mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
OK up to VMC
This commit is contained in:
parent
a2373b198b
commit
f13fb07ed3
157
QMC.org
157
QMC.org
@ -41,10 +41,10 @@
|
||||
computes a statistical estimate of the expectation value of the energy
|
||||
associated with a given wave function.
|
||||
Finally, we introduce the diffusion Monte Carlo (DMC) method which
|
||||
gives the exact energy of the $H_2$ molecule.
|
||||
gives the exact energy of the hydrogen atom and of the $H_2$ molecule.
|
||||
|
||||
Code examples will be given in Python and Fortran. Whatever language
|
||||
can be chosen.
|
||||
Code examples will be given in Python and Fortran. You can use
|
||||
whatever language you prefer to write the program.
|
||||
|
||||
We consider the stationary solution of the Schrödinger equation, so
|
||||
the wave functions considered here are real: for an $N$ electron
|
||||
@ -52,12 +52,8 @@
|
||||
$\Psi : \mathbb{R}^{3N} \rightarrow \mathbb{R}$. In addition, $\Psi$
|
||||
is defined everywhere, continuous and infinitely differentiable.
|
||||
|
||||
*Note*
|
||||
#+begin_important
|
||||
In Fortran, when you use a double precision constant, don't forget
|
||||
to put ~d0~ as a suffix (for example ~2.0d0~), or it will be
|
||||
interpreted as a single precision value
|
||||
#+end_important
|
||||
All the quantities are expressed in /atomic units/ (energies,
|
||||
coordinates, etc).
|
||||
|
||||
|
||||
* Numerical evaluation of the energy
|
||||
@ -180,7 +176,7 @@ end function potential
|
||||
|
||||
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
def psi(a, r):
|
||||
# TODO
|
||||
#+END_SRC
|
||||
@ -192,7 +188,7 @@ def psi(a, r):
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
#+BEGIN_SRC f90 :tangle none
|
||||
double precision function psi(a, r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
@ -247,7 +243,7 @@ end function psi
|
||||
$$
|
||||
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
def kinetic(a,r):
|
||||
# TODO
|
||||
#+END_SRC
|
||||
@ -259,7 +255,7 @@ def kinetic(a,r):
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
#+BEGIN_SRC f90 :tangle none
|
||||
double precision function kinetic(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
@ -291,7 +287,7 @@ end function kinetic
|
||||
|
||||
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
def e_loc(a,r):
|
||||
#TODO
|
||||
#+END_SRC
|
||||
@ -303,7 +299,7 @@ def e_loc(a,r):
|
||||
#+END_SRC
|
||||
|
||||
**** Fortran
|
||||
#+BEGIN_SRC f90
|
||||
#+BEGIN_SRC f90 :tangle none
|
||||
double precision function e_loc(a,r)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, r(3)
|
||||
@ -337,7 +333,7 @@ end function e_loc
|
||||
#+end_exercise
|
||||
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -377,7 +373,7 @@ plt.savefig("plot_py.png")
|
||||
[[./plot_py.png]]
|
||||
|
||||
**** Fortran
|
||||
#+begin_src f90
|
||||
#+begin_src f90 :tangle none
|
||||
program plot
|
||||
implicit none
|
||||
double precision, external :: e_loc
|
||||
@ -402,7 +398,7 @@ gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||
./plot_hydrogen > data
|
||||
#+end_src
|
||||
|
||||
To plot the data using gnuplot:
|
||||
To plot the data using Gnuplot:
|
||||
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
set grid
|
||||
@ -457,7 +453,7 @@ gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||
|
||||
#+RESULTS:
|
||||
|
||||
To plot the data using gnuplot:
|
||||
To plot the data using Gnuplot:
|
||||
|
||||
#+begin_src gnuplot :file plot.png :exports both
|
||||
set grid
|
||||
@ -474,7 +470,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
#+RESULTS:
|
||||
[[file:plot.png]]
|
||||
|
||||
** TODO Numerical estimation of the energy
|
||||
** Numerical estimation of the energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle energy_hydrogen.py
|
||||
:header-args:f90: :tangle energy_hydrogen.f90
|
||||
@ -505,7 +501,23 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
\mathbf{r} \le (5,5,5)$.
|
||||
#+end_exercise
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+BEGIN_SRC python :results none :tangle none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
# TODO
|
||||
print(f"a = {a} \t E = {E}")
|
||||
|
||||
#+end_src
|
||||
|
||||
**** Python :solution:
|
||||
#+BEGIN_SRC python :results none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
@ -542,7 +554,37 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
: a = 1.5 E = -0.39242967082602226
|
||||
: a = 2.0 E = -0.08086980667844901
|
||||
|
||||
*Fortran*
|
||||
**** Fortran
|
||||
#+begin_src f90
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
do j=1,size(a)
|
||||
! TODO
|
||||
print *, 'a = ', a(j), ' E = ', energy
|
||||
end do
|
||||
|
||||
end program energy_hydrogen
|
||||
#+end_src
|
||||
|
||||
To compile the Fortran and run it:
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
./energy_hydrogen
|
||||
#+end_src
|
||||
|
||||
**** Fortran :solution:
|
||||
#+begin_src f90
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
@ -599,7 +641,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
: a = 1.5000000000000000 E = -0.39242967082602065
|
||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||
|
||||
** TODO Variance of the local energy
|
||||
** Variance of the local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle variance_hydrogen.py
|
||||
:header-args:f90: :tangle variance_hydrogen.f90
|
||||
@ -607,7 +649,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
|
||||
The variance of the local energy is a functional of $\Psi$
|
||||
which measures the magnitude of the fluctuations of the local
|
||||
energy associated with $\Psi$ around the average:
|
||||
energy associated with $\Psi$ around its average:
|
||||
|
||||
$$
|
||||
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
|
||||
@ -615,7 +657,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
$$
|
||||
which can be simplified as
|
||||
|
||||
$$ \sigma^2(E_L) = \langle E_L^2 \rangle - \langle E_L \rangle^2 $$
|
||||
$$ \sigma^2(E_L) = \langle E_L^2 \rangle_{\Psi^2} - \langle E_L \rangle_{\Psi^2}^2.$$
|
||||
|
||||
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
|
||||
$\hat{H}$) the variance is zero, so the variance of the local
|
||||
@ -624,7 +666,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
*** Exercise (optional)
|
||||
#+begin_exercise
|
||||
Prove that :
|
||||
$$\langle E - \langle E \rangle \rangle^2 = \langle E^2 \rangle - \langle E \rangle^2 $$
|
||||
$$\left( \langle E - \langle E \rangle_{\Psi^2} \rangle_{\Psi^2} \right)^2 = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 $$
|
||||
#+end_exercise
|
||||
|
||||
*** Exercise
|
||||
@ -636,7 +678,22 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
\le \mathbf{r} \le (5,5,5)$ for different values of $a$.
|
||||
#+end_exercise
|
||||
|
||||
*Python*
|
||||
**** Python
|
||||
#+begin_src python :results none :tangle none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
|
||||
interval = np.linspace(-5,5,num=50)
|
||||
delta = (interval[1]-interval[0])**3
|
||||
|
||||
r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
# TODO
|
||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
||||
#+end_src
|
||||
|
||||
**** Python :solution:
|
||||
#+begin_src python :results none
|
||||
import numpy as np
|
||||
from hydrogen import e_loc, psi
|
||||
@ -677,7 +734,42 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
|
||||
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
|
||||
|
||||
*Fortran*
|
||||
**** Fortran
|
||||
#+begin_src f90 :tangle none
|
||||
program variance_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2
|
||||
double precision :: e, energy2
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
delta = dx**3
|
||||
|
||||
r(:) = 0.d0
|
||||
|
||||
do j=1,size(a)
|
||||
! TODO
|
||||
print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
|
||||
end do
|
||||
|
||||
end program variance_hydrogen
|
||||
#+end_src
|
||||
|
||||
To compile and run:
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
./variance_hydrogen
|
||||
#+end_src
|
||||
|
||||
**** Fortran :solution:
|
||||
#+begin_src f90
|
||||
program variance_hydrogen
|
||||
implicit none
|
||||
@ -1897,3 +1989,12 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||
#+RESULTS:
|
||||
: E = -0.48584030499187431 +/- 1.0411743995438257E-004
|
||||
|
||||
|
||||
* TODO [0/1] Last things to do
|
||||
|
||||
- [ ] Prepare 4 questions for the exam: multiple-choice questions
|
||||
with 4 possible answers. Questions should be independent because
|
||||
they will be asked in a random order.
|
||||
- [ ] Propose a project for the students to continue the
|
||||
programs. Idea: Modify the program to compute the exact energy of
|
||||
the H$_2$ molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.
|
||||
|
@ -1,3 +1,23 @@
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm
|
||||
integer :: i, k, l, j
|
||||
|
||||
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
|
||||
|
||||
dx = 10.d0/(size(x)-1)
|
||||
do i=1,size(x)
|
||||
x(i) = -5.d0 + (i-1)*dx
|
||||
end do
|
||||
|
||||
do j=1,size(a)
|
||||
! TODO
|
||||
print *, 'a = ', a(j), ' E = ', energy
|
||||
end do
|
||||
|
||||
end program energy_hydrogen
|
||||
|
||||
program energy_hydrogen
|
||||
implicit none
|
||||
double precision, external :: e_loc, psi
|
||||
|
@ -4,18 +4,12 @@ import matplotlib.pyplot as plt
|
||||
from hydrogen import e_loc
|
||||
|
||||
x=np.linspace(-5,5)
|
||||
|
||||
def make_array(a):
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
return y
|
||||
|
||||
plt.figure(figsize=(10,5))
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
||||
y = make_array(a)
|
||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||
plt.plot(x,y,label=f"a={a}")
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plt.legend()
|
||||
|
||||
plt.savefig("plot_py.png")
|
||||
|
Loading…
Reference in New Issue
Block a user