precision :: variance
  if (n == 1) then
     ave = x(1)
     err = 0.d0
  else
     ave = sum(x(:)) / dble(n)
     variance = sum( (x(:) - ave)**2 ) / dble(n-1)
     err = dsqrt(variance/dble(n))
  endif
end subroutine ave_error

Uniform sampling in the box

In this section we write a function to perform a Monte Carlo calculation of the average energy. At every Monte Carlo step:

  • Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le (x,y,z) \le (5,5,5)$
  • Compute $\Psi^2 \times E_L$ at this point and accumulate the result in E
  • Compute $\Psi^2$ at this point and accumulate the result in N Once all the steps have been computed, return the average energy computed on the Monte Carlo calculation. In the main program, write a loop to perform 30 Monte Carlo runs, and compute the average energy and the associated statistical error. Compute the energy of the wave function with $a=0.9$.
from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax):
  E = 0.
  N = 0.
  for istep in range(nmax):
      r = np.random.uniform(-5., 5., (3))
      w = psi(a,r)
      w = w*w
      N += w
      E += w * e_loc(a,r)
  return E/N

a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
E = -0.4956255109300764 +/- 0.0007082875482711226
subroutine uniform_montecarlo(a,nmax,energy)
  implicit none
  double precision, intent(in)  :: a
  integer         , intent(in)  :: nmax 
  double precision, intent(out) :: energy
  
  integer*8 :: istep
  
  double precision :: norm, r(3), w

  double precision, external :: e_loc, psi

  energy = 0.d0
  norm   = 0.d0
  do istep = 1,nmax
     call random_number(r)
     r(:) = -5.d0 + 10.d0*r(:)
     w = psi(a,r)
     w = w*w
     norm = norm + w
     energy = energy + w * e_loc(a,r)
  end do
  energy = energy / norm
end subroutine uniform_montecarlo

program qmc
  implicit none
  double precision, parameter :: a = 0.9
  integer         , parameter :: nmax = 100000
  integer         , parameter :: nruns = 30

  integer :: irun
  double precision :: X(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call uniform_montecarlo(a,nmax,X(irun))
  enddo
  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err
end program qmc
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
 E =  -0.49588321986667677      +/-   7.1758863546737969E-004

Gaussian sampling

We will now improve the sampling and allow to sample in the whole 3D space, correcting the bias related to the sampling in the box.

Instead of drawing uniform random numbers, we will draw Gaussian random numbers centered on 0 and with a variance of 1. Now the equation for the energy is changed into

\[ E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} \] with \[ P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right) \]

As the coordinates are drawn with probability $P(\mathbf{r})$, the average energy can be computed as

$$ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r} $$

norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
  return norm_gauss * np.exp(-np.dot(r,r)*0.5)
def MonteCarlo(a,nmax):
    E = 0.
    N = 0.
    for istep in range(nmax):
        r = np.random.normal(loc=0., scale=1.0, size=(3))
        w = psi(a,r)
        w = w*w / gaussian(r)
        N += w
        E += w * e_loc(a,r)
    return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
E = -0.4952488228427792 +/- 0.00011913174676540714

Sampling with $\Psi^2$

We will now use the square of the wave function to make the sampling:

\[ P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2 \]

Now, the expression for the energy will be simplified to the average of the local energies, each with a weight of 1.

$$ E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)} $$

To generate the probability density $\Psi^2$, we can use a drifted diffusion scheme:

\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla \Psi(r)}{\Psi(r)} + \eta \sqrt{\tau} \]

where $\eta$ is a normally-distributed Gaussian random number.

First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.

def drift(a,r):
  ar_inv = -a/np.sqrt(np.dot(r,r))
  return r * ar_inv
def MonteCarlo(a,tau,nmax):
    E = 0.
    N = 0.
    sq_tau = sqrt(tau)
    r_old = np.random.normal(loc=0., scale=1.0, size=(3))
    d_old = drift(a,r_old)
    d2_old = np.dot(d_old,d_old)
    psi_old = psi(a,r_old)
    for istep in range(nmax):
        eta = np.random.normal(loc=0., scale=1.0, size=(3))
        r_new = r_old + tau * d_old + sq_tau * eta
        d_new = drift(a,r_new)
        d2_new = np.dot(d_new,d_new)
        psi_new = psi(a,r_new)
        # Metropolis
        prod = np.dot((d_new + d_old), (r_new - r_old))
        argexpo = 0.5 * (d2_new - d2_old)*tau + prod
        q = psi_new / psi_old
        q = np.exp(-argexpo) * q*q
        if np.random.uniform() < q:
            r_old = r_new
            d_old = d_new
            d2_old = d2_new
            psi_old = psi_new
            N += 1.
            E += e_loc(a,r_old)
    return E/N
nmax = 100000
tau = 0.1
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
E = -0.4951783346213532 +/- 0.00022067316984271938

Diffusion Monte Carlo

We will now consider the H_2 molecule in a minimal basis composed of the $1s$ orbitals of the hydrogen atoms:

$$ \Psi(\mathbf{r}_1, \mathbf{r}_2) = \exp(-(\mathbf{r}_1 - \mathbf{R}_A)) + $$ where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron coordinates and \mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of the nuclei.