mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-22 04:15:01 +01:00
Working on DMC
This commit is contained in:
parent
6a63c65a01
commit
34481a8e3d
104
QMC.org
104
QMC.org
@ -1803,7 +1803,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
: E = -0.49495906384751226 +/- 1.5257646086088266E-004
|
: E = -0.49495906384751226 +/- 1.5257646086088266E-004
|
||||||
: A = 0.78861366666666666 +/- 3.7855335138754813E-004
|
: A = 0.78861366666666666 +/- 3.7855335138754813E-004
|
||||||
|
|
||||||
* TODO Diffusion Monte Carlo
|
* Diffusion Monte Carlo
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle dmc.py
|
:header-args:python: :tangle dmc.py
|
||||||
:header-args:f90: :tangle dmc.f90
|
:header-args:f90: :tangle dmc.f90
|
||||||
@ -1833,7 +1833,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
$\tau=i\,t$, we obtain
|
$\tau=i\,t$, we obtain
|
||||||
|
|
||||||
\[
|
\[
|
||||||
-\frac{\partial \psi(\mathbf{r}, t)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, t)
|
-\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, \tau)
|
||||||
\]
|
\]
|
||||||
|
|
||||||
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)$
|
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)$
|
||||||
@ -1842,7 +1842,103 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
\psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}).
|
\psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}).
|
||||||
\]
|
\]
|
||||||
For large positive values of $\tau$, $\psi$ is dominated by the
|
For large positive values of $\tau$, $\psi$ is dominated by the
|
||||||
$k=0$ term, namely the ground state.
|
$k=0$ term, namely the lowest eigenstate.
|
||||||
|
So we can expect that simulating the differetial equation in
|
||||||
|
imaginary time will converge to the exact ground state of the
|
||||||
|
system.
|
||||||
|
|
||||||
|
|
||||||
|
The [[https://en.wikipedia.org/wiki/Diffusion_equation][diffusion equation]] of particles is given by
|
||||||
|
|
||||||
|
\[
|
||||||
|
\frac{\partial \phi(\mathbf{r},t)}{\partial t} = D\, \Delta \phi(\mathbf{r},t).
|
||||||
|
\]
|
||||||
|
|
||||||
|
The [[https://en.wikipedia.org/wiki/Reaction_rate][rate of reaction]] $v$ is the speed at which a chemical reaction
|
||||||
|
takes place. In a solution, the rate is given as a function of the
|
||||||
|
concentration $[A]$ by
|
||||||
|
|
||||||
|
\[
|
||||||
|
v = \frac{d[A]}{dt},
|
||||||
|
\]
|
||||||
|
|
||||||
|
where the concentration $[A]$ is proportional to the number of particles.
|
||||||
|
|
||||||
|
These two equations allow us to interpret the Schrödinger equation
|
||||||
|
in imaginary time as the combination of:
|
||||||
|
- a diffusion equation with a diffusion coefficient $D=1/2$ for the
|
||||||
|
kinetic energy, and
|
||||||
|
- a rate equation for the potential.
|
||||||
|
|
||||||
|
The diffusion equation can be simulated by a Brownian motion:
|
||||||
|
\[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \sqrt{\tau}\, \chi \]
|
||||||
|
where $\chi$ is a Gaussian random variable, and the rate equation
|
||||||
|
can be simulated by creating or destroying particles over time.
|
||||||
|
|
||||||
|
/Diffusion Monte Carlo/ (DMC) consists in obtaining the ground state of a
|
||||||
|
system by simulating the Schrödinger equation in imaginary time, by
|
||||||
|
the combination of a diffusion process and a rate process.
|
||||||
|
|
||||||
|
In a molecular system, the potential is far from being constant,
|
||||||
|
and diverges at inter-particle coalescence points. Hence, when the
|
||||||
|
rate equation is simulated, it results in very large fluctuations
|
||||||
|
in the numbers of particles, making the calculations impossible in
|
||||||
|
practice.
|
||||||
|
Fortunately, if we multiply the Schrödinger equation by a chosen
|
||||||
|
/trial wave function/ $\Psi_T(\mathbf{r})$ (Hartree-Fock, Kohn-Sham
|
||||||
|
determinant, CI wave function, /etc/), one obtains
|
||||||
|
|
||||||
|
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\end{eqnarray*}
|
||||||
|
\[
|
||||||
|
-\frac{\partial \psi(\mathbf{r},\tau)}{\partial \tau} \Psi_T(\mathbf{r}) =
|
||||||
|
\left[ -\frac{1}{2} \Delta \psi(\mathbf{r},\tau) + V(\mathbf{r}) \psi(\mathbf{r},\tau) \right] \Psi_T(\mathbf{r})
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
|
||||||
|
= -\frac{1}{2} \Big( \Delta \big[
|
||||||
|
\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] -
|
||||||
|
\psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) - 2
|
||||||
|
\nabla \psi(\mathbf{r},\tau) \nabla \Psi_T(\mathbf{r}) \Big) + V(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
|
||||||
|
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
|
||||||
|
\frac{1}{2} \psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) +
|
||||||
|
\Psi_T(\mathbf{r})\nabla \psi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})} + V(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
|
||||||
|
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
|
||||||
|
\psi(\mathbf{r},\tau) \Delta \Psi_T(\mathbf{r}) +
|
||||||
|
\Psi_T(\mathbf{r})\nabla \psi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})} + E_L(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
|
||||||
|
\]
|
||||||
|
\[
|
||||||
|
-\frac{\partial \big[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big]}{\partial \tau}
|
||||||
|
= -\frac{1}{2} \Delta \big[\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \big] +
|
||||||
|
\nabla \left[ \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
|
||||||
|
\frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
|
||||||
|
\right] + E_L(\mathbf{r}) \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})
|
||||||
|
\]
|
||||||
|
|
||||||
|
Defining $\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
|
||||||
|
\Psi_T(\mathbf{r})$,
|
||||||
|
|
||||||
|
\[
|
||||||
|
-\frac{\partial \Pi(\mathbf{r},\tau)}{\partial \tau}
|
||||||
|
= -\frac{1}{2} \Delta \Pi(\mathbf{r},\tau) +
|
||||||
|
\nabla \left[ \Pi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
|
||||||
|
\right] + E_L(\mathbf{r}) \Pi(\mathbf{r},\tau)
|
||||||
|
\]
|
||||||
|
|
||||||
|
The new "potential" is the local energy, which has smaller fluctuations
|
||||||
|
as $\Psi_T$ tends to the exact wave function. The new "kinetic energy"
|
||||||
|
can be simulated by the drifted diffusion scheme presented in the
|
||||||
|
previous section (VMC).
|
||||||
|
|
||||||
** TODO Hydrogen atom
|
** TODO Hydrogen atom
|
||||||
|
|
||||||
@ -1854,7 +1950,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
energy of H for any value of $a$.
|
energy of H for any value of $a$.
|
||||||
#+end_exercise
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
#+BEGIN_SRC python :results output
|
#+BEGIN_SRC python :results output
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
Loading…
Reference in New Issue
Block a user