2021-02-09 13:40:52 +01:00
|
|
|
// SM-MaponiA3_f.cpp
|
2021-02-03 12:13:09 +01:00
|
|
|
// Algorithm 3 from P. Maponi,
|
|
|
|
// p. 283, doi:10.1016/j.laa.2006.07.007
|
2021-02-04 11:39:00 +01:00
|
|
|
#include "SM_MaponiA3.hpp"
|
2021-02-03 12:13:09 +01:00
|
|
|
#include "Helpers.hpp"
|
2021-01-27 17:19:41 +01:00
|
|
|
|
2021-02-25 12:17:45 +01:00
|
|
|
void MaponiA3(double *Slater_inv, unsigned int Dim,
|
2021-03-05 17:00:48 +01:00
|
|
|
unsigned int N_updates, double *Updates,
|
2021-02-25 12:17:45 +01:00
|
|
|
unsigned int *Updates_index) {
|
2021-02-09 13:40:52 +01:00
|
|
|
|
2021-03-04 11:10:59 +01:00
|
|
|
/*
|
|
|
|
DECLARE AND INITIALISE ARRAYS
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned int k, l, lbar, i, j, tmp, component, max, breakdown;
|
2021-02-25 12:17:45 +01:00
|
|
|
unsigned int *p = new unsigned int[N_updates + 1] {0};
|
2021-02-09 14:46:28 +01:00
|
|
|
double alpha, beta;
|
2021-02-18 19:43:20 +01:00
|
|
|
double *Al = new double[Dim * Dim];
|
2021-03-04 11:10:59 +01:00
|
|
|
|
2021-02-25 12:17:45 +01:00
|
|
|
// Populate update-order vector
|
2021-02-18 19:43:20 +01:00
|
|
|
for (i = 0; i < N_updates; i++) {
|
2021-02-09 14:46:28 +01:00
|
|
|
p[i + 1] = i + 1;
|
|
|
|
}
|
2021-02-02 15:05:47 +01:00
|
|
|
|
2021-02-09 14:46:28 +01:00
|
|
|
// Declare auxiliary solution matrix ylk
|
2021-02-18 19:43:20 +01:00
|
|
|
double ***ylk = new double **[N_updates];
|
|
|
|
for (l = 0; l < N_updates; l++) {
|
|
|
|
ylk[l] = new double *[N_updates + 1];
|
|
|
|
for (k = 0; k < N_updates + 1; k++) {
|
|
|
|
ylk[l][k] = new double[Dim + 1] {0};
|
2021-02-02 15:05:47 +01:00
|
|
|
}
|
2021-02-09 14:46:28 +01:00
|
|
|
}
|
2021-03-04 11:10:59 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
START THE ALGORITHM
|
|
|
|
*/
|
2021-03-05 17:00:48 +01:00
|
|
|
|
2021-02-19 19:11:44 +01:00
|
|
|
// Calculate the y0k
|
2021-02-12 17:48:49 +01:00
|
|
|
for (k = 1; k < N_updates + 1; k++) {
|
2021-02-18 19:43:20 +01:00
|
|
|
for (i = 1; i < Dim + 1; i++) {
|
2021-02-19 19:11:44 +01:00
|
|
|
for (j = 1; j < Dim + 1; j++) {
|
2021-02-23 08:28:09 +01:00
|
|
|
ylk[0][k][i] += Slater_inv[(i-1)*Dim + (j-1)]
|
The algorithm now works for the following 4x4 example with 2 updates:
S = [1,0,1,-1; 0,1,1,0; -1,0,-1,0; 1,1,1,1]
S_inv = [1,-1,1,1; 1,0,2,1; -1,1,-2,-1; -1,0,-1,0]
u1 = [0,-2,0,0]
u2 = [0,-1,0,0]
upd_idx = [2,4]
To go from Maponi's examples where the number of updates is always equal
to the the dimension of the matrix, and the decomposition is always
diagonal, to cases with a non-diagonal decomposition and a number of
updates unequal to its size, the following changed needed to be made:
* in the calculation of the {y0k} an extra inner for-loop needs to be
added to make it a full matrix-vector multiplication due to the fact
that A0 is not a diagonal matrix
* in some places the use of the update-order vector p needs
the be replaced with that of upd_idx to make sure the correct
component of the ylk is selected and the proper rank-1 matrices are
constructed
* when a matrix is passed from Fortran to C++ with 2D adressing, it is
passed in colum-major order. The passed matrix needs to be transposed
before passing to C++. Doing this inside the algorithm will break
compatibility with called from C/C++.
2021-02-21 18:28:08 +01:00
|
|
|
* Updates[(k-1)*Dim + (j-1)];
|
2021-02-19 19:11:44 +01:00
|
|
|
}
|
2021-02-02 15:05:47 +01:00
|
|
|
}
|
2021-02-09 14:46:28 +01:00
|
|
|
}
|
2021-02-02 15:05:47 +01:00
|
|
|
|
2021-03-04 11:10:59 +01:00
|
|
|
// // Compute A_1_inv and A_1_inv * Slater_inv
|
|
|
|
// double *lastIntermRes = Slater_inv;
|
|
|
|
// double *Res = new double[Dim*Dim]{0};
|
|
|
|
// component = Updates_index[0];
|
|
|
|
// beta = 1 + ylk[0][1][component];
|
|
|
|
// for (i = 0; i < Dim; i++) {
|
|
|
|
// for (j = 0; j < Dim; j++) {
|
|
|
|
// Al[i*Dim + j] = (i == j) - (j == component-1) * ylk[0][1][i + 1] / beta;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// matMul2(Al, Slater_inv, Res, Dim);
|
|
|
|
// Slater_inv = Res;
|
|
|
|
// Res = lastIntermRes;
|
|
|
|
// lastIntermRes = Slater_inv;
|
|
|
|
// showMatrix(Slater_inv, Dim, "Slater_inv");
|
|
|
|
|
2021-02-09 14:46:28 +01:00
|
|
|
// Calculate all the ylk from the y0k
|
2021-03-04 18:33:28 +01:00
|
|
|
for (l = 0; l < N_updates; l++) {
|
2021-03-04 11:10:59 +01:00
|
|
|
|
|
|
|
// Select update with largest break-down val
|
2021-03-04 18:33:28 +01:00
|
|
|
lbar = l+1; max = 0;
|
|
|
|
for (j = l+1; j < N_updates + 1; j++) {
|
2021-02-18 19:43:20 +01:00
|
|
|
component = Updates_index[p[j] - 1];
|
2021-03-04 18:33:28 +01:00
|
|
|
breakdown = abs(1 + ylk[l+1 - 1][p[j]][component]);
|
2021-03-04 11:10:59 +01:00
|
|
|
if (breakdown > max) {
|
|
|
|
max = breakdown;
|
|
|
|
lbar = j;
|
|
|
|
}
|
2021-03-04 18:33:28 +01:00
|
|
|
} tmp = p[l+1]; p[l+1] = p[lbar]; p[lbar] = tmp;
|
2021-03-04 11:10:59 +01:00
|
|
|
|
2021-03-04 18:33:28 +01:00
|
|
|
component = Updates_index[p[l+1] - 1];
|
|
|
|
beta = 1 + ylk[l+1 - 1][p[l+1]][component];
|
|
|
|
if (beta == 0) {
|
2021-02-18 19:43:20 +01:00
|
|
|
cout << "Break-down occured. Exiting..." << endl;
|
2021-03-05 17:00:48 +01:00
|
|
|
exit(1);
|
2021-02-18 19:43:20 +01:00
|
|
|
}
|
2021-03-04 18:33:28 +01:00
|
|
|
for (k = l+1 + 1; k < N_updates + 1; k++) {
|
|
|
|
alpha = ylk[l+1 - 1][p[k]][component] / beta;
|
2021-03-02 11:50:08 +01:00
|
|
|
cout << "( l, k, p[k], component ) = (" << l << ", " << k << ", " << p[k] << ", " << component << ")" << endl;
|
2021-02-18 19:43:20 +01:00
|
|
|
for (i = 1; i < Dim + 1; i++) {
|
2021-03-02 11:50:08 +01:00
|
|
|
cout << "ylk[" << l << "][p[" << k << "]][" << i << "] = ylk[" << l - 1 << "][p[" << k << "]][" << i << "] - alpha * ylk[" << l - 1 << "][p[" << l << "]][" << i << "]" << endl;
|
2021-03-04 18:33:28 +01:00
|
|
|
ylk[l+1][p[k]][i] = ylk[l+1 - 1][p[k]][i]
|
|
|
|
- alpha * ylk[l+1 - 1][p[l+1]][i];
|
2021-02-09 14:46:28 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-03-02 10:24:14 +01:00
|
|
|
|
2021-02-09 14:46:28 +01:00
|
|
|
// Construct A-inverse from A0-inverse and the ylk
|
2021-03-02 10:24:14 +01:00
|
|
|
double *last = Slater_inv;
|
|
|
|
double *next = new double[Dim*Dim] {0};
|
2021-03-01 16:08:14 +01:00
|
|
|
for (l = 0; l < N_updates; l++) {
|
|
|
|
k = l + 1;
|
|
|
|
component = Updates_index[p[k] - 1];
|
2021-02-18 19:43:20 +01:00
|
|
|
beta = 1 + ylk[l][p[k]][component];
|
2021-03-02 11:50:08 +01:00
|
|
|
cout << "( l, k, p[k], component ) = (" << l << ", " << k << ", " << p[k] << ", " << component << ")" << endl;
|
|
|
|
cout << "ylk[" << l << "][" << p[k] << "][i + 1]" << endl;
|
2021-02-18 19:43:20 +01:00
|
|
|
for (i = 0; i < Dim; i++) {
|
|
|
|
for (j = 0; j < Dim; j++) {
|
2021-02-25 12:17:45 +01:00
|
|
|
Al[i*Dim + j] = (i == j) - (j == component-1)
|
|
|
|
* ylk[l][p[k]][i + 1] / beta;
|
2021-02-09 13:40:52 +01:00
|
|
|
}
|
2021-02-02 15:05:47 +01:00
|
|
|
}
|
2021-03-01 16:08:14 +01:00
|
|
|
matMul2(Al, last, next, Dim);
|
|
|
|
double *tmp = next;
|
|
|
|
next = last;
|
|
|
|
last = tmp;
|
2021-02-09 14:46:28 +01:00
|
|
|
}
|
2021-03-01 16:08:14 +01:00
|
|
|
memcpy(Slater_inv, last, Dim*Dim*sizeof(double));
|
|
|
|
|
2021-03-04 11:10:59 +01:00
|
|
|
/*
|
|
|
|
CLEANUP MEMORY
|
|
|
|
*/
|
|
|
|
|
2021-02-18 19:43:20 +01:00
|
|
|
for (l = 0; l < N_updates; l++) {
|
|
|
|
for (k = 0; k < N_updates + 1; k++) {
|
2021-02-09 14:46:28 +01:00
|
|
|
delete[] ylk[l][k];
|
|
|
|
}
|
|
|
|
delete[] ylk[l];
|
|
|
|
}
|
2021-03-04 11:10:59 +01:00
|
|
|
delete[] Al, next, p;
|
2021-02-09 13:40:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" {
|
2021-02-18 19:43:20 +01:00
|
|
|
void MaponiA3_f(double **linSlater_inv, unsigned int *Dim,
|
2021-02-12 12:04:21 +01:00
|
|
|
unsigned int *N_updates, double **linUpdates,
|
|
|
|
unsigned int **Updates_index) {
|
2021-03-05 17:00:48 +01:00
|
|
|
MaponiA3(*linSlater_inv, *Dim,
|
2021-02-18 19:43:20 +01:00
|
|
|
*N_updates, *linUpdates,
|
|
|
|
*Updates_index);
|
2021-02-12 12:04:21 +01:00
|
|
|
}
|
2021-02-09 13:40:52 +01:00
|
|
|
}
|