mirror of
https://github.com/TREX-CoE/irpjast.git
synced 2025-01-03 01:56:19 +01:00
Version with example.
This commit is contained in:
parent
1f83886e25
commit
c5513f6ee5
229
testing_svd.org
229
testing_svd.org
@ -139,6 +139,39 @@ def generateBlockRandomPointsAtShftApart(n,L1,dmin,shift):
|
||||
None
|
||||
#+end_example
|
||||
|
||||
#+begin_src python :noweb yes :results file :exports results
|
||||
import numpy as np
|
||||
# matplotlib related
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
<<generateBlocks>>
|
||||
|
||||
L1 = 1.0
|
||||
n = 100 # number of points
|
||||
dmin = 0.1 # min dist between points
|
||||
Ls = np.array([L1,L1,L1]) # lengths of the box
|
||||
shift = -10.0
|
||||
kappa = 2.0
|
||||
|
||||
rlist = generateBlockRandomPointsAtShftApart(n,L1,dmin,shift)
|
||||
print(rlist.shape)
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
|
||||
xs = rlist.T[0]
|
||||
ys = rlist.T[1]
|
||||
zs = rlist.T[2]
|
||||
ax.scatter(xs, ys, zs, marker='o')
|
||||
|
||||
fig.savefig('/tmp/test8.png')
|
||||
#plt.show()
|
||||
return '/tmp/test8.png'
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:/tmp/test8.png]]
|
||||
|
||||
#+begin_src python :noweb yes :results file :exports results
|
||||
|
||||
# matplotlib related
|
||||
@ -328,7 +361,7 @@ print(rlist.shape)
|
||||
rij = np.zeros(shape=(rlist.shape[0],rlist.shape[0]))
|
||||
|
||||
def funcF(x,y):
|
||||
return(np.exp(-kappa * np.sqrt(np.abs(np.dot(x,y)))))
|
||||
return(np.exp(-kappa * np.linalg.norm(x-y)))
|
||||
|
||||
rij = np.array([[funcF(xval, yval) for yval in rlist] for xval in rlist])
|
||||
|
||||
@ -351,12 +384,32 @@ import numpy
|
||||
a = numpy.array([[1,2,3],[4,5,6],[7,8,9]])
|
||||
b = numpy.array([[11,12,13],[14,15,16],[17,18,19]])
|
||||
print(list(zip(a,b))[0][1])
|
||||
print(numpy.square(a[:,0]))
|
||||
|
||||
def stepExp(a):
|
||||
def myexp(x):
|
||||
if numpy.abs(x) > 1e+0:
|
||||
return numpy.zeros_like(x)
|
||||
else:
|
||||
return numpy.exp(x)
|
||||
|
||||
res = numpy.array([[myexp(x) for x in y] for y in a])
|
||||
return(res)
|
||||
|
||||
print(numpy.exp(a))
|
||||
print(stepExp(a))
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
[11 12 13]
|
||||
[ 1 16 49]
|
||||
[[2.71828183e+00 7.38905610e+00 2.00855369e+01]
|
||||
[5.45981500e+01 1.48413159e+02 4.03428793e+02]
|
||||
[1.09663316e+03 2.98095799e+03 8.10308393e+03]]
|
||||
[[2.71828183 0. 0. ]
|
||||
[0. 0. 0. ]
|
||||
[0. 0. 0. ]]
|
||||
#+end_example
|
||||
|
||||
** Gaussian metric
|
||||
@ -371,7 +424,7 @@ import matplotlib.pyplot as plt
|
||||
<<generateBlocks>>
|
||||
|
||||
L1 = 1.0
|
||||
n = 50 # number of points
|
||||
n = 100 # number of points
|
||||
dmin = 0.1 # min dist between points
|
||||
Ls = np.array([L1,L1,L1]) # lengths of the box
|
||||
shift = -10.0
|
||||
@ -383,21 +436,31 @@ print(rlist.shape)
|
||||
rij = np.zeros(shape=(rlist.shape[0],rlist.shape[0]))
|
||||
|
||||
def funcF(x,y):
|
||||
return(np.exp(-kappa * np.sqrt(np.abs(np.dot(x,y)))))
|
||||
return(np.exp(-kappa * np.linalg.norm(x-y)))
|
||||
|
||||
def funcFG(x,y):
|
||||
return(np.exp(-kappa * np.abs(np.dot(x,y))))
|
||||
return(np.exp(-kappa * np.square(np.linalg.norm(x-y))))
|
||||
|
||||
def funcFGD(x,y):
|
||||
rij = np.exp(-kappa * 0.1 * np.square(np.linalg.norm(x-y)))
|
||||
return(rij)
|
||||
|
||||
rijSlater = np.array([[funcF(xval, yval) for yval in rlist] for xval in rlist])
|
||||
rijGaussian = np.array([[funcFG(xval, yval) for yval in rlist] for xval in rlist])
|
||||
rijDeltafn = np.array([[funcFGD(xval, yval) for yval in rlist] for xval in rlist])
|
||||
|
||||
u,dS,vt = np.linalg.svd(rijSlater)
|
||||
dS = dS/np.linalg.norm(dS)
|
||||
u,dG,vt = np.linalg.svd(rijGaussian)
|
||||
dG = dG/np.linalg.norm(dG)
|
||||
u,dGD,vt = np.linalg.svd(rijDeltafn)
|
||||
dGD = dGD/np.linalg.norm(dGD)
|
||||
|
||||
#print(d)
|
||||
#plt.imshow(rij)
|
||||
#plt.colorbar()
|
||||
#plt.show()
|
||||
plt.plot(range(dG.shape[0]),np.array([dS,dG]).T)
|
||||
plt.plot(range(dG.shape[0]),np.array([dS,dG,dGD]).T)
|
||||
plt.yscale('log')
|
||||
plt.savefig('/tmp/plot4.png')
|
||||
return '/tmp/plot4.png'
|
||||
@ -405,3 +468,159 @@ return '/tmp/plot4.png'
|
||||
|
||||
#+RESULTS:
|
||||
[[file:/tmp/plot4.png]]
|
||||
|
||||
** Palying around
|
||||
|
||||
Calculate the matrix of the \(FG(r_1,r_2)\) metric i.e. the gaussian metric.
|
||||
|
||||
#+begin_src python :noweb yes :results file :exports results
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
<<generateBlocks>>
|
||||
|
||||
L1 = 1.0
|
||||
n = 100 # number of points
|
||||
dmin = 0.1 # min dist between points
|
||||
Ls = np.array([L1,L1,L1]) # lengths of the box
|
||||
shift = -1.0
|
||||
kappa = 2.0
|
||||
|
||||
rlist = generateBlockRandomPointsAtShftApart(n,L1,dmin,shift)
|
||||
print(rlist.shape)
|
||||
|
||||
rij = np.zeros(shape=(rlist.shape[0],rlist.shape[0]))
|
||||
|
||||
|
||||
def funcF(x,y):
|
||||
rij = np.exp(-kappa * np.linalg.norm(x-y))
|
||||
return(rij)
|
||||
|
||||
def funcFG(x,y):
|
||||
rij = np.exp(-kappa * np.square(np.linalg.norm(x-y)))
|
||||
return(rij)
|
||||
|
||||
def myexp(x):
|
||||
if np.abs(x) > 1e-0:
|
||||
return np.exp(-x)
|
||||
else:
|
||||
return np.exp(x)
|
||||
|
||||
def funcFGD(x,y):
|
||||
rij = myexp(-kappa * np.square(np.linalg.norm(x-y)))
|
||||
return(rij)
|
||||
|
||||
rijSlater = np.array([[funcF(xval, yval) for yval in rlist] for xval in rlist])
|
||||
#rijSlater = rijSlater/np.max(rijSlater)
|
||||
rijGaussian = np.array([[funcFG(xval, yval) for yval in rlist] for xval in rlist])
|
||||
#rijGaussian = rijGaussian/np.max(rijGaussian)
|
||||
rijDeltafn = np.array([[funcFGD(xval, yval) for yval in rlist] for xval in rlist])
|
||||
#rijDeltafn = rijDeltafn/np.max(rijDeltafn)
|
||||
|
||||
u,dS,vt = np.linalg.svd(rijSlater)
|
||||
dS = dS/np.linalg.norm(dS)
|
||||
u,dG,vt = np.linalg.svd(rijGaussian)
|
||||
dG = dG/np.linalg.norm(dG)
|
||||
u,dGD,vt = np.linalg.svd(rijDeltafn)
|
||||
dGD = dGD/np.linalg.norm(dGD)
|
||||
|
||||
#print(d)
|
||||
#plt.imshow(rij)
|
||||
#plt.colorbar()
|
||||
#plt.show()
|
||||
plt.plot(range(dG.shape[0]),np.array([dS,dG,dGD]).T)
|
||||
plt.yscale('log')
|
||||
plt.savefig('/tmp/plot5.png')
|
||||
return '/tmp/plot5.png'
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:/tmp/plot5.png]]
|
||||
#+begin_src python :results file :exports results
|
||||
import numpy
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def myexp2(x):
|
||||
if numpy.abs(x) > 1e-0:
|
||||
return numpy.exp(-x)
|
||||
else:
|
||||
return numpy.exp(x)
|
||||
|
||||
def myexp(x):
|
||||
return(numpy.array([myexp2(y) for y in x]))
|
||||
|
||||
kappa = 1.0/2.0
|
||||
xstart = 0.0
|
||||
xend = 2.0
|
||||
xstep = 0.1
|
||||
s = numpy.array(list(map(lambda x : myexp(-x * numpy.power(numpy.arange(xstart,xend,xstep),2)), [10,5,1,0.5,0.1]))).T
|
||||
#s = numpy.exp(-kappa * numpy.arange(0,1,0.1))
|
||||
t = numpy.arange(xstart,xend,xstep)
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(t, s)
|
||||
|
||||
ax.set(xlabel=r'$r_{12}$', ylabel=r'$F(r_1,r_2)$',
|
||||
title='Comparison of Kappa')
|
||||
ax.set_yscale('log')
|
||||
ax.grid()
|
||||
|
||||
fig.savefig('/tmp/test7.png')
|
||||
#plt.show()
|
||||
return '/tmp/test7.png'
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:/tmp/test7.png]]
|
||||
|
||||
** Testing SVD for custom matrices
|
||||
|
||||
#+begin_src python :results output
|
||||
import numpy
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
a = numpy.array([[0,100,200],[100,0,200],[100,200,0]])
|
||||
b = numpy.exp(-a)
|
||||
print("Matrix A")
|
||||
print(a)
|
||||
print("Matrix Exp(A)")
|
||||
print(numpy.around(b,10))
|
||||
u,d,vt = numpy.linalg.svd(a)
|
||||
d = d/numpy.linalg.norm(d)
|
||||
print("Singular values of A")
|
||||
print(numpy.around(d,3))
|
||||
print("Singular vectors of A")
|
||||
print(numpy.around(u,3))
|
||||
u,d,vt = numpy.linalg.svd(b)
|
||||
d = d/numpy.linalg.norm(d)
|
||||
print("Singular values of Exp(A)")
|
||||
print(numpy.around(d,3))
|
||||
print("Singular vectors of Exp(A)")
|
||||
print(numpy.around(u,3))
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
Matrix A
|
||||
[[ 0 100 200]
|
||||
[100 0 200]
|
||||
[100 200 0]]
|
||||
Matrix Exp(A)
|
||||
[[1. 0. 0.]
|
||||
[0. 1. 0.]
|
||||
[0. 0. 1.]]
|
||||
Singular values of A
|
||||
[0.813 0.53 0.24 ]
|
||||
Singular vectors of A
|
||||
[[-0.67 0.142 0.728]
|
||||
[-0.626 0.42 -0.657]
|
||||
[-0.399 -0.896 -0.193]]
|
||||
Singular values of Exp(A)
|
||||
[0.577 0.577 0.577]
|
||||
Singular vectors of Exp(A)
|
||||
[[-1. 0. -0. ]
|
||||
[-0. -0.894 -0.447]
|
||||
[-0. -0.447 0.894]]
|
||||
#+end_example
|
||||
|
Loading…
Reference in New Issue
Block a user