1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2025-01-03 01:56:19 +01:00
Go to file
2021-02-02 14:36:43 +01:00
.gitignore Almost functional version. Need correct Cord 2020-11-25 16:59:53 +01:00
codelet_factor_een.f Jee derivatives full (To be tested) 2020-12-14 13:40:47 +01:00
deriv_num BLAS for VGL 2021-01-23 22:14:49 +01:00
deriv_num.irp.f Fixed printing 2021-01-04 16:45:32 +01:00
el_nuc_el_blas.irp.f BLAS for VGL 2021-01-23 22:14:49 +01:00
el_nuc_el.irp.f BLAS for VGL 2021-01-23 22:14:49 +01:00
elec_coord.txt Corrected distances 2020-12-08 13:08:23 +01:00
electrons.irp.f Gradient and Laplacian for total jastrow working 2020-12-17 16:44:15 +01:00
geometry.txt Added input files 2020-12-07 10:55:37 +01:00
jast_coeffs.txt Fix nuclei formula 2020-12-08 18:56:36 +01:00
jastrow BLAS for VGL 2021-01-23 22:14:49 +01:00
jastrow_provider.irp.f Fixed printing 2021-01-04 16:45:32 +01:00
jastrow.irp.f Faster Jastrow 2021-01-23 15:34:36 +01:00
Makefile VGL blas OK 2021-01-23 20:06:20 +01:00
nuclei.irp.f Gradient and Laplacian for total jastrow working 2020-12-17 16:44:15 +01:00
orders.irp.f Jee derivatives full (To be tested) 2020-12-14 13:40:47 +01:00
README.org Updated references in readme #6. 2021-01-28 01:01:51 +01:00
rescale.irp.f VGL blas OK 2021-01-23 20:06:20 +01:00
testing_svd.org Version with example. 2021-02-02 14:36:43 +01:00

IRPJAST

CHAMP's Jastrow factor computation using the IRPF90 method

Original equation:

$$ \sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl}\, r_{ij}^k\, ( R_{ia}^l + R_{ja}^l) ( R_{ia} R_{ja})^m $$

Expanding, one obtains:

$$ \sum_{i=2}^{Ne} \sum_{j=1}^i \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} + c_{apkl} R_{ia}^{p-k+l}\, r_{ij}^k\, R_{ja}^{p-k-l} $$

The equation is symmetric if we exchange $i$ and $j$, so we can rewrite

$$ \sum_{i=1}^{Ne} \sum_{j=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, r_{ij}^k\, R_{ja}^{p-k+l} $$

If we reshape $R_{ja}^p$ as a matrix $R_{j,al}$ of size $N_e \times N_n(N_c+1)$, for every $k$, we can pre-compute the matrix product

$$ C_{i,al}^{k} = \sum_j r_{ij}^k\, R_{i,al} $$ which can be computed efficiently with BLAS. We can express the total Jastrow as:

$$ \sum_{i=1}^{Ne} \sum_{pkl} \sum_a^{Nn} c_{apkl} R_{ia}^{p-k-l}\, C_{i,a(p-k+l)}^k $$

Rank reduction

Idea

The idea is to use SVD and fast-updates to reduce the rank of the intermediate \(r^k_{ij} = \Gamma_{i,j,k}\) like so.

\[ \Gamma_{i,j,k} = U_{i,d,k} \cdot D_{d,d,k} \cdot V^T_{d,j,k} \]

Where \( D_{d,d,k}\) is a diagonal in indices \(i,j\) and is of rank \(d \ll Min(i,j)\).

Algorithms for fast rank-1 updates of a r-thin SVD has been published in the following papers:

  1. https://doi.org/10.1016/j.laa.2005.07.021
  2. https://doi.org/10.1002/pamm.200810827

Auto-generate derivatives

Idea

The calculation of first and second derivatives of a network of tensors contracted using BLAS can also be expressed as a sum of BLAS contractions. However, there are many pitfalls. Here we shall consider an automated generation of contraction scheme to optimize the order in which the BLAS contraction is performed.