// SM-MaponiA3_f.cpp // Algorithm 3 from P. Maponi, // p. 283, doi:10.1016/j.laa.2006.07.007 #include "SM_MaponiA3_f.hpp" #include "Helpers.hpp" void MaponiA3(int **linSlater0, double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates, int **linUpdates, unsigned int *Updates_index) { // Define new 2D arrays and copy the elements of the // linear passed Fortran arrays. This block needs to // be replaced with a suitable casting mechanism to // avoid copying of memory. int **Slater0 = new int*[*Dim]; int **Updates = new int*[*Dim]; double **Slater_inv = new double*[*Dim]; for (int i = 0; i < *Dim; i++) { Slater0[i] = new int[*Dim]; Updates[i] = new int[*Dim]; Slater_inv[i] = new double[*Dim]; } for (unsigned int i = 0; i < *Dim; i++) { for (unsigned int j = 0; j < *Dim; j++) { Slater0[i][j] = linSlater0[0][i+*Dim*j]; Slater_inv[i][j] = linSlater_inv[0][i+*Dim*j]; Updates[i][j] = linUpdates[0][i+*Dim*j]; } } // Possible casting candidates // int (*Slater0)[*Dim] = (int(*)[*Dim])linSlater0[0]; // double (*Slater_inv)[*Dim] = (double(*)[*Dim])linSlater_inv[0]; // int (*Updates)[*Dim] = (int(*)[*Dim])linUpdates[0]; //////////////////////////////////////////////////////////////////////// unsigned int k, l, lbar, i, j, tmp, M = *Dim; unsigned int *p = new unsigned int[M+1]; unsigned int **Id = new unsigned int*[M]; double alpha, beta; double **U, *breakdown = new double[M+1]; double **Al = new double*[M]; p[0] = 0; for (i = 0; i < M; i++) { p[i+1] = i + 1; Id[i] = new unsigned int[M]; Al[i] = new double[M]; } // Declare auxiliary solution matrix ylk double ***ylk = new double**[M]; for (l = 0; l < M; l++) { ylk[l] = new double*[M+1]; for (k = 0; k < M+1; k++) { ylk[l][k] = new double[M+1]; } } // Initialize identity matrix for (i = 0; i < M; i++) { for (j = 0; j < M; j++) { if (i != j) Id[i][j] = 0; else Id[i][j] = 1; } } // Initialize ylk with zeros for (l = 0; l < M; l++) { for (k = 0; k < M+1; k++) { for (i = 0; i < M+1; i++) { ylk[l][k][i] = 0; } } } // Calculate all the y0k in M^2 multiplications instead of M^3 for (k = 1; k < M+1; k++) { for (i = 1; i < M+1; i++) { ylk[0][k][i] = Slater_inv[i-1][i-1] * Updates[i-1][k-1]; } } // Calculate all the ylk from the y0k for (l = 1; l < M; l++) { for (j = l; j < M+1; j++) { breakdown[j] = abs( 1 + ylk[l-1][p[j]][p[j]] ); } lbar = getMaxIndex(breakdown, M+1); for (i = 0; i < M; i++) { breakdown[i] = 0; } tmp = p[l]; p[l] = p[lbar]; p[lbar] = tmp; for (k = l+1; k < M+1; k++) { beta = 1 + ylk[l-1][p[l]][p[l]]; if (beta == 0) { cout << "Break-down condition occured. Exiting..." << endl; exit; } for (i = 1; i < M+1; i++) { alpha = ylk[l-1][p[k]][p[l]] / beta; ylk[l][p[k]][i] = ylk[l-1][p[k]][i] - alpha * ylk[l-1][p[l]][i]; } } } // Keep the memory location of the passed array 'Slater_inv' before 'Slater_inv' // gets reassigned by 'matMul(...)' in the next line, by creating a new // pointer 'copy' that points to whereever 'Slater_inv' points to now. // double **copy = Slater_inv; // Construct A-inverse from A0-inverse and the ylk for (l = 0; l < M; l++) { k = l+1; U = outProd(ylk[l][p[k]], Id[p[k]-1], M); beta = 1 + ylk[l][p[k]][p[k]]; for (i = 0; i < M; i++) { for (j = 0; j < M; j++) { Al[i][j] = Id[i][j] - U[i][j] / beta; } } Slater_inv = matMul(Al, Slater_inv, M); } // Overwrite the old values in 'copy' with the new ones in Slater_inv // for (i = 0; i < M; i++) { // for (j = 0; j < M; j++) { // copy[i][j] = Slater_inv[i][j]; // } // } // Overwrite the old values in 'linSlater_inv' with the new values in Slater_inv for (i = 0; i < M; i++) { for (j = 0; j < M; j++) { linSlater_inv[0][i+*Dim*j] = Slater_inv[i][j]; } } for (l = 0; l < M; l++) { for (k = 0; k < M+1; k++) { delete [] ylk[l][k]; } delete [] ylk[l], Id[l], U[l], Al[l], Slater_inv[l]; } delete [] p, breakdown; }