Sherman-Morrison/SM_MaponiA3_f.cpp

145 lines
4.6 KiB
C++
Raw Normal View History

// SM-MaponiA3_f.cpp
// Algorithm 3 from P. Maponi,
// p. 283, doi:10.1016/j.laa.2006.07.007
#include "SM_MaponiA3_f.hpp"
#include "Helpers.hpp"
void MaponiA3(int **linSlater0, double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates, int **linUpdates, unsigned int *Updates_index) {
// Define new 2D arrays and copy the elements of the
// linear passed Fortran arrays. This block needs to
2021-02-06 19:11:02 +01:00
// be replaced with a suitable casting mechanism to
// avoid copying of memory.
int **Slater0 = new int*[*Dim];
int **Updates = new int*[*Dim];
double **Slater_inv = new double*[*Dim];
for (int i = 0; i < *Dim; i++) {
Slater0[i] = new int[*Dim];
Updates[i] = new int[*Dim];
Slater_inv[i] = new double[*Dim];
}
for (unsigned int i = 0; i < *Dim; i++) {
for (unsigned int j = 0; j < *Dim; j++) {
Slater0[i][j] = linSlater0[0][i+*Dim*j];
Slater_inv[i][j] = linSlater_inv[0][i+*Dim*j];
Updates[i][j] = linUpdates[0][i+*Dim*j];
}
}
// Possible casting candidates
// int (*Slater0)[*Dim] = (int(*)[*Dim])linSlater0[0];
// double (*Slater_inv)[*Dim] = (double(*)[*Dim])linSlater_inv[0];
// int (*Updates)[*Dim] = (int(*)[*Dim])linUpdates[0];
////////////////////////////////////////////////////////////////////////
unsigned int k, l, lbar, i, j, tmp, M = *Dim;
unsigned int *p = new unsigned int[M+1];
unsigned int **Id = new unsigned int*[M];
double alpha, beta;
double **U, *breakdown = new double[M+1];
double **Al = new double*[M];
p[0] = 0;
for (i = 0; i < M; i++) {
p[i+1] = i + 1;
Id[i] = new unsigned int[M];
Al[i] = new double[M];
}
// Declare auxiliary solution matrix ylk
double ***ylk = new double**[M];
for (l = 0; l < M; l++) {
ylk[l] = new double*[M+1];
for (k = 0; k < M+1; k++) {
ylk[l][k] = new double[M+1];
}
}
// Initialize identity matrix
for (i = 0; i < M; i++) {
for (j = 0; j < M; j++) {
if (i != j) Id[i][j] = 0;
else Id[i][j] = 1;
}
}
// Initialize ylk with zeros
for (l = 0; l < M; l++) {
for (k = 0; k < M+1; k++) {
for (i = 0; i < M+1; i++) {
ylk[l][k][i] = 0;
}
}
}
// Calculate all the y0k in M^2 multiplications instead of M^3
for (k = 1; k < M+1; k++) {
for (i = 1; i < M+1; i++) {
ylk[0][k][i] = Slater_inv[i-1][i-1] * Updates[i-1][k-1];
}
}
// Calculate all the ylk from the y0k
for (l = 1; l < M; l++) {
for (j = l; j < M+1; j++) {
breakdown[j] = abs( 1 + ylk[l-1][p[j]][p[j]] );
}
lbar = getMaxIndex(breakdown, M+1);
for (i = 0; i < M; i++) {
breakdown[i] = 0;
}
tmp = p[l];
p[l] = p[lbar];
p[lbar] = tmp;
for (k = l+1; k < M+1; k++) {
beta = 1 + ylk[l-1][p[l]][p[l]];
if (beta == 0) {
cout << "Break-down condition occured. Exiting..." << endl;
exit;
}
for (i = 1; i < M+1; i++) {
alpha = ylk[l-1][p[k]][p[l]] / beta;
ylk[l][p[k]][i] = ylk[l-1][p[k]][i] - alpha * ylk[l-1][p[l]][i];
}
}
}
// Keep the memory location of the passed array 'Slater_inv' before 'Slater_inv'
// gets reassigned by 'matMul(...)' in the next line, by creating a new
// pointer 'copy' that points to whereever 'Slater_inv' points to now.
// double **copy = Slater_inv;
2021-02-06 19:11:02 +01:00
// Construct A-inverse from A0-inverse and the ylk
for (l = 0; l < M; l++) {
k = l+1;
U = outProd(ylk[l][p[k]], Id[p[k]-1], M);
beta = 1 + ylk[l][p[k]][p[k]];
for (i = 0; i < M; i++) {
for (j = 0; j < M; j++) {
Al[i][j] = Id[i][j] - U[i][j] / beta;
}
}
Slater_inv = matMul(Al, Slater_inv, M);
}
2021-02-06 19:11:02 +01:00
// Overwrite the old values in 'copy' with the new ones in Slater_inv
// for (i = 0; i < M; i++) {
// for (j = 0; j < M; j++) {
// copy[i][j] = Slater_inv[i][j];
// }
// }
2021-02-06 19:11:02 +01:00
// Overwrite the old values in 'linSlater_inv' with the new values in Slater_inv
for (i = 0; i < M; i++) {
for (j = 0; j < M; j++) {
linSlater_inv[0][i+*Dim*j] = Slater_inv[i][j];
}
}
for (l = 0; l < M; l++) {
for (k = 0; k < M+1; k++) {
delete [] ylk[l][k];
}
delete [] ylk[l], Id[l], U[l], Al[l], Slater_inv[l];
}
delete [] p, breakdown;
2021-02-06 19:11:02 +01:00
}